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polytopes include Chv�atal [9], Fonlupt and Uhry [11], Gerards [12], Giles and Trotter [13], Mahjoub [16],Nemhauser and Trotter [17], Padberg [19], Tesch [20], Trotter [21] and Wolsey [22]; see also Gr�otschel,Lov�asz and Schrijver [14].In this paper, we introduce a large class of valid inequalities, which we call \wheel inequalities." Ourmost basic class of inequalities are inequalities that have \simple 1-wheel con�gurations" (that is, subdivi-sions of wheels in which each face-cycle is odd) as their support graphs. In fact, each 1-wheel con�gurationgives two such valid inequalities; they are related in a simple way. Each of them is derived using theChv�atal-Gomory procedure [8]. Moreover, necessary and su�cient conditions for these inequalities to befacet-inducing when the underlying graph is a simple 1-wheel are given.Our attack on the separation problem for the simple 1-wheel inequalities leads to a surprising phe-nomenon, namely, that we can solve the problem only by extending the class to a larger one that includes\non-simple 1-wheels." (Loosely speaking, non-simple 1-wheels are obtained from simple ones by identi-fying vertices.) We also consider the generalization of 1-wheels to p-wheels (wheels with a \hub" of sizep). For one of the two classes, the necessary and su�cient conditions for p-wheel inequalities to be facet-inducing when the underlying graph is a simple p-wheel are the same as for p = 1, but for the other classthis is not so. The separation problems for p-wheel inequalities can also be solved. Separation algorithmswill be discussed only brie
y here; for a more detailed discussion, we refer readers to Cheng and Cunning-ham [6]. The 1-wheel inequalities can be viewed as a special case of inequalities previously introduced ina polyhedral approach to the maximum 2-satis�ability problem; see Cheriyan et al. [7] and Cunninghamet al. [10].Throughout this paper, graph terminology follows that of Bondy and Murty [3]. In particular, a walkis a �nite non-empty sequence (v0; e1; v1; e2; v2; : : : ; ek; vk), whose terms are alternately vertices and edgessuch that the ends of ei are vi�1 and vi for 1 � i � k. A path is a walk for which all the vertices aredistinct. In a simple graph, we will list only the vertices of a walk. The degree of a vertex v is denoted bydeg(v) and the set of vertices adjacent to v is denoted by N(v).2 1-Wheel InequalitiesLet k be a positive integer, and let G1 = (V1; E1) be a graph with V1 = fv0; v1; v2; : : : ; v2k+1g and E1 =f(v0; vi); (vi; vi+1) : 1 � i � 2k + 1g. (We take v2k+2 = v1.) Consider a subdivision of G1. Let P0;i andPi;i+1 denote the paths obtained from (v0; vi) and (vi; vi+1) respectively through the subdivision. Thisgraph is a simple 1-wheel of size 2k + 1 if the cycle Ci consisting of P0;i; Pi;i+1; P0;i+1 is odd for each i.We denote this simple 1-wheel by W = W (v0; v1; v2; : : : ; v2k+1). We call v0 the hub, P0;1; P0;2; : : : ; P0;2k+1the spokes, P1;2; P2;3; : : : ; P2k;2k+1; P2k+1;1 the rim-paths, v1; v2; : : : ; v2k+1 the spoke-ends, and the cycleconsisting of P1;2; P2;3; : : : ; P2k+1;1 the rim. Figure 1 gives an example of a simple 1-wheel where a is thehub and fb; c; d; g; ig is the set of spoke-ends. We partition fv1; v2; : : : ; v2k+1g into two sets E = E(W ) and2



mb cdefgh ai j klFigure 1: A simple 1-wheelO = O(W ) where vi 2 E (O) if P0;i is an even (odd) path. In Figure 1, O = fd; gg and E = fb; c; ig. LetS = S(W ) be the set of internal vertices of the spokes and R = R(W ) be the set of internal vertices of therim-paths. In Figure 1, S = fj; k; lg and R = fm; e; f; hg.An equivalent de�nition for simple 1-wheels is the following. Let G1 = (V1; E1) be a graph withV1 = fv0; v1; v2; : : : ; v2k+1g and E1 = f(v0; vi); (vi; vi+1) : 1 � i � 2k + 1g. Let (E ;O) be a partitionof fv1; v2; : : : ; v2k+1g. Consider a subdivision of G1. Let P0;i and Pi;i+1 denote the paths obtained from(v0; vi) and (vi; vi+1) respectively through the subdivision. This graph is a simple 1-wheel of size 2k+ 1 ifvi 2 E (O) implies P0;i is an even (odd) path, and Pi;i+1 is an odd path if and only if vi and vi+1 belongto the same class.Let W (v0; v1; : : : ; v2k+1) be a simple 1-wheel. Let Ci be the odd cycle consisting of P0;i; Pi;i+1; P0;i+1for i = 1; 2; : : : ; 2k + 1. Corresponding to a partition (A;B) of the edges of the rim (de�ned below), wederive valid inequalities for PW as follows: (Note that for simplicity, we write x0; x1; x2; : : : ; x2k+1 insteadof xv0 ; xv1 ; xv2 ; : : : ; xv2k+1 .)1. Calculate the sum of the sequence of cycle inequalities for Ci, for i = 1; 2; : : : ; 2k+ 1:(2k + 1)x0 + 2 2k+1Xi=1 xi + 2Xv2S xv + Xv2Rxv � jSj+ jRj=2+ 2k + 1: (1)2. Add either P(u;v)2A(xu + xv � 1) or P(u;v)2B(xu + xv � 1) to (1).3. Add either �x0 � 0 or x0 � 1 so that every coe�cient is even and the right-hand side is odd.4. Divide the resulting inequality by 2 and round down the right-hand side.We de�ne the partition (A;B) = (A(W );B(W )) of the edges of the rim according to the following rulesfor the path Pi;i+1 where i 2 f1; 2; : : : ; 2k+ 1g:1. If one end is in E and the other is in O, then the path is even say (u1; : : : ; u2s+1) where u1 2 E ; weput the edges (u1; u2); (u3; u4); : : : ; (u2s�1; u2s) into A and the edges (u2; u3); (u4; u5); : : : ; (u2s; u2s+1)into B. 3



2. If both ends are in E , then the path is odd say (u1; u2; : : : ; u2s); we put (u1; u2); (u3; u4); : : : ; (u2s�1; u2s)into A and (u2; u3); (u4; u5) : : : ; (u2s�2; u2s�1) into B.3. If both ends are in O, then the path is odd say (u1; u2; : : : ; u2s); we put (u2; u3); (u4; u5); : : : ;(u2s�2; u2s�1) into A and (u1; u2); (u3; u4); : : : ; (u2s�1; u2s) into B.We note that jRj is even sinceP2k+1i=1 jCij � 1 (mod 2). Moreover, jAj = jEj+ jRj=2 and jBj = jOj+ jRj=2.Every v 2 E is covered by exactly two elements in A but none in B; every v 2 O is covered by exactlytwo elements in B but none in A. In addition, every vertex in R is covered by exactly one element inA and exactly one element in B. (For example, in Figure 1, A = f(b; i); (b; c); (c;m); (e; f); (h; i)g andB = f(d;m); (d; e); (f; g); (g; h)g.)Now we get the two inequalities as follows:� Using A:We add Pe=(u;v)2A(xu + xv � 1) � 2Pv2E xv +Pv2R xv � jEj+ jRj=2 to (1). Hence we obtain(2k+ 1)x0 + 2 2k+1Xi=1 xi + 2Xv2E xv + 2 Xv2S[Rxv � jSj+ jRj+ jEj+ 2k + 1: (2)From the de�nition of E , we see that jSj + jEj is even. Hence the right-hand side of (2) is odd.Therefore, adding �x0 � 0 to (2), dividing by 2, and rounding down the right-hand side, we haveIWA : kx0 + 2k+1Xi=1 xi +Xv2E xv + Xv2S[Rxv � k + (jSj+ jRj+ jEj)=2:� Using B:We add Pe=(u;v)2B(xu + xv � 1) � 2Pv2O xv +Pv2R xv � jOj+ jRj=2 to (1). One can check thatthe right-hand side of the resulting inequality is even; therefore, by adding x0 � 1 to it and thendividing it by 2 (with rounding), we haveIWB : (k + 1)x0 + 2k+1Xi=1 xi + Xv2O xv + Xv2S[Rxv � k + (jSj+ jRj+ jOj+ 1)=2:We use IWE instead of IWA and IWO instead of IWB . (The reason is that the coe�cients of elements ofE (O) in IWA (IWB ) are 2.) These are the 1-wheel inequalities. Moreover, we will use IE and IO insteadof IWE and IWO if it is clear from the context what W is. For example, with respect to Figure 1, we haveIE : 2xa + 2xb + 2xc + 2xi +Pv 62fa;b;c;ig xv � 7 and IO : 3xa + 2xd + 2xg +Pv 62fa;d;gg xv � 7:Theorem 2.1 Let G be a graph and W be a simple 1-wheel that is a subgraph of G. Then the inequalitiesIWE (that is, IWA ) and IWO (that is, IWB ) are both valid for PG. 24



Instances of 1-wheel inequalities have occurred repeatedly in the literature; see, for example, Chv�atal[9], Gr�otschel, Lov�asz and Schrijver [14], and Barahona and Mahjoub [1]. Although up to now no generalclasses seem to have been de�ned, [14] page 301, does refer (without de�nition) to such a class. For k = 1,the 1-wheel reduces to an \odd-K4" which is an important structure in the study of the stable set problem.For example, Barahona and Mahjoub [2] gave a complete polyhedral description for PG where G is a simple1-wheel of size 3. Gerards [12] gave a min-max relation for stable sets in graphs that do not contain odd-K4as a subgraph.3 Separation Algorithms and General 1-Wheel InequalitiesIn this section, we describe the basic approach to solving the separation problem for the class consisting oftrivial, edge, cycle and 1-wheel inequalities. As noted above, this approach was introduced in the settingof the maximum 2-satis�ability problem by Cheriyan et al. [7]. Our purpose here is mainly to motivatethe introduction of the \general 1-wheel inequalities", which arise naturally in the separation procedure.The full details of the procedure can be found in Cheng and Cunningham [6] or Cheng [5].Given G = (V;E) and x 2 RV , the following notation is used throughout this section. W =W (v0; v1; v2; : : : ; v2k+1) denotes a 1-wheel of size 2k + 1 and we = (1� xu � xv)=2 for all e = (u; v) 2 E.We also use w� to denote w when x is replaced by x�.We �rst brie
y describe a well-known algorithm for �nding a minimum-weight odd cycle in graph havingnon-negative edge-weights ce. (The �rst such algorithm is due to Gr�otschel and Pulleyblank [15].) LetH = (VH ; EH) be a simple graph and c : EH �! R+ be a vector of edge-weights. We can �nd a minimum-weight odd cycle inH as follows: Construct a bipartite graphH 0 = (V 1[V 2; E 0) where V 1 and V 2 are copiesof VH with (u1; v2) and (u2; v1) in E 0 if and only if (u; v) in EH ; moreover, c0(u1; v2) = c0(u2; v1) = c(u; v).Hence a minimum-weight path (with respect to c0) from v1 to v2 in H 0 corresponds to a minimum-weightodd closed walk (with respect to c) containing v1 in H . Hence we can �nd a minimum-weight odd closedwalk in H . However since c is nonnegative, we can �nd a minimum-weight odd cycle in H , since everyodd closed walk contains a subsequence that is an odd cycle. Moreover, such an odd cycle can be found inO(jVHj3) time. Furthermore, the same trick enables us to establish the following result. (We remark thata minimum-weight non-empty even walk from u to u can be assumed to be of length 2.)Proposition 3.1 Let H = (VH ; EH) be a graph. Then minimum-weight non-empty odd and even walksfrom u to v for every u; v 2 VH (u = v is possible) can be found in O(jVH j3) time. 2We now describe the well-known technique to solve the separation problem for the class of trivial,edge and cycle inequalities. Let x� 2 RV . We may assume x� satis�es the trivial and edge inequalities.(They are easy to check, and knowing that they are not violated is important in what follows.) SupposeC = (v1; v2; : : : ; v2k+1) is an odd cycle in G. Then w�(C) = k + 1=2 � P2k+1i=1 x�i . (Recall that w�e =5



