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Abstract

We introduce new classes of valid inequalities, called wheel inequalities, for the stable set polytope
Pg of a graph G. Each “wheel configuration” gives rise to two such inequalities. The simplest wheel
configuration is an “odd” subdivision W of a wheel, and for these we give necessary and sufficient
conditions for the wheel inequality to be facet-inducing for Pys. Generalizations arise by allowing
subdivision paths to intersect, and by replacing the “hub” of the wheel by a clique. The separation

problem for these inequalities can be solved in polynomial time.

1 Introduction

Let G = (V, E) be a simple connected graph with |[V| =n > 2 and |E| = m. A subset of V is called a
stable set if it does not contain adjacent vertices of G. Let N be a stable set. The incidence vector of N
is « € {0,1}V such that z, = 1 if and only if v € N. The stable set polytope of G, denoted by Pg, is the
convex hull of incidence vectors of stable sets of G. Some well-known valid inequalities for Pg include the
trivial inequalities (z, > 0 for v € V), the cycle inequalities (3, cc v < k where C is the vertex-set of
a cycle of length 2k + 1), and the clique inequalities (}_,cg 2, < 1 where S induces a clique). A clique

inequality is called an edge inequality if the clique has just two vertices. Papers that studied stable set
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polytopes include Chvétal [9], Fonlupt and Uhry [11], Gerards [12], Giles and Trotter [13], Mahjoub [16],
Nemhauser and Trotter [17], Padberg [19], Tesch [20], Trotter [21] and Wolsey [22]; see also Grotschel,
Lovész and Schrijver [14].

In this paper, we introduce a large class of valid inequalities, which we call “wheel inequalities.” Our
most basic class of inequalities are inequalities that have “simple 1-wheel configurations” (that is, subdivi-
sions of wheels in which each face-cycle is odd) as their support graphs. In fact, each 1-wheel configuration
gives two such valid inequalities; they are related in a simple way. Each of them is derived using the
Chvatal-Gomory procedure [8]. Moreover, necessary and sufficient conditions for these inequalities to be
facet-inducing when the underlying graph is a simple 1-wheel are given.

Our attack on the separation problem for the simple 1-wheel inequalities leads to a surprising phe-
nomenon, namely, that we can solve the problem only by extending the class to a larger one that includes
“non-simple 1-wheels.” (Loosely speaking, non-simple 1-wheels are obtained from simple ones by identi-
fying vertices.) We also consider the generalization of 1-wheels to p-wheels (wheels with a “hub” of size
p). For one of the two classes, the necessary and sufficient conditions for p-wheel inequalities to be facet-
inducing when the underlying graph is a simple p-wheel are the same as for p = 1, but for the other class
this is not so. The separation problems for p-wheel inequalities can also be solved. Separation algorithms
will be discussed only briefly here; for a more detailed discussion, we refer readers to Cheng and Cunning-
ham [6]. The 1-wheel inequalities can be viewed as a special case of inequalities previously introduced in
a polyhedral approach to the maximum 2-satisfiability problem; see Cheriyan et al. [7] and Cunningham
et al. [10].

Throughout this paper, graph terminology follows that of Bondy and Murty [3]. In particular, a walk
is a finite non-empty sequence (vo, €1, v1, €2, Vs, . . ., €k, Uk ), Whose terms are alternately vertices and edges
such that the ends of e; are v;_; and v; for 1 < ¢ < k. A path is a walk for which all the vertices are
distinct. In a simple graph, we will list only the vertices of a walk. The degree of a vertex v is denoted by

deg(v) and the set of vertices adjacent to v is denoted by N (v).

2 1-Wheel Inequalities

Let k be a positive integer, and let G; = (V1, E1) be a graph with Vi = {vg, v1,v2,...,v2k41} and B} =
{(vo, vi), (vi,vig1) : 1 <4 < 2k +1}. (We take vgpqs = v1.) Consider a subdivision of G;. Let Py; and
P; ;+1 denote the paths obtained from (vg,v;) and (v;, v;+1) respectively through the subdivision. This
graph is a simple I-wheel of size 2k + 1 if the cycle C; consisting of Py ;, P; 11, Poi+1 is odd for each 7.
We denote this simple 1-wheel by W = W (vo; v1,vs, ..., vak+1). We call vy the hub, Po1, Py, ..., Po2kt1
the spokes, Py 2, Ps3, ..., Popoky1, Popt1,1 the rim-paths, vi,va, ..., vap41 the spoke-ends, and the cycle
consisting of Py 5, Py 3, ..., Pagy1,1 the rom. Figure 1 gives an example of a simple 1-wheel where a is the

hub and {b, ¢, d, g,} is the set of spoke-ends. We partition {vy, v, ..., ver41} into two sets £ = E(W) and



Figure 1: A simple 1-wheel

O = O(W) where v; € £ (O) if Py, is an even (odd) path. In Figure 1, O = {d, g} and £ = {b, c,i}. Let
S = S(W) be the set of internal vertices of the spokes and R = R(W) be the set of internal vertices of the
rim-paths. In Figure 1, S = {j, k,l} and R = {m,e, f, h}.

An equivalent definition for simple 1-wheels is the following. Let Gy = (Vi, E1) be a graph with
Vi = {vo,v1,v2,...,v2k41} and By = {(vo,vi), (v;,vi11) 1 1 < 4 < 2k + 1}. Let (£,0) be a partition
of {v1,vs,...,v2k4+1}. Consider a subdivision of G;. Let Py; and P;;;; denote the paths obtained from
(vo,v;) and (v;, v;11) respectively through the subdivision. This graph is a simple I-wheel of size 2k + 1 if
v; € € (O) implies Py ; is an even (odd) path, and P; ;4 is an odd path if and only if v; and v;1; belong
to the same class.

Let W(vo;v1,...,v2r+1) be a simple 1-wheel. Let C; be the odd cycle consisting of Py ;, P +1, Poi+1
for i =1,2,...,2k + 1. Corresponding to a partition (.4, B) of the edges of the rim (defined below), we

derive valid inequalities for Py as follows: (Note that for simplicity, we write zg, z1, 22, . . ., 2541 instead

of oy Tuyy Ty - v oy Tugpyy -)

1. Calculate the sum of the sequence of cycle inequalities for C;, for i =1,2,...,2k + 1:

2k+1
(k+1Dzo+2 > 2i+2) 2.+ Yz, <|S|+]|R[/2+ 2k + 1. (1)
=1 vES vER

2. Add either 37, yca(®u + 2o < 1) o 3o, ) en(Tu + 2o < 1) to (1).
3. Add either —zy < 0 or zp < 1 so that every coefficient is even and the right-hand side is odd.

4. Divide the resulting inequality by 2 and round down the right-hand side.

We define the partition (A, B) = (A(W), B(W)) of the edges of the rim according to the following rules
for the path P, ;11 where 7 € {1,2,...,2k + 1}:

1. If one end is in € and the other is in O, then the path is even say (u1, ..., u2,+1) where u; € &; we
put the edges (u1, us), (us, va), . . ., (U2s—1, uas) into A and the edges (uq, us), (ua, us), - . ., (U2s, U2s11)
into B.



2. If both ends are in &, then the path is odd say (u1, us, . . ., u2s); we put (u1, us), (us, ua), - . ., (v2s—1, Uss)

into A and (usg, us), (ug, us) ..., (u2s—2, u2s—1) into B.

3. If both ends are in O, then the path is odd say (ui,us,...,uss); we put (us,us), (ug,us),...,

(Ugs—2,u2s—1) into A and (uq, us), (us, ua), . .., (u2s—1, uss) into B.

We note that |R| is even since Y 2*F1|C;| =1 (mod 2). Moreover, |A| = |£|+|R|/2 and |B| = |O|+|R|/2.
Every v € £ is covered by exactly two elements in A but none in B; every v € O is covered by exactly
two elements in B but none in A. In addition, every vertex in R is covered by exactly one element in

A and exactly one element in B. (For example, in Figure 1, A = {(b,%), (b,¢), (¢, m), (e, f), (h,%)} and
B ={(d,m),(d,e),(f,9),(9,h)}.)

Now we get the two inequalities as follows:

e Using A:
We add 3oy p)ca(@ut+ @0 1) =23 ce o + Xper@o < €] + |R[/2 to (1). Hence we obtain

2k+1
(2k+Dzo+2 > 2 +2) 2o +2 > ay <|S|+ R+ €] +2k+1. (2)
=1 veE vESUR

From the definition of £, we see that |S| + |€| is even. Hence the right-hand side of (2) is odd.
Therefore, adding —zo < 0 to (2), dividing by 2, and rounding down the right-hand side, we have

2k+1
IV kzo+ D w4+ Y 2o+ Y.z <k+(IS|+]|R[+]E])/2.
=1 ve€ vESUR

e Using B:
We add 3.y uyes(®u+ 20 <1) =23 co®o + Xier v < |O] + |R[/2 to (1). One can check that
the right-hand side of the resulting inequality is even; therefore, by adding zo < 1 to it and then
dividing it by 2 (with rounding), we have

2k+1
If (k4 Dzo+ > @i+ > ze+ Y. 2o <k+(IS|+]|R[+]|0]+1)/2.
=1 veQ vESUR

We use 7Y instead of Z% and 7} instead of ZJ . (The reason is that the coefficients of elements of
£ (0)in I% (Z}) are 2.) These are the I-wheel inequalities. Moreover, we will use Z¢ and Zo instead
of Igv and I(TSV if it is clear from the context what W is. For example, with respect to Figure 1, we have

Te : 2e, + 22y + 22, + 22; + ng{a7b7c7i} z, <7and Zp : 3z, + 224 + 224 + ng{md’g} z, <T.

Theorem 2.1 Let G be a graph and W be a simple 1-wheel that is a subgraph of G. Then the inequalities
IY (that is, I% ) and IX (that is, T} ) are both valid for Pg. O



Instances of 1-wheel inequalities have occurred repeatedly in the literature; see, for example, Chvatal
[9], Grotschel, Lovasz and Schrijver [14], and Barahona and Mahjoub [1]. Although up to now no general
classes seem to have been defined, [14] page 301, does refer (without definition) to such a class. For k =1,
the 1-wheel reduces to an “odd-K,” which is an important structure in the study of the stable set problem.
For example, Barahona and Mahjoub [2] gave a complete polyhedral description for Pz where G is a simple
1-wheel of size 3. Gerards [12] gave a min-max relation for stable sets in graphs that do not contain odd-K4

as a subgraph.

