Assignment #2

AMATH/PMATH 331

Due on 2 February 2011

1. Show the sequence $\{\sqrt[n]{2^n+3^n}\}$ converges and find its limit.

2. Show the sequence $\{x_n\}$ defined by $a_1 = 0$; $a_{n+1} = \sqrt{5 + 2a_n}$ converges and find its limit.

3. If a sequence $\{x_n\}$ satisfies that $x_{n+1}-x_n\to 0$, must $\{x_n\}$ be a Cauchy sequence and thus converge? Justify your answer.

4. Show the sequence $\{x_n\}$ defined recursively by

$$x_1 = 1$$
, $x_{n+1} = \sin x_n$, $n = 1, 2, 3, ...$

converges, and then find its limit.

5. Determine by the Comparison Test if the following series converge. (a) $\sum_{n=1}^{\infty} \frac{\cos n^2}{3^n}$ (b) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)}}$

(a)
$$\sum_{n=1}^{\infty} \frac{\cos n^2}{3^n}$$
 (b)

(b)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)}}$$

(a) Show that the set $\{(x,y) \in \mathbb{R}^2 \mid xy \leq 1\}$ is a closed subset of \mathbb{R}^2 .

(b) Show that the "closed" ball around a point **a** in \mathbb{R}^n of radius r > 0

$$\overline{B_r(\mathbf{a})} = {\mathbf{x} \in \mathbb{R}^n \mid ||\mathbf{x} - \mathbf{a}|| \le r}$$

is closed.

7. (a) Show $|\|\mathbf{x}\| - \|\mathbf{y}\|| \le \|\mathbf{x} - \mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

(b) Show that if $\{\mathbf{x}_k\}$ is a sequence in \mathbb{R}^n such that $\lim \mathbf{x}_k = \mathbf{b}$ then $\lim \|\mathbf{x}_k\| = \|\mathbf{b}\|$.

1

8. Show that a subset of \mathbb{R}^n is complete if and only if it is a closed subset of \mathbb{R}^n .

9. Find the closure of the following sets (do not justify)

- (a) \mathbb{Q}
- (b) $\mathbb{R}\setminus\mathbb{Q}$
- (c) $\{(x,y) \in \mathbb{R}^2 \mid x \in \mathbb{Q}, y \in \mathbb{R} \setminus \mathbb{Q} \}$
- (d) $\{(x,y) \in \mathbb{R}^2 \mid x^2 + 2y^2 < 1\}$
- (e) $\{(x,y) \in \mathbb{Q}^2 \mid x^2 + 2y^2 < 1\}$
- (f) $\{(x,y) \in \mathbb{R}^2 \mid xy \le 1\}$

- 10. Is each of the following subset of \mathbb{R} closed, open, both, or neither? If a given set is both open and closed, you must say so. (do not justify)
 - (a) $S = \bigcup_{k=1}^{\infty} (-k, k)$
 - (b) $S = \bigcup_{k=1}^{\infty} (\frac{1}{k}, 3 \frac{1}{k})$
 - (c) $S = \bigcup_{k=1}^{\infty} (\frac{1}{k}, 3 \frac{1}{k}]$
 - (d) $S = \bigcup_{k=1}^{\infty} \left[\frac{1}{k}, 3 \frac{1}{k} \right]$
 - (e) $S = \bigcap_{k=1}^{\infty} (-k, k)$
 - (f) $S = \bigcap_{k=1}^{\infty} \left(-\frac{1}{k}, 3 + \frac{1}{k}\right)$
 - (g) $S = \bigcap_{k=1}^{\infty} \left(-\frac{1}{k}, 3 + \frac{1}{k}\right]$
 - (h) $S = \bigcap_{k=1}^{\infty} \left[\frac{1}{k}, 3 + \frac{1}{k} \right]$
- 11. Prove that \mathbb{Q} is neither closed nor open.
- 12. For each set in the following, say whether it is compact or not. Give a BRIEF explanation.
 - (a) A = (0, 1] in \mathbb{R} .
 - (b) $A = [0,1] \times [0,1)$ in \mathbb{R}^2 .
 - (c) $A = [a, b] \times [c, d]$ in \mathbb{R}^2 where a < b and c < d.
 - (d) $A = \{(x, y) \in \mathbb{R}^2 \mid xy \le 1\}.$
 - (e) $A = \bigcup_{n=1}^{\infty} I_n$ where $I_n = \left[\frac{1}{n+1}, 1\right]$ in \mathbb{R} .
 - (f) $A = \bigcup_{n=1}^{\infty} I_n$ where $I_n = [-1, \frac{1}{n+1})$ in \mathbb{R} .
 - (g) $\bigcap_{n=1}^{\infty} F_n$ where $F_n = \{x \in \mathbb{R} \mid x > 0, 1 \le x^2 \le 2 + \frac{1}{n}\}.$
 - (h) $A = \mathbb{Q} \cap [0, 1]$ in \mathbb{R} .
 - (i) $A = \{(x, y) \in \mathbb{R}^2 \mid y = \sin x\}.$
 - (j) $A = \{(x, y) \in \mathbb{R}^2 \mid 1 \le x^2 + y^2 \le 4\}.$
 - (k) $A = [0,1] \backslash C$ where C is the Cantor set.
 - (1) $A = \{0\} \bigcup \{\frac{1}{k} \mid k \in \mathbb{N}\}$ in \mathbb{R} .
 - (m) $A = \mathbb{Z}$.
- 13. Give an example to show that Cantor's Intersection Theorem would not be true if compact sets were replaced by closed sets.
- 14. Show that the union of finitely many compact sets is compact.
- 15. Give a counter-example to the following statement: the union of an arbitrary family of compact sets is compact.
- 16. Let A and B be disjoint closed subsets of \mathbb{R}^n (their being disjoint means $A \cap B = \emptyset$). Define

$$d(A, B) = \inf\{\|\mathbf{a} - \mathbf{b}\| \mid \mathbf{a} \in A, \mathbf{b} \in B\}.$$

- (a) If $A = \{a\}$ is a singleton, show that d(A, B) > 0.
- (b) If A is compact, show that d(A, B) > 0.