(1� x�u � x�v)=2 for all e = (u; v) 2 E.) Hence x� violates the cycle inequality corresponding to C if andonly if w�(C) < 1=2. Therefore a most-violated cycle inequality corresponds to an odd cycle in G havingminimum weight (with respect to w�). Thus the separation problem for the class consisting of the trivial,edge and cycle inequalities can be solved in O(n3) time. Hence to solve our problem in polynomial time,it is su�cient to answer the following question in polynomial time: Given x� 2 RV satisfying the trivial,edge and cycle inequalities, does x� violate an inequality of the form IE or IO? (We use this terminologyto mean does x� violate IWE or IWO for some 1-wheel W .) So throughout this section, we assume x� satis�esthe trivial, edge, and cycle inequalities.Let C be an odd cycle. Then the cycle inequality can be written asXe2C we � 12 :(To see this, observe that P2k+1i=1 xi � k can be rewritten as (x1 + x2)=2 + (x2 + x3)=2 + � � � + (x2k +x2k+1)=2+(x2k+1+x1)=2 � k and the left-hand side has 2k+1 terms.) Let W be a 1-wheel of size 2k+1.Then following the procedure in Section 2 in deriving IWE and using the fact thatPe=(u;v)2A(xu+ xv � 1)is 2Pe2A we � 0, we have IWE : 12 2k+1Xi=1 8<:Xe2Ci we � 129=;+ Xe2Awe + 12x0 � +12where Ci is the odd cycle de�ned earlier. Hence IWE can be rewritten asIWE :  2 2k+1Xi=1 w(P0;i) + 2k+1Xi=1 w(Pi;i+1)� 12(2k+ 1)!+ 2Xe2Awe � 1� x0: (3)For simplicity, the notation g(v) = 1=4� xv=2 andf(v) = 8<: 1=4� xv=2 if v 2 E�1=4 + xv=2 if v 2 Ofor v 2 E [O is used in the rest of this section. We also use g�; f� to denote g; f when x is replaced by x�.Lemma 3.2 2 Xe2A\Pi;i+1 we = Xe2Pi;i+1 we + f(vi) + f(vi+1) for i = 1; 2; : : : ; 2k+ 1.Proof: This follows from the de�nitions of we and A. 2By applying Lemma 3.2 to (3), we have the following result.Theorem 3.3 Suppose Fi = f(vi) + f(vi+1). Then IWE can be rewritten asIWE :  2 2k+1Xi=1 w(P0;i) + 2 2k+1Xi=1 w(Pi;i+1)� 12(2k + 1)!+ 2k+1Xi=1 Fi � 1� x0: (4)2 6



Suppose that we know the hub is v0 and the set of spoke-ends is fv1; v2; : : : ; v2k+1g, and we wantto �nd a most-violated inequality IWE corresponding to them. Then we know the parities of the pathsP0;1; P0;2; : : : ; P0;2k+1; P1;2; P2;3; : : : ; P2k+1;1. So by Theorem 3.3, we need to �nd paths of the speci�edparities having minimum total weight such that they are internally disjoint. This problem is di�cult.We relax the conditions by allowing the paths to be walks, and allowing them to intersect. Then theproblem becomes easy, because each of the walks can be chosen to be of least weight. It is fortunate thatthis relaxation corresponds to a generalization of simple 1-wheel inequalities. In fact, this class can beintroduced in another way, as inequalities obtainable from simple 1-wheel inequalities by a sequence ofvertex-identi�cations.Proposition 3.4 Let Pni=1 aixi � b be a valid inequality for PG and let v1 and v2 be two nonadjacentvertices of G. If H is obtained from G by identifying v1 and v2 where the vertex v2 of H is obtained fromthe identi�cation of v1 and v2 of G, then (a1 + a2)x2 +Pni=3 aixi � b is a valid inequality for PH .Proof: This follows from the fact that (x�1; x�2; x�3; : : : ; x�n)T is an incidence vector of a stable set of Gwhenever (x�2; x�3; : : : ; x�n)T is an incidence vector of a stable set of H . 2We assume that after an identi�cation, any duplicate edge is deleted. From now on, whenever weidentify two vertices, we assume, without saying so explicitly, that the two vertices are not adjacent. LetH be a graph and H 0 be the graph obtained from H by a sequence of identi�cations of vertices. Byapplying Proposition 3.4 repeatedly, a valid inequality for PH provides a valid inequality for PH 0 . It isclear that such a sequence of identi�cations of vertices induces a partition of the vertices of H such thatH 0 is obtained from H by identifying vertices in the same class of the partition.Suppose W (v0; v1; v2; : : : ; v2k+1) is a simple 1-wheel and P is a partition of V (W ). Then we de�ne a(general) 1-wheel W 0(v0; v1; v2; : : : ; v2k+1) to be the graph obtained from W by identifying the vertices inthe same class of P . We note that a spoke or a rim-path may actually be a walk in a general 1-wheel.More importantly, the spokes and rim-paths may intersect other than at their ends. Figure 2 is a 1-wheelobtained from Figure 1 by identifying j and l, and by identifying g and k . For a general 1-wheel, S, R, Eand O are treated as multisets. (For example, S = fj; j; gg and R = fm; e; f; hg for Figure 2, so jSj = 3and jRj = 4.) We also remark that it is clear that none of the rim-paths and spokes is empty.Given a general 1-wheel W (v0; v1; : : : ; v2k+1), we assume that the hub, the spoke-ends, the spokes andthe rim-paths are explicitly given, so there is no confusion as to which simple 1-wheel W is obtained from.Of course, a hub or spoke-end may also be an internal vertex of some spoke or some rim-path. For example,in the graph of Figure 2, a is the hub, b; c; d; g and i are the spoke-ends, (a; j; b); (a; g; c); (a; d); (a; g); (a; j; i)are the spokes and (b; c); (c;m; d); (d; e; f; g); (g; h; i); (i; b) are the rim-paths. Moreover, g serves as a spoke-end and as an internal vertex of the spoke (a; g; c). We remark that another way to see that general 1-wheelinequalities are valid without using Proposition 3.4 is to observe that the Chv�atal-Gomory derivation works7



ab cmdefghi jFigure 2: A non-simple 1-wheelfor general 1-wheels; of course sets are treated as multisets during this procedure. Hence Theorem 2.1 istrue for general 1-wheels. Therefore, the following result follows from (4).Theorem 3.5 Let W determine an inequality of the form IE that is most-violated by x�. Then every spokeand rim-path is a minimum-weight walk with respect to w� of its parity joining its ends. 2Motivated by Theorem 3.5, we compute, for each u; v 2 V , the minimum weight with respect to w� ofan even (odd) walk from u to v in G. (u and v may be the same.) We denote this minimum by w�E(u; v)(w�O(u; v)). To solve our problem for IE , it is enough to �nd an algorithm for �nding a most-violatedinequality of the form IE with some speci�c vertex, say v0, as the hub. We construct an auxiliary graphH = (VH ; EH) from G = (V;E) as follows: H is a complete graph with loops where VH = V E[V O, and V Eand V O are copies of V . If a 2 V E (V O) is a copy of b, then b is denoted by �a. A vertex in V E representsa potential even spoke-end and a vertex in V O represents a potential odd spoke-end. For simplicity, welet T1, T2 and T3 denote the respective statements u; v 2 V E , u; v 2 V O and u 2 V E ; v 2 V O. For any(u; v) 2 EH , we de�ne wH(u; v), the edge-weight for (u; v), to be8>>><>>>: w�E(v0; �u) + w�E(v0; �v) + 2w�O(�u; �v)� 1=2 + g�(�u) + g�(�v) if T1w�O(v0; �u) + w�O(v0; �v) + 2w�O(�u; �v)� 1=2� g�(�u)� g�(�v) if T2w�E(v0; �u) + w�O(v0; �v) + 2w�E(�u; �v)� 1=2 + g�(�u)� g�(�v) if T3:Then it follows from (4) that an odd closed walk of length at least 3 in H induces a 1-wheel with v0 as thehub. Hence, it follows from Theorem 3.5 and the de�nition of wH(u; v) that we can �nd a most violatedIE with v0 as the hub by �nding a minimum-weight odd closed walk of length at least 3 in H .Lemma 3.6 wH(u; v) � 0 for all (u; v) 2 EH.Proof: Let P �a;b;e be a minimum-weight even walk from a to b in G with respect to w� and P �a;b;o be aminimum-weight odd walk from a to b in G with respect to w�. Then by using Lemma 3.2, we can rewrite8



wH(u; v) as 8>>>>>>>>>>>><>>>>>>>>>>>>: (w�(P �0;�u;e) + w�(P �0;�v;e) + w�(P ��u;�v;o)� 1=2) + 0@2 Xe2A\P ��u;�v;o w�e1A if T1(w�(P �0;�u;o) + w�(P �0;�v;o) + w�(P ��u;�v;o)� 1=2) +0@2 Xe2A\P ��u;�v;o w�e1A if T2(w�(P �0;�u;e) + w�(P �0;�v;o) + w�(P ��u;�v;e)� 1=2) + 0@2 Xe2A\P ��u;�v;e w�e1A if T3:In each case, the second summand is nonnegative since x� satis�es the trivial and edge inequalities. More-over, the �rst summand is nonnegative since x� satis�es the cycle inequalities. 2The above discussion suggests that in order to determine whether any 1-wheel inequality of the form IEis violated by x�, we should compare w�H(C) to 1� x�0 where C is a minimum-weight cycle in the auxiliarygraph. However, a cycle of length 1 does not correspond to a 1-wheel. The next lemma shows that thisdoes not cause a problem.Lemma 3.7 wH(e) � 1� x�0 for any loop e in the auxiliary graph.Proof: Suppose e = (uE ; uE) where u 2 V . (u and v0 may be the same.) If the claim is not true, then wemust have 2w�E(v0; u) + 2w�O(u; u)� 12 + 2g�(u) < 1� x�0:Since g�(u) = 1=4� x�u=2 and w�O(u; u) � 1=2 (because x� satis�es the cycle inequalities), we have2w�E(v0; u) + x�0 � x�u < 0:Suppose the walk (v0; y1; y2; : : : ; y2l+1; u) has weight w�E(v0; u). Then2w�E(v0; u) + x�0 � x�u = (2l+ 2)� 2x�y1 � 2x�y2 � � � � � 2x�u;so x�y1 + x�y2 + � � �+ x�y2l+1 + x�u > l + 1. However, if we add up the edge inequalities for the l + 1 edges(y1; y2); (y3; y4); : : : ; (y2k�1; y2k); (y2l+1; u), then we have x�y1+x�y2+ � � �+x�y2l+1+x�u � l+1, a contradiction.The case where e = (uO; uO) is similar. 2Theorem 3.8 If C is a minimum-weight odd cycle in H, then x� violates no inequality of the form IEwith v0 as the hub if and only if w�H(C) � 1� x�0. 2Corollary 3.9 The separation problem for the class consisting of trivial, edge, cycle inequalities and theinequalities of the form IE (both simple and non-simple) can be solved in O(n4) time. 29