3 Separation Algorithms and General 1-Wheel Inequalities

In this section, we describe the basic approach to solving the separation problem for the class consisting of
trivial, edge, cycle and 1-wheel inequalities. As noted above, this approach was introduced in the setting
of the maximum 2-satisfiability problem by Cheriyan et al. [7]. Our purpose here is mainly to motivate
the introduction of the “general 1-wheel inequalities”, which arise naturally in the separation procedure.
The full details of the procedure can be found in Cheng and Cunningham [6] or Cheng [5].

Given G = (V,E) and = € RV, the following notation is used throughout this section. W =
W (vo; v1,va, .. ., V2r4+1) denotes a 1-wheel of size 2k + 1 and w. = (1 — 2, — z,)/2 for all e = (u,v) € E.
We also use w* to denote w when z is replaced by z*.

We first briefly describe a well-known algorithm for finding a minimum-weight odd cycle in graph having
non-negative edge-weights c.. (The first such algorithm is due to Grétschel and Pulleyblank [15].) Let
H = (Vu, Eg) be a simple graph and ¢ : Egr — R be a vector of edge-weights. We can find a minimum-
weight odd cycle in H as follows: Construct a bipartite graph H' = (V!UV?, E’) where V! and V2 are copies
of Vg with (u',v?) and (u?,v') in E’ if and only if (u,v) in Eg; moreover, ¢/ (u*,v?) = ¢/(u?, v!) = c(u, v).
Hence a minimum-weight path (with respect to ¢’) from v! to v? in H' corresponds to a minimum-weight
odd closed walk (with respect to ¢) containing v! in H. Hence we can find a minimum-weight odd closed
walk in H. However since ¢ is nonnegative, we can find a minimum-weight odd cycle in H, since every
odd closed walk contains a subsequence that is an odd cycle. Moreover, such an odd cycle can be found in
O(|Vg|®) time. Furthermore, the same trick enables us to establish the following result. (We remark that

a minimum-weight non-empty even walk from u to u can be assumed to be of length 2.)

Proposition 3.1 Let H = (Vg, Ex) be a graph. Then minimum-weight non-empty odd and even walks

from u to v for every u,v € Vg (u = v is possible) can be found in O(|Vg/|®) time. O

We now describe the well-known technique to solve the separation problem for the class of trivial,
edge and cycle inequalities. Let z* € RY. We may assume z* satisfies the trivial and edge inequalities.

(They are easy to check, and knowing that they are not violated is important in what follows.) Suppose

C = (v1,v3,...,v2141) is an odd cycle in G. Then w*(C) = k4 1/2 — Y21 &f. (Recall that w} =



(1— = —z;)/2 for all e = (u,v) € E.) Hence z* violates the cycle inequality corresponding to C if and
only if w*(C) < 1/2. Therefore a most-violated cycle inequality corresponds to an odd cycle in G having
minimum weight (with respect to w™). Thus the separation problem for the class consisting of the trivial,
edge and cycle inequalities can be solved in O(n®) time. Hence to solve our problem in polynomial time,
it is sufficient to answer the following question in polynomial time: Given z* € RV satisfying the trivial,
edge and cycle inequalities, does z* violate an inequality of the form Zg or Zp? (We use this terminology
to mean does z* violate Z}” or I}y for some 1-wheel W.) So throughout this section, we assume z* satisfies
the trivial, edge, and cycle inequalities.
Let C be an odd cycle. Then the cycle inequality can be written as

> we z

ecC
(To see this, observe that Zfﬁ‘fl z; < k can be rewritten as (z1 + 22)/2 + (z2 + 23)/2 + -+ - + (@21 +
Tok+1)/2+ (22k+1 +21)/2 < k and the left-hand side has 2k + 1 terms.) Let W be a 1-wheel of size 2k + 1.
Then following the procedure in Section 2 in deriving Ig and using the fact that > ._(, ) eA(iI}u +z,<1)
is 2 c4we > 0, we have

2k+1

W.lz{Zwe——}—l—Zwe a:0>—|——
=1 ecC, ec A

where C; is the odd cycle defined earlier. Hence Igv can be rewritten as

( 2k+1 2k+1

22 PO@‘I’Z zz-l—l _%(2k+1))+22w321—$0 (3)
=1

ecA

For simplicity, the notation g(v) = 1/4 — 2,,/2 and

1/4—2,/2 ifveé
f(v)Z{ _
-1/4+42,/2 ifveO

for v € £U O is used in the rest of this section. We also use g*, f* to denote g, f when z is replaced by z*.

Lemma 3.2

2 Z we = Z we + f(vi) + f(vig1) fori=1,2,...,2k+ 1.

e€ANP; ;11 e€l; i1

Proof: This follows from the definitions of w. and A. O

By applying Lemma 3.2 to (3), we have the following result.

Theorem 3.3 Suppose F; = f(v;) + f(vit1). Then IY can be rewritten as

2k+1 2k+1 2k+1
17 (22 P01—|—22 ”+1——2k—|-1) ZF>1-:¢0. (4)
=1



Suppose that we know the hub is vy and the set of spoke-ends is {vq,vs,...,v2p+1}, and we want
to find a most-violated inequality IgV corresponding to them. Then we know the parities of the paths
Po1,Po2, ..., Poort1, Pra, Pasy..., Pagt1,1. So by Theorem 3.3, we need to find paths of the specified
parities having minimum total weight such that they are internally disjoint. This problem is difficult.
We relax the conditions by allowing the paths to be walks, and allowing them to intersect. Then the
problem becomes easy, because each of the walks can be chosen to be of least weight. It is fortunate that
this relaxation corresponds to a generalization of simple 1-wheel inequalities. In fact, this class can be
introduced in another way, as inequalities obtainable from simple 1-wheel inequalities by a sequence of

vertex-identifications.

Proposition 3.4 Let Y i a;z; < b be a valid inequality for Pg and let v; and vy be two nonadjacent
vertices of G. If H is obtained from G by identifying v and vy where the vertex vo of H is obtained from
the identification of vi and vy of G, then (a1 + az)z2 + Y 15 a;z; < b is a valid inequality for Pr.

Proof: This follows from the fact that (27,23, 23,...,2)7 is an incidence vector of a stable set of G
whenever (23,23, ...,2;)7T is an incidence vector of a stable set of H. O

We assume that after an identification, any duplicate edge is deleted. From now on, whenever we
identify two vertices, we assume, without saying so explicitly, that the two vertices are not adjacent. Let
H be a graph and H' be the graph obtained from H by a sequence of identifications of vertices. By
applying Proposition 3.4 repeatedly, a valid inequality for Pz provides a valid inequality for Pg. It is
clear that such a sequence of identifications of vertices induces a partition of the vertices of H such that
H' is obtained from H by identifying vertices in the same class of the partition.

Suppose W (vg; v1,v2,...,v2r+1) is a simple 1-wheel and P is a partition of V(W). Then we define a
(general) 1-wheel W' (vp; vy, va, ..., vary1) to be the graph obtained from W by identifying the vertices in
the same class of P. We note that a spoke or a rim-path may actually be a walk in a general 1-wheel.
More importantly, the spokes and rim-paths may intersect other than at their ends. Figure 2 is a 1-wheel
obtained from Figure 1 by identifying 7 and I, and by identifying ¢ and k . For a general 1-wheel, S, R, £
and O are treated as multisets. (For example, S = {j,7,¢} and R = {m, e, f, h} for Figure 2, so |S| =3
and |R| =4.) We also remark that it is clear that none of the rim-paths and spokes is empty.

Given a general 1-wheel W (vg; vy, ..., v2r+1), We assume that the hub, the spoke-ends, the spokes and
the rim-paths are explicitly given, so there is no confusion as to which simple 1-wheel W is obtained from.
Of course, a hub or spoke-end may also be an internal vertex of some spoke or some rim-path. For example,
in the graph of Figure 2, a is the hub, b, ¢, d, g and 7 are the spoke-ends, (q, j,b), (a, 9, ¢), (a,d), (a, 9), (a, 7, 7)
are the spokes and (b, ¢), (¢, m,d), (d, e, f,9), (g, h,©), (¢,b) are the rim-paths. Moreover, g serves as a spoke-
end and as an internal vertex of the spoke (a, g, ¢). We remark that another way to see that general 1-wheel

inequalities are valid without using Proposition 3.4 is to observe that the Chvatal-Gomory derivation works



Figure 2: A non-simple 1-wheel

for general 1-wheels; of course sets are treated as multisets during this procedure. Hence Theorem 2.1 is

true for general 1-wheels. Therefore, the following result follows from (4).

Theorem 3.5 Let W determine an inequality of the form Zg that is most-violated by x*. Then every spoke

and rim-path is a minimum-weight walk with respect to w* of its parity joining its ends. O

Motivated by Theorem 3.5, we compute, for each u,v € V, the minimum weight with respect to w* of
an even (odd) walk from u to v in G. (u and v may be the same.) We denote this minimum by w(u, v)
(w5 (u,v)). To solve our problem for Zg, it is enough to find an algorithm for finding a most-violated
inequality of the form Zg with some specific vertex, say vg, as the hub. We construct an auxiliary graph
H = (Vg, Eg) from G = (V, E) as follows: H is a complete graph with loops where Vi = V€UV ©, and V¢
and VO are copies of V. If a € V¢ (V?9) is a copy of b, then b is denoted by ay. A vertex in V¢ represents
a potential even spoke-end and a vertex in V© represents a potential odd spoke-end. For simplicity, we
let 77, 7> and T3 denote the respective statements u,v € V¢, u,v € VO and v € V&, v € V°. For any
(u,v) € Ef, we define wy(u, v), the edge-weight for (u,v), to be

wi(vo, o) + W (vo, ) + 2w5 (o, ) — 1/2+ g% (o) + 9% () i Th
wé(vo, au) + wé(vo, av) + 2w6(aua av) - 1/2 - g*(au) - g*(av) if Ty
wE‘(vOa au) + wg(vOa av) + 2wE‘(au, av) - 1/2 + g*(au) - g*(av) if 7?3

Then it follows from (4) that an odd closed walk of length at least 3 in H induces a 1-wheel with vy as the
hub. Hence, it follows from Theorem 3.5 and the definition of wg(u,v) that we can find a most violated

Ze with vg as the hub by finding a minimum-weight odd closed walk of length at least 3 in H.
Lemma 3.6 wg(u,v) > 0 for all (u,v) € Eg.

Proof: Let P

b Pe a minimum-weight even walk from a to b in G with respect to w* and P, , be a

minimum-weight odd walk from a to b in G with respect to w*. Then by using Lemma 3.2, we can rewrite



wg(u,v) as

(W (Pane) + 0 (Prgye) + 0™ (Pravo) —1/2)+ (2 > wi| ifT
eC ANPX

Qu,p,0

(w*(Pg,ocu,o) + w*(Pg,ocv,o) + w*(P;u,av,o) - 1/2) + |2 Z w: if 75
ecANPX

Qu,@p,0

(W (P o) + 0 (Prayo) + 0 (Piyane) —1/2)+ |2 Y wi| if Ts
ec ANPX

Qu,yp,e

In each case, the second summand is nonnegative since z* satisfies the trivial and edge inequalities. More-

over, the first summand is nonnegative since #* satisfies the cycle inequalities. O

The above discussion suggests that in order to determine whether any 1-wheel inequality of the form Z¢
is violated by z*, we should compare w3;(C) to 1 — z; where C' is a minimum-weight cycle in the auxiliary
graph. However, a cycle of length 1 does not correspond to a 1-wheel. The next lemma shows that this

does not cause a problem.
Lemma 3.7 wg(e) > 1 — & for any loop e in the auziliary graph.

Proof: Suppose e = (uf,u®) where u € V. (u and vy may be the same.) If the claim is not true, then we

must have

1
2wk (vo, u) + 2w} (u, u) — 3 +2g"(u) <1 — 2.

Since g*(u) = 1/4 — 2},/2 and wj(u, u) > 1/2 (because z* satisfies the cycle inequalities), we have
2w (vo, u) + 25 — 2, < 0.
Suppose the walk (v, y1,¥2, - - -, Y2141, v) has weight w}(vo, «). Then

*
— =227,

2wg(vo, u) + 25 — 2, = (21 + 2) — 2z, — 2z

*
Y2

* * *
SO J:yl—l—:zzy2—|— +

- + 27 > 1+ 1. However, if we add up the edge inequalities for the [ + 1 edges

(Y1,92), (Y3, Ya), - - -5 (Y2k—1, Y2x), (Y2141, ), then we have zy +z7 +-- +z,, .+ <I+1, acontradiction.

The case where e = (49, u®) is similar. O

Theorem 3.8 If C' is a minimum-weight odd cycle in H, then z* violates no inequality of the form Ig

with vy as the hub if and only if w;(C) > 1 —zf. O

Corollary 3.9 The separation problem for the class consisting of trivial, edge, cycle inequalities and the

inequalities of the form Ig (both simple and non-simple) can be solved in O(n*) time. O



The separation problem for the class consisting of trivial, edge, cycle and general 1-wheel inequalities
of the form Zp can be solved similarly. For a more detailed discussion of separation problems for 1-wheel
inequalities, see Cheng and Cunningham [6] or Cheng [5]. (The class of inequalities for which the separation
problem is solved in [6] is slightly smaller, but the two separation problems are equivalent.)

We introduced general 1-wheels to handle difficulties arising from requiring paths to be disjoint. How-
ever, the generalization is more than a mere device for solving the separation problem. It is possible that a
violated general 1-wheel inequality exists, when there is no violated simple 1-wheel inequality. This follows
from the fact that there are non-simple 1-wheel inequalities that induce facets for Pg. For example, Zg¢ is

facet-inducing for the graph obtained by identifying @ and b in Figure 3.

Figure 3: T is facet-inducing for the graph obtained by identifying e and b

4 Facet-inducing 1-Wheel Inequalities

We consider the question of whether a given simple 1-wheel inequality corresponding to a simple 1-wheel
W is facet-inducing for Pgz. Unfortunately, the question in general seems to be difficult. (We discuss this
at the end of the section.) On the other hand, for the case in which W = G, we have the following complete

answer.

Theorem 4.1 Let W be a simple 1-wheel. Then Igv 1s facet-inducing for Py if and only if every rim-path

joining two elements of € has length at least 2 (and hence at least 3).

Theorem 4.2 Let W be a simple 1-wheel. Then I(TSV 1s facet-inducing for Py if and only if every rim-path
joining two elements of O has length at least 2 (and hence at least 3) and every spoke of odd length has
length at least 3.

Theorem 4.1 and Theorem 4.2 can be combined into the following statement.

Theorem 4.3 Let W be a simple 1-wheel. Let aTz < b be Igv or I(TSV. Then aTe < b is facet-inducing for
Py if and only min{a,, a,} =1 for every edge (u,v) of W. O

10



It is easy to see that there exist 1-wheels for which Zg, Zp, both, or neither are facet-inducing. We
prove Theorem 4.2 in this section and delay the proof of Theorem 4.1 until Section 6, when it is generalized.
The proof uses the well-known approach of obtaining a facet-inducing inequality from another by replacing

an edge by a path of length 3. The first step is to show that the conditions in Theorem 4.2 are necessary.

Lemma 4.4 If I(TSV 1s facet-inducing for Py, then every rim-path joining two elements of O has length at

least 2 (and hence at least 3) and every spoke of odd length has length at least 3.

Proof: Suppose the first condition is not satisfied. Say the length of P; ;1 ; is 1 forsomei € {1,2,...,2k+1}.
Let C; be the cycle consisting of P; ;1 1, Po;, Poi+1 and let I, be the corresponding cycle inequality. Assume
k > 2, and let W be the subgraph obtained from W by deleting the internal vertices and edges of Py, and
Pyit1- Then W is a 1-wheel of size 2k — 1. Its hub is vy and its set of spoke-ends is {v1,va, ..., Vag41} \
{vi,vir1}. We note that v; and v;4; are internal vertices of the rim-path Piwl,i-m- (Observe that in W,
this is the path (PiV_VLi, Pi%_l, IDin17i_|_2); that is, the path PiV_VLi is followed immediately by Pi%—l and then

by IDiVX17i+2.) Then we have

W =1V + I,

Suppose k£ = 1. Without loss of generality, we may assume i = 1. If v3 € £, then let Iy be the sum of
the edge inequalities

By, Ty, <12y, 2y, <1,.. ., 2941+ 2, <1

where Py 3 is (vs, u1, Ug, . . ., Ugi41, Vo); otherwise (that is, vs € O) let I be the sum of the edge inequalities
Tyy T Ty < 1’£U2 + Ty, < 1a"-a$2l‘|’$v0 <1

where Py 3 is (vs, u1,us, . .., us, vo). Let I¢ be the cycle inequality for the rim (that is, the cycle consisting
of P172, P273 and P371) of W. Then
I8 =Ic + Ic, + Ig.

Now suppose the second condition is not satisfied. Without loss of generality, assume the length of
Py is 1. Let C; be the cycle consisting of Fy;, P; ;11 and FPp;41 and Ig; be its cycle inequality for
i=1,2,...,2k+ 1. Then we let I; denote the inequality

Icl —I_ IC3 —I_ ttt —I_ ICQk—l —I_ I02k+1 .

We note that although the path P ; is on both €1 and Csy1, every internal vertex of the spokes still has
coefficient 1 in I; since P ; has no internal vertex. Now for each Py; 911, 1 <% < k, we let I, denote the
inequality

2

k
( Z (a:a—l—a:bgl)) .

e=(a,b)eB(W)NE(Pa; 2i41)
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Then it is not difficult to check that
Iy =5 + L.

Hence we are done. O

We use the following strategy to prove the conditions in Theorem 4.2 are sufficient.

e Step 1: Given vg, vy, ..., VUsk+1, SUPPOSe We want vy to be the hub and vy, ..., vsr41 to be the spoke-
ends of a 1-wheel. Furthermore, suppose we fix a subset of {v1,vs,...,v2p+1} to be O. Then there
exists a unique 1-wheel that satisfies the conditions in Theorem 4.2 with minimum number of vertices.

We denote such a minimal wheel by
Wa(vo;v1, - . ., vary1; O).

We call Wy the base wheel for (vg; vy, . . ., vapt+1) and O or simply the base wheel. For example, suppose
the prescribed data are: the hub is vy, the spoke-ends are vy, vy, v3,v4 and vy, and O = {v1, vs, v4}.
Then the base wheel for these data is shown in Figure 4. (Note that for simplicity, the vertices in

the figure are labelled 7 instead of v;.)
e Step 2: We prove that for any base wheel Wi, I(T;VB is facet-inducing for Py, .

e Step 3: Let W be a wheel for which T} is facet-inducing for Py and let W’ be a wheel obtained
from W by replacing an edge (a, b) of W by a path of length 3. Then we prove I(TSV is facet-inducing

for Pyy.

Figure 4: A base wheel

Let Wg be the base wheel for the data (vo; vy, . . ., vart1) and a prescribed O. Then Wp has the following

properties:
1. v; € € implies Py ; is of length 2 for ¢ € {1,2,...,2k 4 1};

2. v; € O implies Fy; is of length 3 for ¢ € {1,2,...,2k + 1};

12



3. v, viy1 € € implies P, ;11 is of length 1 for ¢ € {1,2,...,2k + 1};

4. v;,vi41 € O implies P, ;4 is of length 3 for ¢ € {1,2,...,2k+ 1}; and

5. {vi,viz1} N E| =1 implies P; ;11 is of length 2 for ¢ € {1,2,...,2k + 1}.
Hence, since |S(Wg)| = |€] + 2|O| and |R(W3)| = 2|0, I(T;VB can be simplified to

Igs c(k+1)zo+ > 2 +2> 2o+ > 2, < 2k+1+2/0).
vEE ve0® vESUR

We consider two types of stable sets of Wp that satisfy I(T;V B with equality.

e Type 1: Let N = X UY where X is the union of {vy} and a stable set of the rim, C, of Wp of size
(IC] — 1)/2, and Y is constructed as follows: Set Y = 0; for each v; € O where ¢ € {1,...,2k+ 1}
and v; ¢ X, adjoin the internal vertex of Py ; that is a neighbour of v; to Y.

e Type 2: Let N be the union of O and the set of neighbours of vg.

It is easy to see that both constructions yield stable sets satisfying I(T;V B with equality. For example, let
Wpg be the base wheel in Figure 4. Then we have I(T;VB 132+ 2@ + 229 4 224 + 3 + 5 + 2%36 z; < 11,
{0,1,7,8,9,10,15,18} and {0,6,2,3,4,5,12} are both Type 1 stable sets, and {1,2,4,13,14,16,17,19} is
the unique Type 2 stable set.

Lemma 4.5 Let Wg be the base wheel for the data (vo;vi,...,vert+1) and a prescribed O. Then I(T;VB 18

facet-inducing for Py, .