The separation problem for the class consisting of trivial, edge, cycle and general 1-wheel inequalitiesof the form IO can be solved similarly. For a more detailed discussion of separation problems for 1-wheelinequalities, see Cheng and Cunningham [6] or Cheng [5]. (The class of inequalities for which the separationproblem is solved in [6] is slightly smaller, but the two separation problems are equivalent.)We introduced general 1-wheels to handle di�culties arising from requiring paths to be disjoint. How-ever, the generalization is more than a mere device for solving the separation problem. It is possible that aviolated general 1-wheel inequality exists, when there is no violated simple 1-wheel inequality. This followsfrom the fact that there are non-simple 1-wheel inequalities that induce facets for PG. For example, IE isfacet-inducing for the graph obtained by identifying a and b in Figure 3.baFigure 3: IE is facet-inducing for the graph obtained by identifying a and b4 Facet-inducing 1-Wheel InequalitiesWe consider the question of whether a given simple 1-wheel inequality corresponding to a simple 1-wheelW is facet-inducing for PG. Unfortunately, the question in general seems to be di�cult. (We discuss thisat the end of the section.) On the other hand, for the case in whichW = G, we have the following completeanswer.Theorem 4.1 Let W be a simple 1-wheel. Then IWE is facet-inducing for PW if and only if every rim-pathjoining two elements of E has length at least 2 (and hence at least 3).Theorem 4.2 Let W be a simple 1-wheel. Then IWO is facet-inducing for PW if and only if every rim-pathjoining two elements of O has length at least 2 (and hence at least 3) and every spoke of odd length haslength at least 3.Theorem 4.1 and Theorem 4.2 can be combined into the following statement.Theorem 4.3 Let W be a simple 1-wheel. Let aTx � b be IWE or IWO . Then aTx � b is facet-inducing forPW if and only minfau; avg = 1 for every edge (u; v) of W . 210



It is easy to see that there exist 1-wheels for which IE , IO, both, or neither are facet-inducing. Weprove Theorem 4.2 in this section and delay the proof of Theorem 4.1 until Section 6, when it is generalized.The proof uses the well-known approach of obtaining a facet-inducing inequality from another by replacingan edge by a path of length 3. The �rst step is to show that the conditions in Theorem 4.2 are necessary.Lemma 4.4 If IWO is facet-inducing for PW , then every rim-path joining two elements of O has length atleast 2 (and hence at least 3) and every spoke of odd length has length at least 3.Proof: Suppose the �rst condition is not satis�ed. Say the length of Pi;i+1 is 1 for some i 2 f1; 2; : : : ; 2k+1g.Let Ci be the cycle consisting of Pi;i+1; P0;i; P0;i+1 and let ICi be the corresponding cycle inequality. Assumek � 2, and let W be the subgraph obtained fromW by deleting the internal vertices and edges of P0;i andP0;i+1. Then W is a 1-wheel of size 2k � 1. Its hub is v0 and its set of spoke-ends is fv1; v2; : : : ; v2k+1g nfvi; vi+1g. We note that vi and vi+1 are internal vertices of the rim-path PWi�1;i+2. (Observe that in W ,this is the path (PWi�1;i; PWi;i+1; PWi+1;i+2); that is, the path PWi�1;i is followed immediately by PWi;i+1 and thenby PWi+1;i+2.) Then we have IWO = IWO + ICi :Suppose k = 1. Without loss of generality, we may assume i = 1. If v3 2 E , then let IQ be the sum ofthe edge inequalities xu1 + xu2 � 1; xu3 + xu4 � 1; : : : ; x2l+1 + xv0 � 1where P0;3 is (v3; u1; u2; : : : ; u2l+1; v0); otherwise (that is, v3 2 O) let IQ be the sum of the edge inequalitiesxv3 + xu1 � 1; xu2 + xu3 � 1; : : : ; x2l + xv0 � 1where P0;3 is (v3; u1; u2; : : : ; u2l; v0). Let IC be the cycle inequality for the rim (that is, the cycle consistingof P1;2; P2;3 and P3;1) of W . Then IWO = IC + ICi + IQ:Now suppose the second condition is not satis�ed. Without loss of generality, assume the length ofP0;1 is 1. Let Ci be the cycle consisting of P0;i; Pi;i+1 and P0;i+1 and ICi be its cycle inequality fori = 1; 2; : : : ; 2k+ 1. Then we let I1 denote the inequalityIC1 + IC3 + � � �+ IC2k�1 + IC2k+1 :We note that although the path P0;1 is on both C1 and C2k+1, every internal vertex of the spokes still hascoe�cient 1 in I1 since P0;1 has no internal vertex. Now for each P2i;2i+1, 1 � i � k, we let I2 denote theinequality kXi=10@ Xe=(a;b)2B(W )\E(P2i;2i+1)(xa + xb � 1)1A :11



Then it is not di�cult to check that IWO = I1 + I2:Hence we are done. 2We use the following strategy to prove the conditions in Theorem 4.2 are su�cient.� Step 1: Given v0; v1; : : : ; v2k+1, suppose we want v0 to be the hub and v1; : : : ; v2k+1 to be the spoke-ends of a 1-wheel. Furthermore, suppose we �x a subset of fv1; v2; : : : ; v2k+1g to be O. Then thereexists a unique 1-wheel that satis�es the conditions in Theorem 4.2 with minimumnumber of vertices.We denote such a minimal wheel by WB(v0; v1; : : : ; v2k+1;O):We callWB the base wheel for (v0; v1; : : : ; v2k+1) and O or simply the base wheel. For example, supposethe prescribed data are: the hub is v0, the spoke-ends are v1; v2; v3; v4 and v5, and O = fv1; v2; v4g.Then the base wheel for these data is shown in Figure 4. (Note that for simplicity, the vertices inthe �gure are labelled i instead of vi.)� Step 2: We prove that for any base wheel WB, IWBO is facet-inducing for PWB .� Step 3: Let W be a wheel for which IWO is facet-inducing for PW and let W 0 be a wheel obtainedfrom W by replacing an edge (a; b) of W by a path of length 3. Then we prove IWO is facet-inducingfor PW 0 . 19 01 2345 6 7 8910 11 1213 14 15161718Figure 4: A base wheelLetWB be the base wheel for the data (v0; v1; : : : ; v2k+1) and a prescribed O. ThenWB has the followingproperties:1. vi 2 E implies P0;i is of length 2 for i 2 f1; 2; : : : ; 2k+ 1g;2. vi 2 O implies P0;i is of length 3 for i 2 f1; 2; : : : ; 2k+ 1g;12



3. vi; vi+1 2 E implies Pi;i+1 is of length 1 for i 2 f1; 2; : : : ; 2k+ 1g;4. vi; vi+1 2 O implies Pi;i+1 is of length 3 for i 2 f1; 2; : : : ; 2k+ 1g; and5. jfvi; vi+1g \ Ej = 1 implies Pi;i+1 is of length 2 for i 2 f1; 2; : : : ; 2k+ 1g.Hence, since jS(WB)j = jEj+ 2jOj and jR(WB)j = 2jOj, IWBO can be simpli�ed toIWBO : (k + 1)x0 +Xv2E xv + 2Xv2O xv + Xv2S[Rxv � 2k + 1 + 2jOj:We consider two types of stable sets of WB that satisfy IWBO with equality.� Type 1: Let N = X [ Y where X is the union of fv0g and a stable set of the rim, C, of WB of size(jCj � 1)=2, and Y is constructed as follows: Set Y = ;; for each vi 2 O where i 2 f1; : : : ; 2k + 1gand vi 62 X , adjoin the internal vertex of P0;i that is a neighbour of vi to Y .� Type 2: Let N be the union of O and the set of neighbours of v0.It is easy to see that both constructions yield stable sets satisfying IWBO with equality. For example, letWB be the base wheel in Figure 4. Then we have IWBO : 3x0 + 2x1 + 2x2 + 2x4 + x3 + x5 +P19i=6 xi � 11;f0; 1; 7; 8; 9; 10; 15; 18g and f0; 6; 2; 3; 4; 5; 12g are both Type 1 stable sets, and f1; 2; 4; 13; 14; 16; 17; 19g isthe unique Type 2 stable set.Lemma 4.5 Let WB be the base wheel for the data (v0; v1; : : : ; v2k+1) and a prescribed O. Then IWBO isfacet-inducing for PWB .Proof: Suppose the face induced by IWBO is a subset of a facet induced by some valid inequality aTx � b.Our goal is to show that aTx � b is a constant multiple of IWBO . Let (v; w) be an edge of the rim wherev; w 62 O. (It is clear that such (v; w) must exist.) Let (u1; u2; w; v) be the length 3 subpath of the rim,containing w and v, and having v as an end of the subpath. Let N be the Type 1 stable set of WB withu1; v 2 N . Now N 0 = (N n fvg) [ fwg is also a Type 1 stable set of WB. Since any stable set of WBthat satis�es IWBO with equality will also satisfy aTx � b with equality, we can conclude that av = aw.(For example, in Figure 4, suppose we pick v to be v10 and w to be v5. Then the two Type 1 stable setsf0; 10; 1; 7; 8; 9; 15; 18g and f0; 5; 1; 7; 8; 9; 15; 18g imply a5 = a10.)Let vi 2 O and v; w be the two vertices of the rim that are neighbours of vi. We note that v; w 62 Osince WB is a base wheel. Let (u1; u2; v; vi) be the length 3 subpath of the rim, containing v and vi, andhaving vi as an end of the subpath. Let z be the internal vertex of P0;i that is a neighbour of vi. Let Nbe the Type 1 stable set of WB with u1; vi 2 N . Now N 0 = (N n fvig) [ fv; zg is also a Type 1 stable setof WB. Hence avi = az + av . (For example, in Figure 4, consider v4 (which is in O) and choose v to bev10, so w is v9. Then the stable sets f0; 4; 11; 6; 2; 3; 12g and f0; 10; 18; 11; 6; 2; 3; 12g imply a4 = a10+ a18.)13



Similarly, we have avi = az + aw ; therefore av = aw. We can now conclude that av0 = aw0 = d0 for all v0and w0 on the rim that are not in O, for some d0 2 R.Let vi 2 O and v; w be the two vertices of the rim that are neighbours of vi. Let N be the Type2 stable set of WB. Then N 0 = (N n fvig) [ fv; wg is also a stable set of WB that satis�es IWBO withequality. Hence avi = 2d0. (For example, in Figure 4, the stable sets f1; 2; 4; 13; 14; 16; 17; 19g andf6; 11; 2; 4; 13; 14; 16; 17; 19g will now imply a1 = a6 + a11 = 2d0.) Moreover, let P0;i be (v0; y; z; vi).We note that y 2 N 0. Then N 00 = (N 0 n fyg) [ fzg is a stable set of WB that satis�es IWBO withequality. Hence ay = az . (For example, in Figure 4, the stable sets f6; 11; 2; 4; 13; 14; 16; 17; 19g andf6; 11; 2; 4; 12; 14; 16; 17; 19g imply a12 = a13.) Now, we also know avi = az + d0; hence az = d0. Therefore,az = ay = d0.Now consider vi 2 E . Let N be the Type 2 stable set of WB and y be the internal vertex of P0;i. ThenN 0 = (N n fyg)[fvig is also a stable set of WB that satis�es IWBO with equality. Hence ay = avi = d0. (Forexample, in Figure 4, the stable sets f1; 2; 4; 13; 14; 16; 17; 19g and f1; 2; 4; 13; 14; 16; 17; 5g will now implya19 = a5 = d0.)Now by taking a Type 1 stable set of WB and the Type 2 stable set for WB, we have a0 = (k + 1)d0.Hence aTx � b is a constant multiple of IWBO , and we are done. 2To extend the result to any simple 1-wheel, we use the following special form of a result of Wolsey [22].(Actually, the proof of Lemma 4.5 can be modi�ed to prove the general case without using Lemma 4.6.)Lemma 4.6 Let G = (V;E) be a graph and cTx � d (c � 0, d > 0) be facet-inducing for PG. Let (a; b) 2 Ewith ca � cb = 
. Let T be the set of incidence vectors of stable sets of G that satisfy cTx � d with equality.Let G0 be the graph obtained from G by replacing (a; b) by the path (a; y; z; b) where y; z 62 V . Suppose that1. there exists s 2 T such that sa = sb = 0, and2. there exists s 2 T such that sa = 1, sb = 0 and sh = 0 for all h 2 N(b) n fag.Then cTx+ 
xy + 
xz � d+ 
 is facet-inducing for PG0 .We note that if cTx � d is not an edge inequality, then condition 1 in Lemma 4.6 is automaticallysatis�ed. Furthermore, if deg(b) = 2 then condition 2 in Lemma 4.6 is also satis�ed.Now suppose that W is a 1-wheel and W 0 is obtained from W by replacing an edge (a; b) of W by(a; y; z; b). If cTx � d is the 1-wheel inequality IWO , then cTx+xy+xz � d+1 is the 1-wheel inequality IW 0O .Moreover, given any W (v0; v1; v2; : : : ; v2k+1), W is obtainable from WB, the corresponding base wheel, bysuccessively replacing an edge with a path of length 3. Hence, it is enough to prove the following: If everyedge in W satis�es the hypotheses of Lemma 4.6 with respect to IWO , then every edge in W 0 satis�es thehypotheses of Lemma 4.6 with respect to IW 0O .Lemma 4.7 Let H be a graph. Suppose H 0 is obtained from H by replacing an edge (a; b) by (a; y; z; b).If cTx � d is not an edge inequality and is facet-inducing for PH with c � 0, ca � cb = 
 and d > 0, and14



every edge (a0; b0) satis�es the conditions of Lemma 4.6 with respect to cTx � d, then cTx + 
xy + 
xz �d+ 
 is facet-inducing for PH 0 and every edge in H 0 satis�es the conditions of Lemma 4.6 with respect tocTx+ 
xy + 
xz � d+ 
.Proof: It follows from Lemma 4.6 that cTx+
xy+
xz � d+
 is facet-inducing for PH 0 . Since cTx � d isnot an edge inequality, we only have to check condition 2. Clearly any edge of the path (a; y; z; b) satis�escondition 2 in Lemma 4.6 since deg(y) = deg(z) = 2 and ca � cb = 
. Now suppose (a1; b1) 2 E(H)\E(H 0).Since (a1; b1) (with respect to H) satis�es the hypotheses, there is a stable set of W whose incidence vectors satis�es cTx � b with equality and sa1 = 1, sb1 = 0 and sf = 0 for all f 2 N(b1) n fa1g. If b1 62 fa; bg,then we can extend s to s0 by letting s0y = 1 and s0z = 0 if sa = 0, or by letting s0z = 1 and s0y = 0 if sb = 0.If b1 = a, then we can extend s to s0 by letting s0y = 0 and s0z = 1 (since sb = 0). If b1 = b, then we canextend s to s0 by letting s0y = 1 and s0z = 0 (since sa = 0). In each case s0 is the incidence vector of anappropriate stable set. 2Proof of Theorem 4.2: It follows from Lemma 4.5, Lemma 4.7 and the above discussion that wehave only to prove that every edge in a base wheel satis�es the hypotheses in Lemma 4.6. Let WB be abase wheel. Since IWBO is not an edge inequality, we have to check condition 2 in Lemma 4.6 only for edges(a; b) such that a; b 2 E . (This is because for any other edge, (y1; y2), one of the ends say y1 is of degree 2and 1 = cy1 � cy2 . Let e be the only other neighbour of b that is a vertex of the rim. Then the Type 1stable set N with b; e 62 N has the required properties. (Note that a 2 N and the only other neighbour ofb is not in N since v0 is in N .) Hence we are done. 2Now we discuss whether a simple 1-wheel inequality IE corresponding to the subgraph W of G isfacet-inducing for PG. (Similar remarks apply to IO.) If W is an induced subgraph of G, then this is,in principle, easy to answer. First, if IE is not facet-inducing for PW , then it cannot be facet-inducingfor PG, so we may assume that W satis�es the conditions in Theorem 4.1. Now IE can be extended to afacet-inducing inequality I of PG by \sequential lifting" (see, for example, Nemhauser and Wolsey [18]),and IE is facet-inducing for PG if and only if this process results in IE being the same as I . This can bedetermined by solving at most n optimal stable set problems on W ; it is easy to see that the latter can bedone in polynomial time.If W is not an induced subgraph of G, things are more complicated. This is quite di�erent fromthe situation for a cycle inequality, for which there is a simple criterion|if the cycle is not induced,the inequality is not facet-inducing. For example, IWE (IWO ) is facet-inducing for the graph in Figure 5a(Figure 5b) where W is this graph with the edge (4; 7) deleted. Even the problem of deciding whether,in a graph W 0 consisting of a simple 1-wheel con�guration W together with a single edge, the 1-wheelinequality is facet-inducing for PW 0 is not easy. In this case the classi�cation is known, but is not easy todescribe. We do give a partial result that can be neatly stated. Suppose that W is a 1-wheel and that15



101 2345 6 7 0 2345 6 7 8 9101112a bFigure 5: An example of facet-inducing wheel inequalities for wheels with chords(ai; bi) 62 E(W ) for i = 1; 2; : : : ; l where ai; bi 2 V (W ). Let W 0 be the graph obtained from W by adding(a1; b1); (a2; b2); : : : ; (al; bl) to the edge-set of W . Then each (ai; bi), where i 2 f1; 2; : : : ; lg, is a chord forW 0. Since every stable set of W 0 is a stable set of W i (i = 0; 1; 2; : : : ; l) where W 0 is W and W i is thegraph obtained from W by adding (aj ; bj) to the edge-set of W for j 2 f1; 2; : : : ; ig, we may assume IW iE(IW iO ) is facet-inducing for PW i . Hence we can obtain necessary conditions by considering 1-wheels withonly one chord. The simplest partial necessary condition is the following result.Theorem 4.8 Let (a; b) be a chord joining two (not necessarily internal) vertices of a spoke or rim-path,or joining two spoke-ends. Then IW 0E and IW 0O are not facet-inducing for PW 0.Proof: Let P be the subpath from a to b on the spoke (rim-path). If P is of odd length, then it mustbe of length at least 3 since (a; b) is a chord. Let P be (a; u1; u2; : : : ; u2l; b) where l � 1. Let W1 be the1-wheel obtained from W by replacing P with (a; b). ThenIW 0E = IW1E + lXi=1(xu2i�1 + xu2i � 1) and IW 0O = IW1O + lXi=1(xu2i�1 + xu2i � 1):If P is even, then the cycle C consisting of P and (a; b) is odd. It is easy to see that the face induced byIW 0E (IW 0O ) lies in the face induced by the cycle inequality of C by considering two cases, namely, a stableset containing neither a nor b and satisfying IW 0E (IW 0O ) with equality, and a stable set containing exactlyone of a and b and satisfying IW 0E (IW 0O ) with equality. 2We have already seen from Figure 5 that 1-wheel inequalities can be facet-inducing even if both endsof the chords are vertices of the rim. However, the graphs in Figure 5 can be interpreted in another way;we can view them as 1-wheel con�gurations with di�erent sets of spoke-ends and hubs. Figure 6 shows thesame graphs as Figure 5; however, it is not true now that both ends of the chords are vertices of the rim.Clearly IE for the graph in Figure 6a is the same as IE for the graph in Figure 5a, and IO for the graphin Figure 6b is the same as IO for the graph in Figure 5b. (We observe that the set of spoke-ends for thegraphs in Figure 6a and Figure 6b is f1; 2; 3; 4; 7g.) To be precise, suppose G is the underlying graph of16



two 1-wheels with one chord, W (v0; v1; v2; : : : ; v2k+1) and W 0(v00; v01v02; : : : ; v02k+1). If IWE (IWO ) is the sameas IW 0E (IW 0O ), then W is said to be E-equivalent (O-equivalent) to W 0. The above examples illustrate thefollowing result. See Cheng [4] for a (long) proof. 701 234 0 234 8 91011a b7 6 5 6 5 12 1
Figure 6: A redrawing of Figure 5Theorem 4.9 Suppose W 0 is obtained from a simple 1-wheel by adding a chord (a; b) on the rim. ThenIW 0E (IW 0O ) is not facet-inducing for PW 0 unless W 0 is E-equivalent (O-equivalent) to W 00, a 1-wheel withone chord such that not both ends of the chord are vertices of the rim.5 p-Wheel InequalitiesIn the same way a cycle is \formed" by a circle of edges (K2's), we can view a 1-wheel as being \formed"by a circle of cycles (which are homeomorphic to K3). Figure 7 gives a con�guration \formed" by a circleof 1-wheels each homeomorphic to K4. The subgraphs induced by each of the following is a 1-wheel (K4):fa; b; c; dg, fa; b; d; eg, fa; b; e; fg, fa; b; f; gg and fa; b; c; gg. (Tesch [20] investigated a class of inequalitiesfor the stable set problem based on con�gurations such as this. More exactly, they were based on replacingthe hub of a 1-wheel in which all spokes and rim-paths were single edges by a clique.)g a bc defFigure 7: A con�guration \formed" by 1-wheels17