Proof: Suppose the face induced by I(T;V 5 is a subset of a facet induced by some valid inequality aTz < b.
Our goal is to show that Tz < b is a constant multiple of I(T;VB. Let (v, w) be an edge of the rim where
v,w ¢ O. (It is clear that such (v, w) must exist.) Let (u, u2, w,v) be the length 3 subpath of the rim,
containing w and v, and having v as an end of the subpath. Let N be the Type 1 stable set of Wy with
u,v € N. Now N' = (N \ {v})U {w} is also a Type 1 stable set of Wg. Since any stable set of Wp
that satisfies I(T;VB with equality will also satisfy aT2 < b with equality, we can conclude that a, = a,,.
(For example, in Figure 4, suppose we pick v to be v1g and w to be vs. Then the two Type 1 stable sets
{0,10,1,7,8,9,15,18} and {0,5,1,7,8,9,15,18} imply a5 = a1¢.)

Let v; € O and v, w be the two vertices of the rim that are neighbours of v;. We note that v,w ¢ O
since Wp is a base wheel. Let (uj, us,v,v;) be the length 3 subpath of the rim, containing v and v;, and
having v; as an end of the subpath. Let z be the internal vertex of P ; that is a neighbour of v;. Let N
be the Type 1 stable set of Wy with u;,v; € N. Now N’ = (N \ {v;}) U {v, z} is also a Type 1 stable set
of Wg. Hence a,; = a, + a,. (For example, in Figure 4, consider vy (which is in O) and choose v to be

V10, S0 w is vg. Then the stable sets {0,4, 11,6, 2, 3,12} and {0, 10, 18,11, 6,2, 3,12} imply as = a10+ a1s.)
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Similarly, we have a,, = a, + a,,; therefore a, = a,,. We can now conclude that a,, = a, = dy for all v’
and w’ on the rim that are not in O, for some dy € R.

Let v; € O and v, w be the two vertices of the rim that are neighbours of v;. Let N be the Type
2 stable set of Wp. Then N’ = (N \ {v;}) U {v, w} is also a stable set of W that satisfies I(T;VB with
equality. Hence a,; = 2dy. (For example, in Figure 4, the stable sets {1,2,4,13,14,16,17,19} and
{6,11,2,4,13,14,16,17,19} will now imply a; = ag + a11 = 2dy.) Moreover, let Py; be (vo,y, z,v;).
We note that y € N’. Then N” = (N’ \ {y}) U {2z} is a stable set of Wy that satisfies I(T;VB with
equality. Hence a, = a,. (For example, in Figure 4, the stable sets {6,11,2,4,13,14,16,17,19} and
{6,11,2,4,12,14,16,17,19} imply a;2 = a13.) Now, we also know a,, = a, + do; hence a, = dy. Therefore,
a, = a, = dy.

Now consider v; € £. Let N be the Type 2 stable set of W5 and y be the internal vertex of Fy;. Then
N’ = (N\{y}) U{v;} is also a stable set of Wy that satisfies I(T;VB with equality. Hence a, = a,;, = dy. (For
example, in Figure 4, the stable sets {1,2,4,13,14,16,17,19} and {1,2,4,13,14,16,17,5} will now imply
ajg = a5 = dp.)

Now by taking a Type 1 stable set of Wp and the Type 2 stable set for Wy, we have ag = (k + 1)do.
Hence aT2 < b is a constant multiple of I(T;VB, and we are done. O

To extend the result to any simple 1-wheel, we use the following special form of a result of Wolsey [22].

(Actually, the proof of Lemma 4.5 can be modified to prove the general case without using Lemma 4.6.)

Lemma 4.6 LetG = (V, E) be a graph and cTz < d (¢ > 0, d > 0) be facet-inducing for Pg. Let (a,b) € E
with ¢, > ¢y = 7. Let T be the set of incidence vectors of stable sets of G that satisfy ¢z < d with equality.
Let G’ be the graph obtained from G by replacing (a, b) by the path (a,y, z,b) where y,z ¢ V. Suppose that

1. there exists s € T such that s, = s, =0, and

2. there exists s € T such that s, =1, s, =0 and sp, =0 for all h € N(b)\ {a}.
Then cTe + Yz, + v, < d+ 7y is facet-inducing for Pg.

We note that if ¢’z < d is not an edge inequality, then condition 1 in Lemma 4.6 is automatically
satisfied. Furthermore, if deg(b) = 2 then condition 2 in Lemma 4.6 is also satisfied.

Now suppose that W is a 1-wheel and W’ is obtained from W by replacing an edge (a,b) of W by
(a,y,2,b). If ¢z < d is the 1-wheel inequality I(TSV, then CTal—I—iBy—I—iIZZ < d+1 is the 1-wheel inequality I(Tgvl.
Moreover, given any W (vg; v1,v2, ..., v2k+1), W is obtainable from Wg, the corresponding base wheel, by
successively replacing an edge with a path of length 3. Hence, it is enough to prove the following: If every
edge in W satisfies the hypotheses of Lemma 4.6 with respect to I(Tév, then every edge in W' satisfies the
hypotheses of Lemma 4.6 with respect to I(TSV"

Lemma 4.7 Let H be a graph. Suppose H' is obtained from H by replacing an edge (a,b) by (a,y, z,b).
If Tz < d is not an edge inequality and is facet-inducing for Py with ¢ > 0, ¢, > ¢y =~ and d > 0, and
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every edge (a',b') satisfies the conditions of Lemma 4.6 with respect to ¢l < d, then cf'z + vz, + vz, <
d + v is facet-inducing for Py and every edge in H' satisfies the conditions of Lemma 4.6 with respect to

CTal—I—‘)/iI}y—I—‘)/iBZ <d+7.

Proof: It follows from Lemma 4.6 that ¢’z +7yzy,+7vz, < d+ 7 is facet-inducing for Py. Since Tz <dis
not an edge inequality, we only have to check condition 2. Clearly any edge of the path (a,y, z, b) satisfies
condition 2 in Lemma 4.6 since deg(y) = deg(z) = 2 and ¢, > ¢, = 7. Now suppose (a1, b1) € E(H)NE(H').
Since (a1, b1) (with respect to H) satisfies the hypotheses, there is a stable set of W whose incidence vector
s satisfies cTz < b with equality and s,, = 1, s, = 0 and s; = 0 for all f € N(b1) \ {a1}. If &; & {a,b},
then we can extend s to s’ by letting s;, = 1 and s, = 0 if s, = 0, or by letting s, = 1 and s, = 0 if 5, = 0.
If b, = a, then we can extend s to s’ by letting s, = 0 and s, = 1 (since s, = 0). If b; = b, then we can
extend s to s’ by letting s, = 1 and s}, = 0 (since s, = 0). In each case s is the incidence vector of an

appropriate stable set. O

Proof of Theorem 4.2: It follows from Lemma 4.5, Lemma 4.7 and the above discussion that we
have only to prove that every edge in a base wheel satisfies the hypotheses in Lemma 4.6. Let Wz be a
base wheel. Since I(T;VB is not an edge inequality, we have to check condition 2 in Lemma 4.6 only for edges
(a,b) such that a,b € £. (This is because for any other edge, (y1,y2), one of the ends say y; is of degree 2
and 1 = ¢, < ¢y,. Let e be the only other neighbour of b that is a vertex of the rim. Then the Type 1
stable set N with b,e ¢ N has the required properties. (Note that « € N and the only other neighbour of

b is not in N since vy is in N.) Hence we are done. O

Now we discuss whether a simple 1-wheel inequality Zg corresponding to the subgraph W of G is
facet-inducing for Pg. (Similar remarks apply to Zp.) If W is an induced subgraph of G, then this is,
in principle, easy to answer. First, if Z¢ is not facet-inducing for Py, then it cannot be facet-inducing
for Pg, so we may assume that W satisfies the conditions in Theorem 4.1. Now Zg can be extended to a
facet-inducing inequality I of Pz by “sequential lifting” (see, for example, Nemhauser and Wolsey [18]),
and Zg is facet-inducing for Pg if and only if this process results in Zg being the same as I. This can be
determined by solving at most n optimal stable set problems on W it is easy to see that the latter can be
done in polynomial time.

If W is not an induced subgraph of G, things are more complicated. This is quite different from
the situation for a cycle inequality, for which there is a simple criterion—if the cycle is not induced,
the inequality is not facet-inducing. For example, Igv (I(TSV ) is facet-inducing for the graph in Figure 5a
(Figure 5b) where W is this graph with the edge (4,7) deleted. Even the problem of deciding whether,
in a graph W’ consisting of a simple 1-wheel configuration W together with a single edge, the 1-wheel
inequality is facet-inducing for P/ is not easy. In this case the classification is known, but is not easy to

describe. We do give a partial result that can be neatly stated. Suppose that W is a 1-wheel and that
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Figure 5: An example of facet-inducing wheel inequalities for wheels with chords

(ai, b)) ¢ E(W) for i =1,2,...,1 where a;,b; € V(W). Let W' be the graph obtained from W by adding
(a1,b1), (az,b2), ..., (ar, b;) to the edge-set of W. Then each (aj, b;), where 7 € {1,2,...,1}, is a chord for
W'. Since every stable set of W' is a stable set of W' (i = 0,1,2,...,1) where W' is W and W' is the
graph obtained from W by adding (a;, b;) to the edge-set of W for j € {1,2,...,¢}, we may assume Igvi
(z¥ l) is facet-inducing for Pj;. Hence we can obtain necessary conditions by considering 1-wheels with

only one chord. The simplest partial necessary condition is the following result.

Theorem 4.8 Let (a,b) be a chord joining two (not necessarily internal) vertices of a spoke or rim-path,

or joining two spoke-ends. Then Igvl and I(TSV " are not facet-inducing for Py.

Proof: Let P be the subpath from a to b on the spoke (rim-path). If P is of odd length, then it must
be of length at least 3 since (a,b) is a chord. Let P be (a,u1, us, ..., us, b) where I > 1. Let W; be the
1-wheel obtained from W by replacing P with (a,b). Then

! !
IgV/ = IgVI + Z(muw—l + @uy; < 1) and I(TSV/ = I(T;VI + Z(mu%—l + Ty, < 1).