We de�ne a simple p-wheel of size 2k+1 where the hub is of size p recursively. For p = 1, a p-wheel is,of course, a 1-wheel. Let p � 2 and G1 = (V1; E1) be a graph with V1 = fv01 ; v02; : : : ; v0p; v1; v2; : : : ; v2k+1gand E1 = f(v0j ; v0l) : 1 � j < l � pg [ f(v0j ; vi); (vi; vi+1) : 1 � j � p; 1 � i � 2k + 1g. Consider asubdivision of G1. Let P0j;i and Pi;i+1 denote the paths obtained from (v0j ; vi) and (vi; vi+1) respectivelythrough the subdivision. This graph is a simple p-wheel of size 2k+1 if for each i, the graph Wi consistingof Pi;i+1; P01;i; P01;i+1; P02;i; P02;i+1; : : : ; P0p;i; P0p;i+1 and the clique on v01 ; v02; : : : ; v0p (5)is a (p�1)-wheel of size 3 for every choice of a (p�1)-subset of fv01; v02 ; : : : ; v0pg being used as the hub. Wedenote this simple p-wheel by W = W (v01 ; v02; : : : ; v0p; v1; v2; : : : ; v2k+1). We call the set fv01 ; v02; : : : ; v0pgthe hub of W ; its elements are the centres of W . (For p = 1, we have used the term \hub" to describev0 rather than fv0g.) The paths P1;2; P2;3; : : : ; P2k;2k+1; P2k+1;1 are the rim-paths of W , and the pathsP0j ;1; P0j;2; : : : ; P0j;2k+1 for 1 � j � 2k + 1 are the spokes of W . (Note that if we let Yj be the graphconsisting of the paths P1;2; P2;3; : : : ; P2k;2k+1; P2k+1;1 and P0j;1; P0j;2; : : : ; P0j;2k+1, then Yj is a simple 1-wheel. Moreover, a path is a rim-path of W if and only if it is a rim-path of every Yj , and is a spokeof W if and only if it is a spoke of some Yj .) So, loosely speaking, a p-wheel of size 2k + 1 is formedby a circle of 2k + 1 (p � 1)-wheels such that each of them is an \odd homeomorph" of Kp+2. Figure 8shows an example of a simple 2-wheel where fa; bg is the hub, and c; d; e; f and g are the spoke-ends. Theset of spokes is f(a; c); (a; d); (a; e); (a;m; f); (a; g); (b; i; h; c); (b; d); (b; e); (b; j; k; l; f); (b; g)g and the set ofrim-paths is f(c; d); (d; e); (e; n; f); (f; p; g); (g; c)g.p a bc defg hijklm nFigure 8: A simple 2-wheelThe de�nition has the advantage that it is symmetric, that is, the requirement that for each i, thegraph consisting of (5) to be a (p�1)-wheel of size 3 must hold for every (p�1)-subset of fv01 ; v02; : : : ; v0pgbeing used as the hub. However the de�nition has the disadvantage that it is not a minimal de�nition.Let us call the de�nition that we gave in the previous paragraph, de�nition 1. We call it de�nition 2 if weinsist only that for each i, the graph consisting of (5) be a (p� 1)-wheel of size 3 with fv01 ; v02; : : : ; v0p�1gas the hub. However, neither de�nition gives us an easy way to construct a p-wheel. We now o�er18



another de�nition which we call de�nition 3. Let p � 2, k � 1 and G1 = (V1; E1) be a graph withV1 = fv01 ; v02; : : : ; v0p; v1; v2; : : : ; v2k+1g and E1 = f(v0j ; v0l) : 1 � j < l � pg [ f(v0j ; vi); (vi; vi+1) : 1 �j � p; 1 � i � 2k+1g. Let E and O be a partition of fv1; v2; : : : ; v2k+1g. Consider a subdivision of G1. LetP0j ;i and Pi;i+1 denote the paths obtained from (v0j ; vi) and (vi; vi+1) respectively through the subdivision.This graph is a simple p-wheel of size 2k + 1 if vi 2 E (O) implies P0j ;i is an even (odd) path for everyj and Pi;i+1 is an odd path if and only if vi and vi+1 belong to the same class. The three de�nitions areequivalent. The �rst two de�nitions are used for deriving our desired inequalities. (The derivation arisesnaturally from these de�nitions.) The last de�nition is useful for constructing examples.Proposition 5.1 De�nitions 1, 2 and 3 are equivalent.Proof: Apply induction on p. 2We partition the edges of the rim into two sets A(W ) and B(W ) as for a 1-wheel. For example,A = f(f; n); (f; p)g and B = f(n; e); (e; d); (c; d); (c; g); (g; p)g in Figure 8.Suppose W is a simple p-wheel. Let Si = Si(W ) be the set of internal vertices of the spokes endingat v0i for i = 1; 2; : : : ; p, and let S = S(W ) be the set of internal vertices of all the spokes of W , thatis, S = S1 [ S2 [ � � � [ Sp. Let R = R(W ) be the set of internal vertices of all the rim-paths of W . Forexample, in the graph of Figure 8, if we take v01 = a and v02 = b, then S1 = fmg, S2 = fh; i; j; k; lg,S = fm; h; i; j; k; lg, and R = fn; pg.Given a simple p-wheel W , we can derive valid inequalities for PW by mimicking the derivation of IAand IB for a 1-wheel. Let W (v01 ; v02; : : : ; v0p; v1; v2; : : : ; v2k+1) be a simple p-wheel of size 2k+1. Moreover,let Wi be the (p� 1)-wheel (of size 3) consisting of (5). Then our scheme is:1. Calculate the sum of a sequence of (p�1)-wheel inequalities of the same form, that is, a (p�1)-wheelinequality of the same form for every Wi, i = 1; 2; : : : ; 2k+ 1.2. Add either Pe=(u;v)2A(xu + xv � 1) or Pe=(u;v)2B(xu + xv � 1) to the sum.3. Add either nothing or one of Ppj=1(x0j � 1) and Ppj=1(�x0j � 0) to the sum so that the resultinginequality has the property that every coe�cient is even and the right-hand side is odd.4. Divide the resulting inequality by 2 and then round down the right-hand side.If p = 2, then we can use either IA or IB in Step 1; in Step 2, there are two choices. So there will befour valid inequalities for a 2-wheel (from our scheme). In a similar fashion, a p-wheel will generate 2pinequalities. We call these candidates for the p-wheel inequalities. We denote the inequality that we get byusing IA in Step 1 and A (B) in Step 2 by IA2 (IAB). Moreover, we denote the inequality that we get byusing IB in Step 1 and A (B) in Step 2 by IBA (IB2). (It is clear how to extend this notation to candidatesfor the p-wheel inequalities.) We will show that IBA and IB2 are redundant and more generally, that there19



are just two interesting p-wheel inequalities among the 2p candidates. We remark that one might considera combination of (p� 1)-wheel inequalities from di�erent classes in Step 1; however, we don't see a naturalway to perform steps similar to Steps 2 and 3 in this situation. We will show the following:Claim: These inequalities are the only possible non-redundant inequalities for PW generated by ourscheme: IWAp : k pXj=1 x0j + (p+ 1)Xv2E xv + Xv2O xv + Xv2S[Rxv � k + (jSj+ jRj+ pjEj)=2and IWAp�1B : (k + 1) pXj=1x0j + pXv2E xv + 2Xv2O xv + Xv2S[Rxv � 2k + 1+ (jSj+ jRj+ (p� 2)jEj)=2:We remark that IAp becomes IE and IAp�1B becomes IO if p = 1. So E and O no longer play symmetricroles in the general case. The reason is that the inequalities of the form IAp�1 play an important role inthe derivation of these two inequalities while the inequalities of the form IAp�2B do not, as we will see inthe proof.We prove the claim by induction on p. Before we prove this claim, we note that Step 1 seems ambiguousbecause we did not specify which (p� 1)-subset of fv01 ; v02; : : : ; v0pg is the hub for W i. Suppose we choosefv01 ; v02; : : : ; v0pg n fv0jg to be the hub. Then v0j is a spoke-end; in fact v0j 2 O. Hence, from theinequalities IWAp and IWAp�1B in our claim, every v0l , l = 1; 2; : : : ; p will have coe�cient 1 in IW iAp andcoe�cient 2 in IW iAp�1B since W i is a (p � 1)-wheel of size 3. Hence Step 1 is not ambiguous. (Of coursethis is provided that our claim is correct. Since we are going to use induction to prove that the claim iscorrect, this need no longer concern us.)For p = 1, the above inequalities indeed reduce to the inequalities IA and IB that we have found inSection 2. (We have also seen that our scheme gave two such inequalities.) Assume the result is true forsome p � 1. Now, given W (v01 ; v02; : : : ; v0p+1; v1; v2; : : : ; v2k+1), a (p+ 1)-wheel of size 2k + 1, we �rst useIAp for each W i, i = 1; 2; : : : ; 2k + 1, in Step 1. (Recall that W i is a p-wheel of size 3.) The sum of theseinequalities is(2k + 1) p+1Xi=1 x0i + 2(p+ 1)Xv2E xv + 2Xv2O xv + 2Xv2S xv + Xv2Rxv � 2k + 1 + jSj+ jRj=2 + pjEj: (6)According to Step 2, we have two possibilities. The �rst possibility is to addXe=(u;v)2A(xu + xv � 1) � 2Xv2E xv + Xv2R xv � jEj+ jRj=2to (6). Hence we have(2k + 1) p+1Xi=1 x0i + 2(p+ 2)Xv2E xv + 2Xv2O xv + 2 Xv2S[Rxv � 2k + 1 + jSj+ jRj+ (p+ 1)jEj: (7)Since S = S1 [ � � � [ Sp+1, we can conclude that jSj � 0 (mod 2) if p+ 1 is even and jSj � jS1j (mod 2) ifp+1 is odd. We now use the fact that jS1j � jEj (mod 2) to conclude jSj+ jRj+(p+1)jEj is even. (Recall20



that jRj is even.) Hence the right-hand side of (7) is odd. So we use �Pp+1j=1(x0j � 0) in Step 3. ApplyingStep 4, we haveIWAp+1 : k p+1Xi=1 x0i + (p+ 2)Xv2E xv + Xv2O xv + Xv2S[Rxv � k + (jSj+ jRj+ (p+ 1)jEj)=2:The second possibility in Step 2 is to addXe=(u;v)2B(xu + xv � 1) � 2Xv2O xv + Xv2R xv � jOj+ jRj=2to (6). Hence we have(2k+ 1) p+1Xi=1 x0i + 2(p+ 1)Xv2E xv + 4Xv2O xv + 2 Xv2S[Rxv � 2k+ 1 + jSj+ jRj+ pjEj+ jOj: (8)The right-hand side of (8) can be simpli�ed to 2(2k+1)+ jSj+ jRj+(p� 1)jEj. Since p+1 and p� 1 havethe same parity and we have already seen that jSj+ jRj+ (p+ 1)jEj is even, jSj+ jRj+ (p� 1)jEj must beeven as well. Hence the right-hand side of (8) is even. So we use Pp+1j=1(x0j � 1) in Step 3. Applying Step4, we haveIWApB : (k + 1) p+1Xi=1 x0i + (p+ 1)Xv2E xv + 2Xv2O xv + Xv2S[Rxv � 2k + 1+ jSj+ jRj+ (p� 1)jEj2 :We now use IAp�1B for each W i, i = 1; 2; : : : ; 2k+ 1, in Step 1. The sum of these inequalities is2(2k+ 1) p+1Xi=1 x0i + 2pXv2E xv + 4Xv2O xv + 2Xv2S xv +Xv2Rxv � 3(2k + 1) + jSj+ jRj2 + (p� 2)jEj: (9)According to Step 2, we have two possibilities. The �rst possibility is to addXe=(u;v)2A(xu + xv � 1) � 2Xv2E xv + Xv2R xv � jEj+ jRj=2to (9). Hence we have2(2k + 1) p+1Xi=1 x0i + 2(p+ 1)Xv2E xv + 4Xv2O xv + 2 Xv2S[Rxv � 3(2k+ 1) + jSj+ jRj+ (p� 1)jEj: (10)Since jSj+ jRj+ (p� 1)jEj is even, the right-hand side of (10) is odd. So we add nothing to (10) in Step3. Applying Step 4, we have(2k + 1) p+1Xi=1 x0i + (p+ 1)Xv2E xv + 2Xv2O xv + Xv2S[Rxv � 3k + 1 + (jSj+ jRj+ (p� 1)jEj)=2:However, this is equal to IApB + k(Pp+1i=1 x0i � 1), so it is redundant. The second possibility is to addXe=(u;v)2B(xu + xv � 1) � 2Xv2O xv + Xv2R xv � jOj+ jRj=221



to (9). Hence we have2(2k+ 1) p+1Xi=1 x0i + 2pXv2E xv + 6Xv2O xv + 2 Xv2S[Rxv � 3(2k+ 1) + jSj+ jRj+ (p� 2)jEj+ jOj: (11)The right-hand side of (11) can be written as 3(2k + 1) + jSj+ jRj + (p � 1)jEj � jEj + jOj. Since jSj +jRj+ (p� 1)jEj is even and �jEj+ jOj is odd (since jEj+ jOj = 2k+1), the right-hand side of (11) is even.However, all the coe�cients in (11) are even as well; so our scheme produces nothing here. This completesthe proof of the claim.To simplify the notation, we use IWE instead of IWAp and IWO instead of IWAp�1B for a given p-wheel. Thenext result follows from our discussion.Theorem 5.2 Let G be a graph and W (v01 ; v02; : : : ; v0p; v1; v2; : : : ; v2k+1) be a simple p-wheel of size 2k+1that is a subgraph of G. Then the inequalities IWE (that is, IWAp) and IWO (that is, IWAp�1B) are valid for PG.2 The inequalities in Theorem 5.2 are called p-wheel inequalities or simplywheel inequalities. For example,we have IE : 2xa + 2xb + 3xf +Pv 62fa;b;fg xv � 7 and IO : 3xa + 3xb + 2xc + 2xd + 2xe + 2xf + 2xg +Pv 62fa;b;c;d;e;f;gg xv � 9 for the graph of Figure 8.We end this section with several remarks. First, if S;R and E are empty and k = 1, then IE is the cliqueinequality of size p+ 3. Second, if we let p = 0 in IE , even though the assumption is p � 1, we get a cycleinequality, whereas IO produces nothing; so IE seems to be a \better" generalization of cycle inequalities.Third, one can de�ne general p-wheel inequalities in a way similar to general 1-wheel inequalities (soTheorem 5.2 is true even for non-simple p-wheels), and the corresponding separation problem can besolved in polynomial time; see Cheng and Cunningham [6] or Cheng [5] for details.6 Facet-Inducing Simple p-Wheel InequalitiesW (v01 ; v02; : : : ; v0p; v1; v2; : : : ; v2k+1) is assumed to be a simple p-wheel of size 2k+1 throughout this section.We consider the following questions: When will IWE (IWO ) be facet-inducing for PW ? The answer for p = 1is given in Theorems 4.1 and 4.2. For p � 2, it turns out that the inequalities of the form IE are verywell-behaved; namely, Theorem 4.1 remains true when we replace 1 by p. We now state the result.Theorem 6.1 Let W be a simple p-wheel. Then IWE is facet-inducing for PW if and only if every rim-pathjoining two elements of E has length at least 2 (and hence at least 3).On the other hand, the inequalities of the form IO are harder to handle. An example that showsthat we cannot simply replace 1 by p in Theorem 4.2 appears in Figure 9. Here, we have IO : 3xa +3xb + 2xc + 2xd + 2xe + 2xf + 2xg + Pv 62fa;b;c;d;e;f;gg xv � 10. We claim that it is not facet-inducing.22



(We note that O = ;, that is, all the spokes are of even length, so the conditions in Theorem 4.2 aretrivially satis�ed.) This is because IO = (3xa + xc + xd + xe + xf + xg + xh + xj + xm + xp + xr �5) + (3xb + xc + xd + xe + xf + xg + xi + xk + xl + xn + xq � 5). We note that the two summandsare IW1O and IW2O , where W1 is the subgraph induced by fa; c; d; e; f; g; h; j;m; p; rg and W2 is induced byfb; c; d; e; f; g; i; k; l; n; qg. However, as is the case for p = 1, it is possible to characterize the facet-inducinginequalities of the form IO if the underlying graphs are simple p-wheels: see Cheng [5]. This result is toocomplicated to state (much less prove) here, but it involves characterizing a family Z of wheels, having thefollowing properties.1. Let W be a simple p-wheel such that W 62 Z . Then IWO is facet-inducing for PW if and only if everyrim-path joining two elements of O has length at least 2 (and hence at least 3) and every spoke ofodd length has length at least 3.2. The elements in Z that satisfy the above conditions are not facet-inducing for PW , but the elementsin Z that violate the above conditions are facet-inducing for PW .In other words, Z is precisely the set of wheels for which Theorem 4.2 does not generalize in the obviousway. Of course, the wheel of Figure 9 is a member of Z . Cheng [5] gives a complete classi�cation of Z andproves that it has the above properties. r a bc defg h i j klmnpqFigure 9: A wheel in which IO is not facet-inducingWe will prove Theorem 6.1, and hence Theorem 4.1. The �rst step is to show the condition in Theo-rem 6.1 is necessary. Lemmas 6.2 and 6.3 correspond to Lemmas 4.4 and 4.5 respectively. The proofs arequite similar, so we omit the proof of Lemma 6.2 and summarize the proof of Lemma 6.3. More detailscan be found in Cheng [5].Lemma 6.2 If IWE is facet-inducing for PW , then every rim-path joining two elements of E has length atleast 2 (and hence at least 3).We use the same strategy as for IWO when p = 1 to prove the condition in Theorem 6.1 is su�cient.The notion of base wheel WB(v01; : : : ; v0p; v1; : : : ; v2k+1; E) is de�ned as expected. For example, suppose23



the hub is fv01 ; v02g, the spoke-ends are v1; v2; v3; v4 and v5; E = fv1; v2; v4g. Then the base wheel for thesedata is shown in Figure 10. The base wheel has the following properties:17 0 01 2345 1 2 6 7 8910 11 12 13 14 1516Figure 10: A base wheel1. vi 2 E implies P0j ;i is of length 2 for i 2 f1; 2; : : : ; 2k+ 1g and j 2 f1; 2; : : : ; pg;2. vi 2 O implies P0j;i is of length 1 for i 2 f1; 2; : : : ; 2k+ 1g and j 2 f1; 2; : : : ; pg;3. vi; vi+1 2 E implies Pi;i+1 is of length 3 for i 2 f1; 2; : : : ; 2k+ 1g;4. vi; vi+1 2 O implies Pi;i+1 is of length 1 for i 2 f1; 2; : : : ; 2k+ 1g; and5. jfvi; vi+1g \ Ej = 1 implies Pi;i+1 is of length 2 for i 2 f1; 2; : : : ; 2k+ 1g.Since jS(WB)j = pjEj and jR(WB)j = 2jEj, IWBE can be simpli�ed toIWBE : k pXj=1 x0j + (p+ 1)Xv2E xv + Xv2O xv + Xv2S[Rxv � k + (p+ 1)jEj:We consider two types of stable sets of WB that satisfy IWBE with equality.� Type 1: N = X [ Y where X is a stable set of the rim, C, of WB of size (jCj � 1)=2 and Y isconstructed as follows: If vi 2 E where i 2 f1; : : : ; 2k + 1g and vi 62 X , then adjoin the (unique)internal vertex of P0j;i to Y for all j = 1; 2; : : : ; p.� Type 2: N = fv0jg [ E for some �xed j 2 f1; : : : ; pg.It is clear that both types of stable sets satisfy IWBE with equality.Lemma 6.3 Let WB be the base wheel for (v01 ; : : : ; v0p; v1; : : : ; v2k+1) and a prescribed E. Then IWBE isfacet-inducing for PWB . 24