=1 =1
If P is even, then the cycle C consisting of P and (a,b) is odd. It is easy to see that the face induced by
I / (Ig/ /) lies in the face induced by the cycle inequality of C' by considering two cases, namely, a stable
set containing neither a nor b and satisfying Igvl (I(TSV /) with equality, and a stable set containing exactly

one of a and b and satisfying Igvl (Ig’l) with equality. O

We have already seen from Figure 5 that 1-wheel inequalities can be facet-inducing even if both ends
of the chords are vertices of the rim. However, the graphs in Figure 5 can be interpreted in another way;
we can view them as 1-wheel configurations with different sets of spoke-ends and hubs. Figure 6 shows the
same graphs as Figure 5; however, it is not true now that both ends of the chords are vertices of the rim.
Clearly Z¢ for the graph in Figure 6a is the same as Zg for the graph in Figure ba, and Zp for the graph
in Figure 6b is the same as Zp for the graph in Figure 5b. (We observe that the set of spoke-ends for the
graphs in Figure 6a and Figure 6b is {1,2,3,4,7}.) To be precise, suppose G is the underlying graph of
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two 1-wheels with one chord, W (vo; vy, vs, . . ., vapt1) and W/ (v); vivh, ..., v ). E T (ZF) is the same
as ' ('), then W is said to be £-equivalent (O-equivalent) to W’. The above examples illustrate the

following result. See Cheng [4] for a (long) proof.

Figure 6: A redrawing of Figure 5

Theorem 4.9 Suppose W' is obtained from a simple 1-wheel by adding a chord (a,b) on the rim. Then
T ' (ZY ' ) is not facet-inducing for Py unless W' is €-equivalent (O-equivalent) to W, a 1-wheel with

one chord such that not both ends of the chord are vertices of the rim.

5 p-Wheel Inequalities

In the same way a cycle is “formed” by a circle of edges (K3’s), we can view a 1-wheel as being “formed”
by a circle of cycles (which are homeomorphic to K3). Figure 7 gives a configuration “formed” by a circle
of 1-wheels each homeomorphic to K4. The subgraphs induced by each of the following is a 1-wheel (K4):
{a,b,c,d}, {a,b,d, e}, {a,b,e, f}, {a,b, f,g9} and {a,b,c, g}. (Tesch [20] investigated a class of inequalities
for the stable set problem based on configurations such as this. More exactly, they were based on replacing

the hub of a 1-wheel in which all spokes and rim-paths were single edges by a clique.)

Figure 7: A configuration “formed” by 1-wheels
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We define a simple p-wheel of size 2k + 1 where the hub is of size p recursively. For p = 1, a p-wheel is,
of course, a 1-wheel. Let p > 2 and G; = (V1, E1) be a graph with V1 = {vo,,vo,,...,v0,,v1,v2,...,V2rs1}
and By = {(vo;,v0,) : 1 < j <1 < pyU{(vo;,v:), (vi,viy1) : 1 < j < p,1 < i< 2k+ 1} Consider a
subdivision of G1. Let Py, ; and P; ;1 denote the paths obtained from (vo,,v;) and (v;, v;;1) respectively
through the subdivision. This graph is a simple p-wheel of size 2k + 1 if for each i, the graph W, consisting
of

Pi,i+1, Pol,i, Pol,i+1, Pog,i, P02,i+1, .. -,Pop,i, Pop,i+1 and the clique on V0o, V0o - - -4 Vo, (5)

is a (p—1)-wheel of size 3 for every choice of a (p—1)-subset of {vg,, vo,, ..., vo,} being used as the hub. We
denote this simple p-wheel by W = W (vo,,vo,, - - ., v0,; V1, V2, . . ., vart1). We call the set {vo,,vo,, ..., v0,}
the hub of W; its elements are the centres of W. (For p = 1, we have used the term “hub” to describe
vo rather than {vo}.) The paths Pi s, Py3, ..., Popak+1, Pak+1,1 are the rim-paths of W, and the paths
Po; 1, Po; 2y -+, Pojakp1 for 1 < j < 2k + 1 are the spokes of W. (Note that if we let Y; be the graph
consisting of the paths P; 2, Py 3, ..., Pok 2k+1, Poky1,1 and Po; 1, P02y, Poj 2k+1, then Y; is a simple 1-
wheel. Moreover, a path is a rim-path of W if and only if it is a rim-path of every Y;, and is a spoke
of W if and only if it is a spoke of some Y;.) So, loosely speaking, a p-wheel of size 2k 4 1 is formed
by a circle of 2k + 1 (p — 1)-wheels such that each of them is an “odd homeomorph” of K,;. Figure 8
shows an example of a simple 2-wheel where {a, b} is the hub, and ¢, d, e, f and g are the spoke-ends. The
set of spokes is {(a, ¢), (a,d), (a,€), (a,m, f),(a,9), (b, h,c), (b,d), (b,e), (b,7,k,1, f),(b,g)} and the set of
rim-paths is {(c, d), (d, ¢}, (e,m, ), (£, ,9), (5 )}-

Figure 8: A simple 2-wheel

The definition has the advantage that it is symmetric, that is, the requirement that for each ¢, the
graph consisting of (5) to be a (p—1)-wheel of size 3 must hold for every (p —1)-subset of {vy,,vo,, ..., v0,}
being used as the hub. However the definition has the disadvantage that it is not a minimal definition.
Let us call the definition that we gave in the previous paragraph, definition 1. We call it definition 2 if we
insist only that for each 4, the graph consisting of (5) be a (p — 1)-wheel of size 3 with {vo,, vo,,...,v0,_, }

as the hub. However, neither definition gives us an easy way to construct a p-wheel. We now offer
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another definition which we call definition 3. Let p > 2, k > 1 and G; = (Vi, E1) be a graph with
Vi = {vo,, 0y, -+ -, V0, V1, V2, - - -, Vakg1} and By = {(vo;,v0,) 1 1 < j <1 < prU{(vo;,v:), (viyvig1) 1 1 <
7 <p,1<i<2k+1}. Let £ and O be a partition of {vy, v, ..., vsr41}. Consider a subdivision of G;. Let
Py, and P;;,; denote the paths obtained from (wvo;, v;) and (v;, v;11) respectively through the subdivision.
This graph is a simple p-wheel of size 2k + 1 if v; € £ (O) implies Py, ; is an even (odd) path for every
j and P; ;1 is an odd path if and only if v; and v;;; belong to the same class. The three definitions are
equivalent. The first two definitions are used for deriving our desired inequalities. (The derivation arises

naturally from these definitions.) The last definition is useful for constructing examples.
Proposition 5.1 Definitions 1, 2 and 8 are equivalent.

Proof: Apply induction on p. O

We partition the edges of the rim into two sets A(W) and B(W) as for a 1-wheel. For example,
A={(f,n), (f,p)} and B={(n,e), (¢,d), (¢, ), (c,9), (9,p)} in Figure 8.

Suppose W is a simple p-wheel. Let S; = S;(W) be the set of internal vertices of the spokes ending
at vo, for 2 = 1,2,...,p, and let S = S(W) be the set of internal vertices of all the spokes of W, that
is, S =S US;U---US,. Let R = R(W) be the set of internal vertices of all the rim-paths of W. For
example, in the graph of Figure 8, if we take vy, = a and vo, = b, then S; = {m}, S2 = {h, 4,7, k,1},
S ={m,h,i,j,k,1},and R = {n, p}.

Given a simple p-wheel W, we can derive valid inequalities for Py by mimicking the derivation of Z 4
and Zp for a 1-wheel. Let W (v, ,vo,, - . ., vo,; V1, V2, . . ., Vak41) be a simple p-wheel of size 2k +1. Moreover,

let W; be the (p — 1)-wheel (of size 3) consisting of (5). Then our scheme is:

1. Calculate the sum of a sequence of (p — 1)-wheel inequalities of the same form, that is, a (p — 1)-wheel

inequality of the same form for every W;, i =1,2,...,2k+ 1.
2. Add either 3> _(, yca(®u+ @y < 1) or 3oy 0)en(Tu + 2o < 1) to the sum.

3. Add either nothing or one of }3%_; (zo; < 1) and 33%_, (—2o; < 0) to the sum so that the resulting
inequality has the property that every coefficient is even and the right-hand side is odd.

4. Divide the resulting inequality by 2 and then round down the right-hand side.

If p = 2, then we can use either 74 or Zg in Step 1; in Step 2, there are two choices. So there will be
four valid inequalities for a 2-wheel (from our scheme). In a similar fashion, a p-wheel will generate 27
inequalities. We call these candidates for the p-wheel inequalities. We denote the inequality that we get by
using Z 4 in Step 1 and A (B) in Step 2 by I 42 (I.45). Moreover, we denote the inequality that we get by
using Zp in Step 1 and A (B) in Step 2 by Ig4 (I52). (It is clear how to extend this notation to candidates

for the p-wheel inequalities.) We will show that Ig4 and Iz: are redundant and more generally, that there
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are just two interesting p-wheel inequalities among the 2P candidates. We remark that one might consider
a combination of (p — 1)-wheel inequalities from different classes in Step 1; however, we don’t see a natural
way to perform steps similar to Steps 2 and 3 in this situation. We will show the following:

Claim: These inequalities are the only possible non-redundant inequalities for Py generated by our

scheme:

% kZmo F+)Y e+ D et Yz < k4 (IS|+ R+ plE])/2
Jj=1 veE veQ vESUR

and
P
It (k+ 1)) 2o, +pY @ +2) 2+ >, @y <2k+1+(IS|+ R+ (p — 2)[€])/2-
j=1 veE vEO vESUR

We remark that I 4» becomes Zg and I 4p—15 becomes Zp if p = 1. So £ and O no longer play symmetric
roles in the general case. The reason is that the inequalities of the form I 4»—1 play an important role in
the derivation of these two inequalities while the inequalities of the form I 4,25 do not, as we will see in
the proof.

We prove the claim by induction on p. Before we prove this claim, we note that Step 1 seems ambiguous
because we did not specify which (p — 1)-subset of {vo,, vo,,...,vo,} is the hub for W*. Suppose we choose
{v0y, Y0y - -+, V0, } \ {v0;} to be the hub. Then vy, is a spoke-end; in fact vo; € O. Hence, from the
inequalities I%, and I%’—lB in our claim, every vy, I = 1,2,...,p will have coefficient 1 in ij&i and
coeflicient 2 in I%i_lB since W' is a (p — 1)-wheel of size 3. Hence Step 1 is not ambiguous. (Of course
this is provided that our claim is correct. Since we are going to use induction to prove that the claim is
correct, this need no longer concern us.)

For p = 1, the above inequalities indeed reduce to the inequalities Z4 and Zg that we have found in
Section 2. (We have also seen that our scheme gave two such inequalities.) Assume the result is true for

some p > 1. Now, given W (vg,,vo,,--.,V0,,,;V1,V2,.-.,V2k+1), & (p+ 1)-wheel of size 2k + 1, we first use

p+1)

I4p for each W*, i =1,2,...,2k+1, in Step 1. (Recall that W* is a p-wheel of size 3.) The sum of these

inequalities is

p+1
(k+1)> 2o, +2(p+ 1) D 2 +2D 2 +2> zo+ > 2 < 2k+1+4|S|+ |R|/2+plE].  (6)
=1 veE veQ vES vER

According to Step 2, we have two possibilities. The first possibility is to add

Z (Jzu—l—azvgl)EQva—l—vag|E|—|—|R|/2

e=(u,v)€A veE vER
to (6). Hence we have
p+1
2k +1)> 2o, +2(p+2)) 2 +2> @ +2 Y. @, <2k+1+]|S|+ R+ (p+1)[E]. (7)
=1 veEE veO vESUR

Since S = S; U---U Spy1, we can conclude that |S| =0 (mod 2) if p+ 1 is even and |S| = |S1| (mod 2) if
p+1is odd. We now use the fact that |S;1| = |€| (mod 2) to conclude | S|+ |R|+ (p+1)|€| is even. (Recall
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that |R| is even.) Hence the right-hand side of (7) is odd. So we use — ZpH(moj < 0) in Step 3. Applying
Step 4, we have

pt+1
I kD o+ (p+2)D 2+ Y 2o+ Y 2o <k+(IS|+|RI+ (p+1)[E])/2.
=1 veE ve0 veESUR

The second possibility in Step 2 is to add

Z (J:u—l—a:vgl)EQva—l—vag|(9|—|—|R|/2

e=(u,v)€B veO vER
to (6). Hence we have
p+1
(2k+1)) 2o, +2(p+1) D @ +4 > 2y +2 > 2y <2k+ 1+[S|+|R[+p|€] + 0. (8)
=1 veEE veQ vESUR

The right-hand side of (8) can be simplified to 2(2k+ 1)+ |S|+ |R|+ (p —1)|€|. Since p+1 and p—1 have
the same parity and we have already seen that |S|+ |R|+ (p+ 1)|€| is even, | S|+ |R| + (p — 1)|€| must be
even as well. Hence the right-hand side of (8) is even. So we use Z?ii (zo; < 1) in Step 3. Applying Step

4, we have

p-I—l
S|+ R+ (p—-1)|€

vES ve0® vESUR

We now use I 4p—15 for each W?, i =1,2,...,2k+1, in Step 1. The sum of these inequalities is

p+1 | |

202k +1) >z, —|—2p2wv—|—42mv—|—22$v—|—2mv§32k—l—1)+|S|—|— R
=1 ve€ veQ vES vER

+(-2)El (9
According to Step 2, we have two possibilities. The first possibility is to add

Z (Jzu—l—azvgl)EQva—l—vag|E|—|—|R|/2

e=(u,v)€A veE vER
to (9). Hence we have
p+1
22k +1)> 2o, +2(p+ 1) D 2 +4 > 2 +2 D>, 2, <3(2k+1)+|S|+ R+ (p-1)|€].  (10)
=1 vEE veO vESUR

Since |S| + |R| + (p — 1)|€] is even, the right-hand side of (10) is odd. So we add nothing to (10) in Step
3. Applying Step 4, we have

pt+1
Ck+1)d 2o+ @+ D 2 +2) e+ Y 2, <3k+1+(IS|+ ][R+ (p-1)[E])/2.
=1 veE veQ@ vESUR

However, this is equal to I 4e5 + k(zp 1 2o; < 1), so it is redundant. The second possibility is to add

Z (J:u—l—a:vgl)EQva—l—vag|(9|—|—|R|/2

e=(u,v)€B veO vER
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to (9). Hence we have

p1
2(2k + 1 Z:co 120 @+ 6> @ +2 Y 2, <32k+1)+ S|+ R+ (p-2)E|+ 0. (11
ve€l veQ vESUR

The right-hand side of (11) can be written as 3(2k+ 1) + |S| + |R| 4+ (p — 1)|€] — |€] + |O|. Since |S| +
|R| 4+ (p—1)|&] is even and —|&| + |O] is odd (since |£]| 4 |O| = 2k + 1), the right-hand side of (11) is even.
However, all the coefficients in (11) are even as well; so our scheme produces nothing here. This completes
the proof of the claim.

To simplify the notation, we use IW instead of IAp and I(TSV instead of IAP 1 for a given p-wheel. The

next result follows from our discussion.

Theorem 5.2 Let G be a graph and W (vo,, vo,, - - ., V0,; V1, V2, - - ., Vart1) be a simple p-wheel of size 2k+-1
that is a subgraph of G. Then the inequalities T} (that is, I%,) and I} (that is, I%’—lB ) are valid for Pg.
O

The inequalities in Theorem 5.2 are called p-wheel inequalities or simply wheel inequalities. For example,
we have Tg : 2z, + 2z + 324 + ng{a7b7f} z, < 7and Zp : 3z, + 3z + 22, + 224 + 22, + 224 + 22, +
Yvgfabedef,g) Tv < 9 for the graph of Figure 8.

We end this section with several remarks. First, if S, R and £ are empty and k& = 1, then Z¢ is the clique
inequality of size p + 3. Second, if we let p = 0 in Zg, even though the assumption is p > 1, we get a cycle
inequality, whereas Ty produces nothing; so Zg seems to be a “better” generalization of cycle inequalities.
Third, one can define general p-wheel inequalities in a way similar to general 1-wheel inequalities (so
Theorem 5.2 is true even for non-simple p-wheels), and the corresponding separation problem can be

solved in polynomial time; see Cheng and Cunningham [6] or Cheng [5] for details.

6 Facet-Inducing Simple p-Wheel Inequalities

W (vo,,v0,, - -+, V0,5 V1, V2, - - ., Vakt1) is assumed to be a simple p-wheel of size 2k+1 throughout this section.
We consider the following questions: When will ZY (Z})) be facet-inducing for Pyy? The answer for p = 1
is given in Theorems 4.1 and 4.2. For p > 2, it turns out that the inequalities of the form Zg are very

well-behaved; namely, Theorem 4.1 remains true when we replace 1 by p. We now state the result.

Theorem 6.1 Let W be a simple p-wheel. Then Igv 1s facet-inducing for Py if and only if every rim-path

joining two elements of € has length at least 2 (and hence at least 3).

On the other hand, the inequalities of the form Zp are harder to handle. An example that shows
that we cannot simply replace 1 by p in Theorem 4.2 appears in Figure 9. Here, we have Zp : 3z, +
3z + 22, + 224 + 22, + 225 + 224 + Zve{a,b,c,d,e,f,g} z, < 10. We claim that it is not facet-inducing.
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(We note that O = 0, that is, all the spokes are of even length, so the conditions in Theorem 4.2 are
trivially satisfied.) This is because Zp = (324 + 2. + 24 + z. + zrt+ 2yt 2ty 2t e <
5)+ (3zp + e + g + 2. + 25 + 25 + ¢, + 2 + 1 + 2, + 24 < 5). We note that the two summands
are I(Tgvl and IWQ, where W) is the subgraph induced by {a,c,d, e, f, g, h,j, m,p,r} and W, is induced by
{b,c,d,e, f,g,i,k,1,n,q}. However, as is the case for p = 1, it is possible to characterize the facet-inducing
inequalities of the form Zp if the underlying graphs are simple p-wheels: see Cheng [5]. This result is too
complicated to state (much less prove) here, but it involves characterizing a family Z of wheels, having the

following properties.

1. Let W be a simple p-wheel such that W ¢ Z. Then I(TSV is facet-inducing for Py if and only if every
rim-path joining two elements of O has length at least 2 (and hence at least 3) and every spoke of

odd length has length at least 3.

2. The elements in Z that satisfy the above conditions are not facet-inducing for Py, but the elements

in Z that violate the above conditions are facet-inducing for Py .

In other words, Z is precisely the set of wheels for which Theorem 4.2 does not generalize in the obvious
way. Of course, the wheel of Figure 9 is a member of Z. Cheng [5] gives a complete classification of Z and

proves that it has the above properties.

Figure 9: A wheel in which Zp is not facet-inducing

We will prove Theorem 6.1, and hence Theorem 4.1. The first step is to show the condition in Theo-
rem 6.1 is necessary. Lemmas 6.2 and 6.3 correspond to Lemmas 4.4 and 4.5 respectively. The proofs are
quite similar, so we omit the proof of Lemma 6.2 and summarize the proof of Lemma 6.3. More details

can be found in Cheng [5].

Lemma 6.2 If IgV 1s facet-inducing for Py, then every rim-path joining two elements of £ has length at

least 2 (and hence at least 3).

We use the same strategy as for I(TSV when p = 1 to prove the condition in Theorem 6.1 is sufficient.

The notion of base wheel Wx(vo,,...,v0,;v1,...,vart1;E) is defined as expected. For example, suppose
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the hub is {vo,, vo, }, the spoke-ends are vy, vq, v3, v4 and vs; € = {v1, v2, va}. Then the base wheel for these

data is shown in Figure 10. The base wheel has the following properties:

Figure 10: A base wheel

1. v; € € implies Py, ; is of length 2 for i € {1,2,...,2k+ 1} and j € {1,2,...,p};
2. v; € O implies Py, ; is of length 1 for i € {1,2,...,2k+ 1} and j € {1,2,...,p};
3. v;,vip1 € € implies P; ;14 is of length 3 for ¢ € {1,2,...,2k 4 1};

4. v;,viy1 € O implies P; ;4 is of length 1 for ¢ € {1,2,...,2k+ 1}; and

5. |{vi,vi41} N E| =1 implies P; ;4 is of length 2 for ¢ € {1,2,...,2k + 1}.

Since |S(Wg)| = p|€| and |R(Wg)| = 2/|€], IgVB can be simplified to

P
I kY wo, +(+ 1) D+ Y mt Dz <kt (p+1)E]
Jj=1 veE veQ vESUR

We consider two types of stable sets of Wp that satisfy IgVB with equality.

e Type 1: N = X UY where X is a stable set of the rim, C, of Wy of size (|C| — 1)/2 and Y is
constructed as follows: If v; € £ where 2 € {1,...,2k + 1} and v; ¢ X, then adjoin the (unique)
internal vertex of Py, ; toY forall j =1,2,...,p.

e Type 2: N = {vg;} UE for some fixed j € {1,...,p}.

It is clear that both types of stable sets satisfy IgVB with equality.

Lemma 6.3 Let Wg be the base wheel for (vo,,...,v0,;v1,...,V2rq1) and a prescribed £. Then IgVB 18

facet-inducing for Py, .
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Proof: Suppose the face induced by IgVB is a subset of a facet induced by some valid inequality e’z < b.
Our goal is to show that a”z < b is a multiple of IgVB. Let (v, w) be an edge of the rim such that v,w ¢ £.
(It is clear that such v and w must exist.) Let (u;, us, w,v) be the length 3 subpath of the rim, containing
w and v, and having v as an end of the subpath. Let N be the Type 1 stable set of Wp with u;,v € N.
Now N’ = (N \ {v})U{w} is also a Type 1 stable set of Wg. Since any stable set of Wp that satisfies IgVB
with equality will also satisfy aT« < b with equality, we can conclude that a, = a,,.