Proof: Suppose the face induced by IWBE is a subset of a facet induced by some valid inequality aTx � b.Our goal is to show that aTx � b is a multiple of IWBE . Let (v; w) be an edge of the rim such that v; w 62 E .(It is clear that such v and w must exist.) Let (u1; u2; w; v) be the length 3 subpath of the rim, containingw and v, and having v as an end of the subpath. Let N be the Type 1 stable set of WB with u1; v 2 N .Now N 0 = (N n fvg)[ fwg is also a Type 1 stable set of WB. Since any stable set of WB that satis�es IWBEwith equality will also satisfy aTx � b with equality, we can conclude that av = aw .Let vi 2 E and v; w be the two vertices of the rim that are neighbours of vi. We note that v; w 62 E [Osince WB is a base wheel. Let (u1; u2; v; vi) be the length 3 subpath of the rim, containing v and vi, andhaving vi as an end of the subpath. Let zj be the internal vertex of P0j ;i for j = 1; 2; : : : ; p. Let N be theType 1 stable set of WB with u1; vi 2 N . Now N 0 = (N n fvig)[ fv; z1; : : : ; zpg is also a Type 1 stable setof WB. Hence avi = Ppj=1 azj + av. Similarly, we have avi = Ppj=1 azj + aw. Therefore av = aw . We cannow conclude that av0 = aw0 = � for all v0 and w0 on the rim that are not in E , for some � 2 R.Let vi 2 E and v; w be the two vertices of the rim that are neighbours of vi and zj be the internalvertex of P0j;i for j = 1; 2; : : : ; p. Let N be the Type 2 stable set of WB with v0j 2 N where j 2 f1; : : : ; pg.It is easy to see that N 0 = (N n fvig)[ fv; wg[ (fz1; : : : ; zpg n fzjg) is also a stable set of WB that satis�esIWBE with equality. Hence avi = 2� + Ppl=1 azl � azj . Let us denote this value by d. Then we haveavi = 2� + (p � 1)d. Since we also have avi = Ppj=1 azj + � which implies avi = � + pd, we must haved = �; hence avi = (p+ 1)�.Now by taking a Type 1 stable set of WB and a Type 2 stable set of WB containing v0j wherej 2 f1; : : : ; pg, we have a0j = k�. Hence aTx � b is a multiple of IWBE . 2We now complete the proof of Theorem 6.1. We �rst observe that, given a base wheel WB, since IWBEis not an edge inequality, we only have to check condition 2 in Lemma 4.6 for two kinds of edges:� If a = v0j and b 2 O, then fv0jg [ E (that is, a Type 2 stable set) satis�es condition 2.� Suppose a; b 2 O. Let e be the only other neighbour of b that is on the rim. Then the Type 1 stableset, N , with b; e 62 N will do the job. (Note that the only other neighbours of b are v01 ; : : : ; v0p.)So any edge (a; b) in a base wheel satis�es the hypotheses in Lemma 4.6.Suppose W is a p-wheel. Let W 0 be obtained from W by replacing an edge (a; b) on the rim oron one of the spokes by (a; y; z; b). It now follows that if cTx � d is the p-wheel inequality IWE , thencTx + xy + xz � d + 1 is the p-wheel inequality IW 0E . We know that every base wheel satis�es thehypotheses in Lemma 4.6. Moreover, any p-wheel can be obtained from a corresponding base wheel, byreplacing an edge in the updated graph with a path of length 3 successively. Hence by applying Lemma 4.7,the proof of Theorem 6.1 is complete.We end this section with several remarks. First, if a simple p-wheel W is an induced subgraph of G,then one can check whether IWE (IWO ) is facet-inducing for PG in polynomial time. Second, Theorem 4.825



is true even for p-wheels. Third, one possible way to generalize these p-wheel inequalities is to replace acentre-edge, that is, an edge of the form (v0j ; v0l) by a path of odd length; it turns out that Theorem 6.1is true for inequalities obtained in this way from the inequalities of the form IE , but that inequalitiesobtained from the inequalities of the form IO are never facet-inducing. (See Cheng [5] for details.)7 Non-Simple Wheel InequalitiesWe have seen that the inclusion of non-simple 1-wheel inequalities makes the separation problem easierto handle. Moreover, we have observed that it is indeed possible for a non-simple 1-wheel inequality tobe facet-inducing. This generates the following question: When is a non-simple 1-wheel inequality facet-inducing for its support graph? We do not know necessary and su�cient conditions for this to be true. Wedo present some necessary conditions and state a conjecture regarding these non-simple 1-wheel inequalities.It turns out that a non-simple wheel inequality can be facet-inducing for a very \uninteresting" reason {it can be equivalent to a cycle inequality. (It is easy to see that it cannot be equivalent to a trivial or edgeinequality.) For example, consider the graph on the left in Figure 11. We have IE :P9i=1 xi � 4. Supposewe partition the vertex-set into the following classes: f1; 2g; f4; 3g; f5; 8g; f6; 9g; f0; 7g. If we identify thevertices belonging to the same class, then we obtain the graph on the right in Figure 11 where, as usual,multiple edges are deleted; moreover, IE reduces to 2(x0 + x1 + x4 + x5 + x6 � 2) which is a positivemultiple of a cycle inequality. We obtain cleaner statements of necessary conditions for non-simple 1-wheel inequalities to be facet-inducing, if we assume them to be distinct from cycle inequalities. This is areasonable condition since we are looking for new possible facet-inducing inequalities.Let us consider our example of a facet-inducing non-simple 1-wheel inequality again, namely, IWE whereW is the graph obtained by identifying a and b in Figure 3. We note that both a and b are neighbours of thehub. Another example is given in Figure 12. If W is obtained by identifying a and b for the graph on theleft in Figure 12, then we have the graph on the right in Figure 12. We can see that IWE is facet-inducingfor PW . We observe that the vertex obtained by identifying a and b is a spoke-end for the graph on theright in Figure 12. It is easy to construct examples for IWO similar to the one we have given here. Wede�ne a basic operation as the identi�cation of two vertices adjacent to the hub or the same spoke-end.Conjecture 7.1 Every facet-inducing non-simple 1-wheel inequality (that is not a cycle inequality) arisesfrom applying a set of basic operations to a simple 1-wheel.Note that we are not claiming that every non-simple 1-wheel inequality obtained from basic operationsis facet-inducing. In the rest of this section, we give some necessary conditions for IWE (IWO ) to be facet-inducing for PW and not to be a cycle inequality where W is a non-simple 1-wheel. Before we start, wewould like to give a preview of what type of results are presented in this section. The �rst result is thatin order for a 1-wheel inequality to be facet-inducing, all rim-paths and spokes must be paths, not walks.26



(This is easy to prove.) All the other results except Theorem 7.6 have the following 
avour: Let W be asimple 1-wheel. Suppose P is a partition of the vertex-set of W that induces a non-simple 1-wheel. If theresulting non-simple 1-wheel inequality IWE (IWO ) is facet-inducing, then we must forbid u and v to be inthe same equivalence class if there is a path P1 from u to w and a path P2 from v to w for some speci�edw such that all the internal vertices of P1 and P2 are of degree 2, plus a parity condition and possibly aplanarity condition on W a, the graph obtained fromW by identifying u and v. The condition that all theinternal vertices of P1 and P2 are of degree 2 is important because in this case, we only have to look at a\local" structure. Theorem 7.6 says that no two spoke-ends can be identi�ed. Although this has a \global"structure, we are able to show that such non-simple 1-wheel inequalities are not facet-inducing by writingthem as sums of other known valid inequalities. Although we have only covered a small class of non-simple1-wheel inequalities here, we feel that there is a strong possibility that if a non-simple 1-wheel inequalityis not facet-inducing and it \has" a \global" structure, then it can be written as a sum of trivial, edge,cycle and simple 1-wheel inequalities. We start with the following observation.601 23 4 5 6 78 9 0 145Figure 11: An exampleab aFigure 12: IE is facet-inducing for the graph obtained by identifying a and bProposition 7.1 Let H be a graph and I be a valid inequality for PH such that the support graph forI is H. Let H 0 be a graph obtained from H via a sequence of identi�cations of vertices, and I 0 be theinequality obtained from I by adding up the coe�cients of the variables corresponding to the vertices thatare identi�ed. Suppose I = Pti=1 Ii where Ii is a valid inequality for PH for i = 1; 2; : : : ; t. If one of theIi's is a positive multiple of an edge inequality and H 0 is not the graph consisting of only one edge, then I 027



is not facet-inducing for PH 0.Proof: Let I 0i be the inequality obtained from Ii by adding up the coe�cients of the variables correspond-ing to the vertices that were identi�ed to obtain H 0 from H . Then I 0i is a valid inequality for PH 0 wherei = 1; 2; : : : ; t (by Proposition 3.4) and I 0 = Pti=1 I 0i. Suppose I 0 is facet-inducing for PH 0 . Then every I 0iwhere i 2 f1; 2; : : : ; tg is a positive multiple of I 0. (Recall that parallel edges arising from the identi�cationsof vertices are replaced by single edges.) Without loss of generality, we may assume I1 is a positive multipleof an edge inequality say a(xu + xv � 1). Then I1 is identical to I 01 since u and v are adjacent so theywere not identi�ed; hence I 0 = �(xu + xv � 1). Since H is the support graph for I , H 0 must be the graphconsisting of only one edge, namely (u; v), which is a contradiction. 2We note that the assumption that H 0 not be the graph consisting of only one edge is important;otherwise, it is possible for I 0 to be facet-inducing for PH 0 . For example, let H = (V;E) where V =fv1; v2; v3g, E = f(v1; v2); (v2; v3)g and I denotes the inequality x1 + 2x2 + x3 � 2. If v1 and v3 areidenti�ed, then I 0 will be facet-inducing for PH 0 .We explain the importance of Proposition 7.1. Suppose W is a simple 1-wheel and W 0 is a non-simple1-wheel obtained from W . Suppose vertices v and w of W are identi�ed in the process of obtaining W 0.Let W a be the non-simple 1-wheel obtained from W by identifying v and w. Then W 0 can be obtainedfrom W a via a sequence of identi�cations of vertices. Suppose we can show that the non-simple 1-wheelinequality, IWaE (IWaO ), can be written as a sum of valid inequalities for PWa such that one of them is anedge inequality. Since it is clear that W 0 cannot be the graph consisting of only one edge (because W isnot bipartite), we can now apply Proposition 7.1 to conclude that the non-simple 1-wheel inequality, IW 0E(IW 0O ), is not facet-inducing for PW 0 .Suppose IWaE (IWaO ) can be written as a sum of distinct valid inequalities, say Pti=1 Ii where t � 2, forPWa , but none of the summands is an edge inequality. (We note that by distinct, we mean Ii and Ij are notmultiples of each other.) Suppose I1 is a positive multiple of a cycle inequality; let C1 be the support graphfor I1. If we need to identify two vertices of C1 to obtain W 0 from W a, then after such an identi�cation,the inequality corresponding to I1 can be written as a sum of positive multiples of edge inequalities andcycle inequalities; hence we can apply Proposition 7.1. So we assume no two vertices of C1 need to beidenti�ed in order to obtain W 0. (Of course, a vertex of C1 and a vertex not of C1 can be identi�ed.) Ifwe let I 0i be the inequality obtained from Ii by adding up the coe�cients of the variables correspondingto the vertices that were identi�ed to obtain W 0 from W a, then IW 0E (IW 0O ) = Pti=1 I 0i and I1 is identicalto I 01. Therefore IW 0E (IW 0O ) is not facet-inducing for PW 0 unless IW 0E (IW 0O ) and I 0i for i = 2; 3; : : : ; t arepositive multiples of I1. In this case, IW 0E (IW 0O ) is a positive multiple of a cycle inequality; so no newfacet-inducing inequality for PW 0 is produced. (We observe that we may assume the support graph of IW 0E(IW 0O ) is a cycle with no chord, since otherwise the cycle inequality is not facet-inducing.) We summarizeour discussion in the next result. 28