Let v; € € and v, w be the two vertices of the rim that are neighbours of v;. We note that v,w ¢ £UO
since Wp is a base wheel. Let (uj, us,v,v;) be the length 3 subpath of the rim, containing v and v;, and
having v; as an end of the subpath. Let z; be the internal vertex of Py, ; for j =1,2,...,p. Let N be the
Type 1 stable set of Wy with u;,v; € N. Now N’ = (N \ {v;}) U{v, z1,...,2,} is also a Type 1 stable set
of Wg. Hence a,; = 21;:1 az; + ay. Similarly, we have a,;, = 21;:1 az; + aw. Therefore a, = a,,. We can
now conclude that a,, = a, = a for all v’ and w’ on the rim that are not in £, for some a € R.

Let v; € £ and v, w be the two vertices of the rim that are neighbours of v; and z; be the internal
vertex of Py, ; for j = 1,2,...,p. Let N be the Type 2 stable set of Wp with vo; € N where j € {1,...,p}.
It is easy to see that N' = (N \ {v;}) U{v,w}U({z1,..., 2} \ {2;}) is also a stable set of W that satisfies

IgVB with equality. Hence a,, = 2a 4+ >>7_, a,, — a,,. Let us denote this value by d. Then we have

7
ay; = 2a + (p — 1)d. Since we also have a,;, = }>%_, a,; + a which implies a,;, = & + pd, we must have
d = a; hence a,; = (p+ 1)a.

Now by taking a Type 1 stable set of Wg and a Type 2 stable set of Wp containing vy, where

j €4{1,...,p}, we have ag; = ka. Hence aTz < bis a multiple ofIgVB. a

We now complete the proof of Theorem 6.1. We first observe that, given a base wheel Wjg, since IgVB

is not an edge inequality, we only have to check condition 2 in Lemma 4.6 for two kinds of edges:
e If a =1y, and b € O, then {vy,;} UE (that is, a Type 2 stable set) satisfies condition 2.

e Suppose a,b € O. Let e be the only other neighbour of b that is on the rim. Then the Type 1 stable
set, N, with b,e ¢ N will do the job. (Note that the only other neighbours of b are vy, , ..., vo,.)

So any edge (a,b) in a base wheel satisfies the hypotheses in Lemma 4.6.

Suppose W is a p-wheel. Let W’ be obtained from W by replacing an edge (a,b) on the rim or
on one of the spokes by (a,y,z,b). It now follows that if cfe < d is the p-wheel inequality Igv, then
Tz + z, +z, < d+ 1 is the p-wheel inequality IEV/. We know that every base wheel satisfies the
hypotheses in Lemma 4.6. Moreover, any p-wheel can be obtained from a corresponding base wheel, by
replacing an edge in the updated graph with a path of length 3 successively. Hence by applying Lemma 4.7,
the proof of Theorem 6.1 is complete.

We end this section with several remarks. First, if a simple p-wheel W is an induced subgraph of G,

then one can check whether T2 (Z%) is facet-inducing for Pg in polynomial time. Second, Theorem 4.8
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is true even for p-wheels. Third, one possible way to generalize these p-wheel inequalities is to replace a
centre-edge, that is, an edge of the form (vy;,vo,) by a path of odd length; it turns out that Theorem 6.1
is true for inequalities obtained in this way from the inequalities of the form Zg, but that inequalities

obtained from the inequalities of the form Zp are never facet-inducing. (See Cheng [5] for details.)

7 Non-Simple Wheel Inequalities

We have seen that the inclusion of non-simple 1-wheel inequalities makes the separation problem easier
to handle. Moreover, we have observed that it is indeed possible for a non-simple 1-wheel inequality to
be facet-inducing. This generates the following question: When is a non-simple 1-wheel inequality facet-
inducing for its support graph? We do not know necessary and sufficient conditions for this to be true. We
do present some necessary conditions and state a conjecture regarding these non-simple 1-wheel inequalities.
It turns out that a non-simple wheel inequality can be facet-inducing for a very “uninteresting” reason —
it can be equivalent to a cycle inequality. (It is easy to see that it cannot be equivalent to a trivial or edge
inequality.) For example, consider the graph on the left in Figure 11. We have Zg : S92 . 2; < 4. Suppose
we partition the vertex-set into the following classes: {1, 2}, {4,3},{5,8},{6,9},{0,7}. If we identify the
vertices belonging to the same class, then we obtain the graph on the right in Figure 11 where, as usual,
multiple edges are deleted; moreover, Zg reduces to 2(zg + @1 + ¢4 + @5 + 26 < 2) which is a positive
multiple of a cycle inequality. We obtain cleaner statements of necessary conditions for non-simple 1-
wheel inequalities to be facet-inducing, if we assume them to be distinct from cycle inequalities. This is a
reasonable condition since we are looking for new possible facet-inducing inequalities.

Let us consider our example of a facet-inducing non-simple 1-wheel inequality again, namely, IgV where
W is the graph obtained by identifying a and b in Figure 3. We note that both a and b are neighbours of the
hub. Another example is given in Figure 12. If W is obtained by identifying a and b for the graph on the
left in Figure 12, then we have the graph on the right in Figure 12. We can see that 72 is facet-inducing
for Pyy. We observe that the vertex obtained by identifying a¢ and b is a spoke-end for the graph on the
right in Figure 12. It is easy to construct examples for ZJ similar to the one we have given here. We

define a basic operation as the identification of two vertices adjacent to the hub or the same spoke-end.

Conjecture 7.1 Every facet-inducing non-simple 1-wheel inequality (that is not a cycle inequality) arises

from applying a set of basic operations to a simple 1-wheel.

Note that we are not claiming that every non-simple 1-wheel inequality obtained from basic operations
is facet-inducing. In the rest of this section, we give some necessary conditions for Z}V (Z%) to be facet-
inducing for Py and not to be a cycle inequality where W is a non-simple 1-wheel. Before we start, we
would like to give a preview of what type of results are presented in this section. The first result is that

in order for a 1-wheel inequality to be facet-inducing, all rim-paths and spokes must be paths, not walks.
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(This is easy to prove.) All the other results except Theorem 7.6 have the following flavour: Let W be a
simple 1-wheel. Suppose P is a partition of the vertex-set of W that induces a non-simple 1-wheel. If the
resulting non-simple 1-wheel inequality Igv (I(TSV ) is facet-inducing, then we must forbid v and v to be in
the same equivalence class if there is a path P; from u to w and a path P, from v to w for some specified
w such that all the internal vertices of P; and P» are of degree 2, plus a parity condition and possibly a
planarity condition on W%, the graph obtained from W by identifying u and v. The condition that all the
internal vertices of P; and P, are of degree 2 is important because in this case, we only have to look at a
“local” structure. Theorem 7.6 says that no two spoke-ends can be identified. Although this has a “global”
structure, we are able to show that such non-simple 1-wheel inequalities are not facet-inducing by writing
them as sums of other known valid inequalities. Although we have only covered a small class of non-simple
1-wheel inequalities here, we feel that there is a strong possibility that if a non-simple 1-wheel inequality
is not facet-inducing and it “has” a “global” structure, then it can be written as a sum of trivial, edge,

cycle and simple 1-wheel inequalities. We start with the following observation.

Figure 12: Z¢ is facet-inducing for the graph obtained by identifying ¢ and b

Proposition 7.1 Let H be a graph and I be a valid inequality for Py such that the support graph for
I is H. Let H' be a graph obtained from H via a sequence of identifications of vertices, and I' be the
mequality obtained from I by adding up the coefficients of the variables corresponding to the vertices that
are identified. Suppose I = S t_, I; where I; is a valid inequality for Py for i =1,2,...,t. If one of the

I;’s 1s a positive multiple of an edge inequality and H' is not the graph consisting of only one edge, then I’
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1s not facet-inducing for Py.

Proof: Let I/ be the inequality obtained from I; by adding up the coefficients of the variables correspond-
ing to the vertices that were identified to obtain H' from H. Then I} is a valid inequality for Py where
i=1,2,...,t (by Proposition 3.4) and I’ = 3_¢_, I!. Suppose I’ is facet-inducing for Pg:. Then every I!
where ¢ € {1,2,...,t} is a positive multiple of I’. (Recall that parallel edges arising from the identifications
of vertices are replaced by single edges.) Without loss of generality, we may assume I is a positive multiple
of an edge inequality say a(z, + @, < 1). Then I; is identical to I] since u and v are adjacent so they
were not identified; hence I’ = a(z,, + ¢, < 1). Since H is the support graph for I, H' must be the graph

consisting of only one edge, namely (u, v), which is a contradiction. O

We note that the assumption that H' not be the graph consisting of only one edge is important;
otherwise, it is possible for I’ to be facet-inducing for Pg/. For example, let H = (V, E) where V =
{v1,vs,v3}, E = {(v1,v2), (v, v3)} and I denotes the inequality z; + 2z2 + z3 < 2. If v; and v are
identified, then I’ will be facet-inducing for Pg.

We explain the importance of Proposition 7.1. Suppose W is a simple 1-wheel and W’ is a non-simple
1-wheel obtained from W. Suppose vertices v and w of W are identified in the process of obtaining W~'.
Let W* be the non-simple 1-wheel obtained from W by identifying v and w. Then W’ can be obtained
from W* via a sequence of identifications of vertices. Suppose we can show that the non-simple 1-wheel
inequality, Igva (Igva), can be written as a sum of valid inequalities for Py« such that one of them is an
edge inequality. Since it is clear that W’ cannot be the graph consisting of only one edge (because W is
not bipartite), we can now apply Proposition 7.1 to conclude that the non-simple 1-wheel inequality, Igvl
(Z¥"), is not facet-inducing for Py

Suppose Igva (Igva) can be written as a sum of distinct valid inequalities, say >3¢_; I; where ¢ > 2, for
Pyya, but none of the summands is an edge inequality. (We note that by distinct, we mean I; and I; are not
multiples of each other.) Suppose I; is a positive multiple of a cycle inequality; let Cy be the support graph
for I;. If we need to identify two vertices of C; to obtain W’ from W, then after such an identification,
the inequality corresponding to I; can be written as a sum of positive multiples of edge inequalities and
cycle inequalities; hence we can apply Proposition 7.1. So we assume no two vertices of ('; need to be
identified in order to obtain W’. (Of course, a vertex of Cy and a vertex not of C; can be identified.) If
we let I/ be the inequality obtained from I; by adding up the coefficients of the variables corresponding
to the vertices that were identified to obtain W’ from W, then Z¢' (Z&') = Y.t_, I and I, is identical
to Ij. Therefore TWV' (I}') is not facet-inducing for Py unless 7V (Z¥') and I! for i = 2,3,...,t are
positive multiples of I;. In this case, Igvl (Igvl) is a positive multiple of a cycle inequality; so no new
facet-inducing inequality for Py is produced. (We observe that we may assume the support graph of Igvl
(Ig/ /) is a cycle with no chord, since otherwise the cycle inequality is not facet-inducing.) We summarize

our discussion in the next result.
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Proposition 7.2 Let H be a graph and I be a valid inequality for Py such that the support graph for
I is H. Let H' be a graph obtained from H wvia a sequence of identifications of vertices and I’ be the
mequality obtained from I by adding up the coefficients of the variables corresponding to the vertices that
are identified. Suppose I =Y t_, I, where t > 2 and the I;’s are distinct valid inequalities for Pg. If one of
the I;’s is a positive multiple of a cycle inequality and H' is not the graph consisting of only one edge, then
I’ is either not facet-inducing for Py, or H' is a graph consisting of a cycle and I' is a positive multiple of

the cycle inequality corresponding to H'. O

Theorem 7.3 Let W be a non-simple 1-wheel. If IYV (I} ) is facet-inducing for Py and TV (IX ) is not

a positive multiple of a cycle inequality, then the rim-paths and spokes must be paths, not walks.

Proof: By Proposition 7.1 and Proposition 7.2, it suffices to prove the following: If W is the non-simple
1-wheel obtained from a simple 1-wheel by identifying two vertices of a rim-path (spoke), P, then the face
induced by Igva (Ig/ “) lies in the face induced by an edge inequality or a cycle inequality. Let u and v be
the two vertices that we have identified to obtain W*. Let Q,, be the subpath of P joining u to v. Then
Qu is a block (maximal 2-vertex-connected subgraph) of W¢. Moreover, Q,,, is either an even cycle or
an odd cycle. We observe that all vertices of this cycle have coefficient 1 in Zg ‘ (I(TSV ) except u which
has coeflicient greater than 1. Therefore, if Q) , is an odd cycle, then the face induced by Zg ‘ (Igva) lies
in the face induced by the cycle inequality for @, ,; otherwise, (that is, Q, , is an even cycle) the face
induced by Igva (Igva) lies in the face induced by the edge inequality, z,, + z,, < 1, where w is a neighbour

of u on the cycle. O

In the spirit of Theorem 7.3, we have the following result.

Proposition 7.4 Let G be a graph and I be a valid inequality for Pg such that G is its support graph. Let
u and w be two vertices and let Py and Py be two paths from u to w. Suppose the cycle consisting of Py
and P> has odd length. If all the internal vertices of Py and P> are of degree 2 in G and their coefficients
m I are the same, then the face induced by I lies in a face induced by the cycle inequality for the cycle

consisting of P, and Ps.

Proof: Without loss of generality, assume P; is (u, y1,¥2, . - -, Y2i+1, w) and Py is (w, 21, 22, . . ., Z2,, u). Let
N be a stable set of G that satisfies I with equality. Suppose u,w ¢ N. Then exactly [ 4+ 1 elements

from {y1,y2,...,Y2+1} and r elements from {z1,25,...,29,} arein N. If u € N and w ¢ N, then exactly

[ elements from {y1,9ys,...,y2+1} and r elements from {z, z5, ..., z2,} are in N. Finally, suppose r > 1
and u,w € N. Then exactly [ elements from {y1,ys,...,y20+1} and » — 1 elements from {z, z5, ..., 22, }
arein N. O

The cycle that we considered in Proposition 7.4 may have two vertices with degree greater than 2, so

the argument in the proof of Theorem 7.3 does not apply.
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Theorem 7.5 Let W’ be a non-simple 1-wheel obtained from a simple 1-wheel W (vg;v1,va,. .., V2kt+1)
through identification of vertices. If Igvl (I(TSV ' ) is facet-inducing for Py and is not a positive multiple of
a cycle inequality, then distinct vertices u and w satisfying one of the following conditions cannot belong

to the same equivalence class:

1. u (w) is a vertex of Py,; (Py,) not equal to vy such that the length of the subpath of Py ; from u to vy
and the length of the subpath of Py, from w to vy are of different parity.

2. u (w) is a vertex of P, ; (Py;) not equal to v; such that a and b are distinct elements of {v;_1,vit1,v0},
and the length of the subpath of P, ; from u to v; and the length of the subpath of P,; from w to v;
are of different parity.

Proof: This follows from Proposition 7.1, Proposition 7.2 and Proposition 7.4 O

For example, Theorem 7.5 tells us that we cannot identify an element of £ with an element of O. The

next result strengthens this to any two spoke-ends.

Theorem 7.6 Let W (vg; v1,v2,...,Vakt1) be a simple 1-wheel. Let W' be a non-simple 1-wheel obtained
from W. If I; / (Ig/) s facet-inducing for Py and I; / (Ig/) 18 mot a positive multiple of a cycle

mequality, then no two spoke-ends can be identified.

Proof: By Theorem 7.3, we may assume that the rim-paths are paths, not walks. Hence no two consecutive
spoke-ends can be identified. We have already observed that we cannot identify an element of £ with an
element of 0. Suppose two vertices are in £ or . Let W?® be the graph obtained from W by identifying
these two vertices. Then it follows from our discussion that it is enough to show that ZJ“ (ZJ“) can be
written as a sum of edge, cycle and simple 1-wheel inequalities; moreover, at least one summand is either an
edge or a cycle inequality. Without loss of generality, assume v; and vo; belong to £ and that W* is obtained
from W by identifying v; and vs;. Moreover, we may assume 2 < 5 < k—1. Let W(vg; vy, va, . . .,vz(i_1)+1)
be the 1-wheel with vy as the hub and vy, vs, ..., v(;_1)11 as the spoke-ends. All spokes and rim-paths of
W1 arise from their counterparts in W in a unique way except the spoke from vy to vi. We use Py 1(W)
as the spoke P071(W1). Let Io; be the cycle inequality for the cycle consisting of the paths Ps; 2,11, Fo 2
and Py ;41 forl=14,44+1,...,k. Let
Joir1 = Z (zut+ 2, <1)forl=4,i+1,...,k
(u,v)EANPyr11 2142
and

Koppq = Z (zy+ 2y <l)forl=4,i4+1,... k.
(u,w)EBNPyry1 2142

Since one can show that

k k
v =1/ + > (Tor+ Jog1) and I = JAn > (T + Kaip),
=1 =1
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we are done. The case for v; and vy; belonging to O is similar. O

As we have already noted, Proposition 7.4 does not cover the case when identifying v and w “induces”
an even cycle. Nevertheless, additional results are obtained for the case when the 1-wheel remains planar
after the identification. They use the validity of yet another generalization of simple 1-wheel inequalities,
which we describe now. Let T be a tree with exactly one non-leaf odd-degree vertex wvg, called the hubd,
and suppose that T is embedded in the plane. Then T has an odd number of leaves, say v1,vs, ..., Vsgt+1
which we label clockwise; these are the spoke-ends. The path in T from vy to v; is a spoke; it is denoted by
Py ;. We add to T a path P; ;1 from v; to v;;; for each 7 so that the resulting graph is planar, and so that
the face cycles are odd. We call such a graph a cycle-tree; it is denoted by H = H (vo; vy, v2, . . ., Vakt1)-
For example, Figure 13 is a cycle-tree where vy is the hub. Of course, a simple 1-wheel configuration is a

special kind of cycle-tree.

Figure 13: An example of a cycle-tree

We observe that the number of bounded faces of H is 2k + 1. Let L = {vy,vs,...,v251+1}. Let R be
the set of vertices of the unbounded face that are not in L. Then |R| is even. Let Y be the set of vertices
that are not in {vo} U L U R. We can partition L into two sets, £ and O, where v; € £ (O) if and only if
the length of Py ; is even (odd). It is easy to see that P;;1; is of odd length if v;, v;4; € € or O, and it is of
even length otherwise. Hence we can partition the edges of the rim into two sets A and B as in Section 2.

By mimicking the derivation for 1-wheel inequalities, we can obtain the following result.
Theorem 7.7 Let G be a graph and H(vo;v1,vs, ..., Vakt1) be a cycle-tree that is a subgraph of G. Then

d -1 d
%%—I— Z %mv—I—QZmU—I— Zil)v—l— Zil)v <k+(RI+1|Y|+1£])/2, and
veY ve€ veQ@ vER

7d(v0)+1m0+ —d(v)azv—l—Q 2o+ > 2o+ Y 2, <k+ (R +|Y|+]|0|+1)/2
2 2
veY veQ@ veEE vER

are valid inequalities for Pg.

We call the first (second) inequality in Theorem 7.7 a cycle-tree inequality of the first (second) kind.
For example, if H is the graph shown in Figure 13, then z¢+ 221 + 25+ 223+ 224+ 25+ 26 + 21127 z; < 7is
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a cycle-tree inequality of the first kind; in fact, it is facet-inducing for Pr. Moreover, 2z¢+ 221 + 222+ 25+
24+ 225+ 226 + 21127 z; < 8 is a cycle-tree inequality of the second kind; however, it is not facet-inducing
for Pr. Cycle-tree inequalities perhaps deserve study in their own right, but we have used them only in our
study of non-simple 1-wheel inequalities. The results of this study, which adds support to Conjecture 7.1,

can be found in Cheng [5]. We state without proof one such result.

Theorem 7.8 Let W (vo;v1,vs,...,vskt1) be a simple I-wheel. Let u (v) be an internal vertex of Py,
(Po,i+1) such that the length of the subpath of Py, from u to vy and the length of the subpath of Py ;1 from
v to vy have the same parity. Let W' be a non-simple 1-wheel obtained by identifying u and v. Then I(TSV /
can be written as a sum of edge inequalities and cycle-tree inequalities; moreover, at least one summand is
an edge inequality. If, in addition, at least one of these subpaths has length greater than 1, then Igvl can
be written as a sum of edge inequalities and cycle-tree inequalities; moreover, at least one summand is an

edge inequality.

Finally, we remark that non-simple p-wheel inequalities can be facet-inducing. Moreover, Theorem 7.3,

Proposition 7.4, Theorem 7.5 and Theorem 7.6 can be extended to results for p-wheel inequalities. (See
Cheng [4].)
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