Proposition 7.2 Let H be a graph and I be a valid inequality for PH such that the support graph forI is H. Let H 0 be a graph obtained from H via a sequence of identi�cations of vertices and I 0 be theinequality obtained from I by adding up the coe�cients of the variables corresponding to the vertices thatare identi�ed. Suppose I =Pti=1 Ii where t � 2 and the Ii's are distinct valid inequalities for PH . If one ofthe Ii's is a positive multiple of a cycle inequality and H 0 is not the graph consisting of only one edge, thenI 0 is either not facet-inducing for PH 0 or H 0 is a graph consisting of a cycle and I 0 is a positive multiple ofthe cycle inequality corresponding to H 0. 2Theorem 7.3 Let W be a non-simple 1-wheel. If IWE (IWO ) is facet-inducing for PW and IWE (IWO ) is nota positive multiple of a cycle inequality, then the rim-paths and spokes must be paths, not walks.Proof: By Proposition 7.1 and Proposition 7.2, it su�ces to prove the following: If W a is the non-simple1-wheel obtained from a simple 1-wheel by identifying two vertices of a rim-path (spoke), P , then the faceinduced by IWaE (IWaO ) lies in the face induced by an edge inequality or a cycle inequality. Let u and v bethe two vertices that we have identi�ed to obtain W a. Let Qu;v be the subpath of P joining u to v. ThenQu;v is a block (maximal 2-vertex-connected subgraph) of W a. Moreover, Qu;v is either an even cycle oran odd cycle. We observe that all vertices of this cycle have coe�cient 1 in IWaE (IWaO ) except u whichhas coe�cient greater than 1. Therefore, if Qu;v is an odd cycle, then the face induced by IWaE (IWaO ) liesin the face induced by the cycle inequality for Qu;v ; otherwise, (that is, Qu;v is an even cycle) the faceinduced by IWaE (IWaO ) lies in the face induced by the edge inequality, xu+xw � 1, where w is a neighbourof u on the cycle. 2In the spirit of Theorem 7.3, we have the following result.Proposition 7.4 Let G be a graph and I be a valid inequality for PG such that G is its support graph. Letu and w be two vertices and let P1 and P2 be two paths from u to w. Suppose the cycle consisting of P1and P2 has odd length. If all the internal vertices of P1 and P2 are of degree 2 in G and their coe�cientsin I are the same, then the face induced by I lies in a face induced by the cycle inequality for the cycleconsisting of P1 and P2.Proof: Without loss of generality, assume P1 is (u; y1; y2; : : : ; y2l+1; w) and P2 is (w; z1; z2; : : : ; z2r; u). LetN be a stable set of G that satis�es I with equality. Suppose u; w 62 N . Then exactly l + 1 elementsfrom fy1; y2; : : : ; y2l+1g and r elements from fz1; z2; : : : ; z2rg are in N . If u 2 N and w 62 N , then exactlyl elements from fy1; y2; : : : ; y2l+1g and r elements from fz1; z2; : : : ; z2rg are in N . Finally, suppose r � 1and u; w 2 N . Then exactly l elements from fy1; y2; : : : ; y2l+1g and r � 1 elements from fz1; z2; : : : ; z2rgare in N . 2The cycle that we considered in Proposition 7.4 may have two vertices with degree greater than 2, sothe argument in the proof of Theorem 7.3 does not apply.29



Theorem 7.5 Let W 0 be a non-simple 1-wheel obtained from a simple 1-wheel W (v0; v1; v2; : : : ; v2k+1)through identi�cation of vertices. If IW 0E (IW 0O ) is facet-inducing for PW 0 and is not a positive multiple ofa cycle inequality, then distinct vertices u and w satisfying one of the following conditions cannot belongto the same equivalence class:1. u (w) is a vertex of P0;i (P0;r) not equal to v0 such that the length of the subpath of P0;i from u to v0and the length of the subpath of P0;r from w to v0 are of di�erent parity.2. u (w) is a vertex of Pa;i (Pb;i) not equal to vi such that a and b are distinct elements of fvi�1; vi+1; v0g,and the length of the subpath of Pa;i from u to vi and the length of the subpath of Pb;i from w to viare of di�erent parity.Proof: This follows from Proposition 7.1, Proposition 7.2 and Proposition 7.4 2For example, Theorem 7.5 tells us that we cannot identify an element of E with an element of O. Thenext result strengthens this to any two spoke-ends.Theorem 7.6 Let W (v0; v1; v2; : : : ; v2k+1) be a simple 1-wheel. Let W 0 be a non-simple 1-wheel obtainedfrom W . If IW 0E (IW 0O ) is facet-inducing for PW 0 and IW 0E (IW 0O ) is not a positive multiple of a cycleinequality, then no two spoke-ends can be identi�ed.Proof: By Theorem 7.3, we may assume that the rim-paths are paths, not walks. Hence no two consecutivespoke-ends can be identi�ed. We have already observed that we cannot identify an element of E with anelement of O. Suppose two vertices are in E or O. Let W a be the graph obtained from W by identifyingthese two vertices. Then it follows from our discussion that it is enough to show that IWaE (IWaO ) can bewritten as a sum of edge, cycle and simple 1-wheel inequalities; moreover, at least one summand is either anedge or a cycle inequality. Without loss of generality, assume v1 and v2i belong to E and thatW a is obtainedfromW by identifying v1 and v2i. Moreover, we may assume 2 � i � k�1. Let W 1(v0; v1; v2; : : : ; v2(i�1)+1)be the 1-wheel with v0 as the hub and v1; v2; : : : ; v2(i�1)+1 as the spoke-ends. All spokes and rim-paths ofW 1 arise from their counterparts in W in a unique way except the spoke from v0 to v1. We use P0;1(W )as the spoke P0;1(W 1). Let I2l be the cycle inequality for the cycle consisting of the paths P2i;2i+1, P0;2iand P0;2i+1 for l = i; i+ 1; : : : ; k. LetJ2l+1 = X(u;v)2A\P2l+1;2l+2(xu + xv � 1) for l = i; i+ 1; : : : ; kand K2l+1 = X(u;v)2B\P2l+1;2l+2(xu + xv � 1) for l = i; i+ 1; : : : ; k.Since one can show thatIWaE = IW 1E + kXl=1(I2l + J2l+1) and IWaO = IW 1O + kXl=1(I2l +K2l+1);30



we are done. The case for v1 and v2i belonging to O is similar. 2As we have already noted, Proposition 7.4 does not cover the case when identifying u and w \induces"an even cycle. Nevertheless, additional results are obtained for the case when the 1-wheel remains planarafter the identi�cation. They use the validity of yet another generalization of simple 1-wheel inequalities,which we describe now. Let T be a tree with exactly one non-leaf odd-degree vertex v0, called the hub,and suppose that T is embedded in the plane. Then T has an odd number of leaves, say v1; v2; : : : ; v2k+1which we label clockwise; these are the spoke-ends. The path in T from v0 to vi is a spoke; it is denoted byP0;i. We add to T a path Pi;i+1 from vi to vi+1 for each i so that the resulting graph is planar, and so thatthe face cycles are odd. We call such a graph a cycle-tree; it is denoted by H = H(v0; v1; v2; : : : ; v2k+1).For example, Figure 13 is a cycle-tree where v0 is the hub. Of course, a simple 1-wheel con�guration is aspecial kind of cycle-tree. 13 01 2 3456 7 8910 1112Figure 13: An example of a cycle-treeWe observe that the number of bounded faces of H is 2k + 1. Let L = fv1; v2; : : : ; v2k+1g. Let R bethe set of vertices of the unbounded face that are not in L. Then jRj is even. Let Y be the set of verticesthat are not in fv0g [ L [ R. We can partition L into two sets, E and O, where vi 2 E (O) if and only ifthe length of P0;i is even (odd). It is easy to see that Pi;i+1 is of odd length if vi; vi+1 2 E or O, and it is ofeven length otherwise. Hence we can partition the edges of the rim into two sets A and B as in Section 2.By mimicking the derivation for 1-wheel inequalities, we can obtain the following result.Theorem 7.7 Let G be a graph and H(v0; v1; v2; : : : ; v2k+1) be a cycle-tree that is a subgraph of G. Thend(v0)� 12 x0 + Xv2Y d(v)2 xv + 2Xv2E xv + Xv2O xv + Xv2R xv � k + (jRj+ jY j+ jEj)=2; andd(v0) + 12 x0 + Xv2Y d(v)2 xv + 2Xv2O xv +Xv2E xv + Xv2Rxv � k + (jRj+ jY j+ jOj+ 1)=2are valid inequalities for PG.We call the �rst (second) inequality in Theorem 7.7 a cycle-tree inequality of the �rst (second) kind.For example, if H is the graph shown in Figure 13, then x0+2x1+x2+2x3+2x4+x5+x6+P13i=7 xi � 7 is31



a cycle-tree inequality of the �rst kind; in fact, it is facet-inducing for PT . Moreover, 2x0+2x1+2x2+x3+x4+2x5+ 2x6+P13i=7 xi � 8 is a cycle-tree inequality of the second kind; however, it is not facet-inducingfor PT . Cycle-tree inequalities perhaps deserve study in their own right, but we have used them only in ourstudy of non-simple 1-wheel inequalities. The results of this study, which adds support to Conjecture 7.1,can be found in Cheng [5]. We state without proof one such result.Theorem 7.8 Let W (v0; v1; v2; : : : ; v2k+1) be a simple 1-wheel. Let u (v) be an internal vertex of P0;i(P0;i+1) such that the length of the subpath of P0;i from u to v0 and the length of the subpath of P0;i+1 fromv to v0 have the same parity. Let W 0 be a non-simple 1-wheel obtained by identifying u and v. Then IW 0Ocan be written as a sum of edge inequalities and cycle-tree inequalities; moreover, at least one summand isan edge inequality. If, in addition, at least one of these subpaths has length greater than 1, then IW 0E canbe written as a sum of edge inequalities and cycle-tree inequalities; moreover, at least one summand is anedge inequality.Finally, we remark that non-simple p-wheel inequalities can be facet-inducing. Moreover, Theorem 7.3,Proposition 7.4, Theorem 7.5 and Theorem 7.6 can be extended to results for p-wheel inequalities. (SeeCheng [4].)Acknowledgment. We are grateful to two anonymous referees for a number of comments and corrections.References[1] F. Barahona and A.R. Mahjoub, \Compositions of graphs and polyhedra II: stable sets", SIAM Journalon Discrete Mathematics 7, 359{371 (1994).[2] F. Barahona and A.R. Mahjoub, \Compositions of graphs and polyhedra III: graphs with noW4 minor",SIAM Journal on Discrete Mathematics 7, 372{389 (1994).[3] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, North-Holland (1976).[4] E. Cheng, \Inequalities of wheels with chords for stable set polytopes", manuscript (1995).[5] E. Cheng, Wheel Inequalities for Stable Set Polytopes, Ph.D. Thesis, University of Waterloo (1995).[6] E. Cheng and W.H. Cunningham, \Separation problems for the stable set polytope", in The 4th IntegerProgramming and Combinatorial Optimization Conference Proceedings, E. Balas and J. Clausen (eds.),Springer, 1995, pp. 65{79.[7] J. Cheriyan, W.H. Cunningham, L. Tun�cel and Y. Wang, \A linear programming and rounding ap-proach to max 2-sat", in Proceedings of the DIMACS Challenge II Workshop, American MathematicalSociety, to appear. 32
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