Ladders for travelling salesmen *

Sylvia C. Boyd
Department of Computer Science
University of Ottawa, Ottawa, Ont., Canada K1N 6N5
William H. Cunningham
Department of Combinatorics and Optimization
University of Waterloo, Waterloo, Ont., Canada N2L 3G1
Maurice Queyranne
Faculty of Commerce and Business Administration
University of British Columbia, Vancouver, B.C., Canada V6T 1Z2
Yaoguang Wang
Department of Combinatorics and Optimization
University of Waterloo, Waterloo, Ont., Canada N2L 3G1
First version, September 2, 1992; Revised, September 1, 1993

Abstract

We introduce a new class of valid inequalities for the symmetric travelling salesman polytope. The family is not of the common handle-tooth variety. We show that these inequalities are all facet-inducing and have Chvátal rank 2.

Key words: polyhedra, facets, travelling salesman problem
AMS 1980 subject classification. Primary: 90C08

[^0]
1 Introduction

The symmetric travelling salesman polytope $S T S P(V)$ is the convex hull of incidence vectors of edge-sets of Hamiltonian cycles of the complete graph on node set V. A description of this polytope by linear inequalities would essentially reduce the travelling salesman problem to a linear program. While there are reasons to believe that we cannot hope to obtain such a complete description, known partial descriptions of the polytope have proved to be remarkably useful in cutting plane approaches to the problem. (See [4, 9], for example.) A good deal of progress has been made in extending these partial descriptions by finding new classes of facet-inducing inequalities, and in incorporating this additional knowledge into the computational approaches.

In this paper we introduce a new class of valid inequalities for $S T S P(V)$, called ladder inequalities. These inequalities differ from most of the inequalities discovered so far, in that they are not of the usual "handle-tooth" variety. On the other hand, they arise from a strengthening of certain inequalities of this type. A computational study in [4] demonstrates use of ladder inequalities to improve the bounds of LP relaxations. We prove that all ladder inequalities are facet-inducing. We also show that they all have Chvátal rank exactly 2.

2 Preliminaries

Let V be any node set with $n \equiv|V| \geq 3$. We deal with the undirected complete graph $K_{n}=(V, E)$, and we write elements of E as (i, j) or $i j$. Note that $i j=j i$. For $S \subseteq V$, let $E(S)$ denote $\{i j \in E: i, j \in S\}$. For $S, T \subseteq V$ with $S \cap T=\emptyset$, let $E(S: T)$ denote $\{i j \in E: i \in S, j \in T\}$. For any $v \in V$, define $\delta(v)$ to be $E(\{v\}: V \backslash\{v\})$. For $B \subseteq E$ and $x \in \boldsymbol{R}^{E}$, let $x(B)$ denote $\sum\left(x_{i j}: i j \in B\right)$. Given $c \in \boldsymbol{R}^{E}$, the (symmetric) travelling salesman problem (TSP) can be stated as

$$
\begin{equation*}
\operatorname{minimize} \quad \sum\left(c_{i j} x_{i j}: i j \in E\right) \tag{1}
\end{equation*}
$$

subject to
(1.a) $\quad \sum\left(x_{i j}: 1 \leq j \leq n, j \neq i\right)=2, \quad i \in V$;
(1.b) $\quad x(E(S)) \leq|S|-1, \quad S \subset V, \quad 2 \leq|S| \leq n-2$;

$$
\begin{array}{ll}
(1 . c) & x_{i j} \geq 0, \quad i j \in E \\
\text { (1.d) } & x_{i j} \text { integer, } \quad i j \in E
\end{array}
$$

Any feasible solution x^{0} of (1) is the incidence vector of (the edge-set of) a Hamiltonian circuit or tour of K_{n}. We identify a tour (or more generally a path) of K_{n} with its edge-set or its node-sequence. The convex hull of feasible solutions to (1) is called an $S T S$ polytope, and is denoted by by $S T S P(V)$. The symmetric TSP is equivalent to the linear program

$$
\min \left(\sum\left(c_{i j} x_{i j}: i j \in E\right): x \in S T S P(V)\right)
$$

and in order to apply the methods of linear programming, we would like to describe it as an optimization subject to linear constraints. It is known ([6], for example) that the affine hull of $S T S P(V)$ is just the set of solutions of the degree constraints (1.a), and hence its dimension is $\binom{n}{2}-n$. Therefore, an inequality $a x \leq a_{0}$ that is valid for $S T S P(V)$ is facet-inducing if and only if $\left\{x \in S T S P(V): a x=a_{0}\right\}$ has dimension $\binom{n}{2}-n-1$. Moreover, two such inequalities $a x \leq a_{0}$ and $b x \leq b_{0}$ are equivalent (that is, induce the same face) if and only if there exist $\lambda \in \boldsymbol{R}^{V}$ and a positive scalar λ_{0} such that $\left(b, b_{0}\right)=\lambda(A, \overline{2})+\lambda_{0}\left(a, a_{0}\right)$, where A is the node-edge incidence matrix of K_{n}, and $\overline{2}$ is a vector of 2 's. One such class of inequalities consists of the nonnegativity constraints (1.c). Another consists of the subtour elimination (SE) constraints (1.b).

Many of the known classes of valid inequalities arose from generalizations of the comb inequalities, which we now describe. They were first defined by Chvátal [3] and later generalized by Grötschel and Padberg [5]. Given a handle $H \subset V$ and mutually disjoint teeth $T_{1}, T_{2}, \ldots, T_{2 k+1} \subset V(k$ integer, $k \geq 1)$ such that

$$
T_{j} \cap H \neq \emptyset \neq T_{j} \backslash H, \quad 1 \leq j \leq 2 k+1,
$$

the associated comb inequality is

$$
x(E(H))+\sum_{j=1}^{2 k+1} x\left(E\left(T_{j}\right)\right) \leq|H|+k+\sum_{j=1}^{2 k+1}\left(\left|T_{j}\right|-2\right)
$$

It is proved in [5] that every comb inequality is facet-inducing for $\operatorname{STSP(V).}$

3 Ladder inequalities

Let H_{1} and H_{2} be mutually disjoint subsets of V called handles. Let $T_{1}, T_{2}, \ldots, T_{t+m}$ be pairwise disjoint proper subsets of V called teeth, where $t \geq 2, m \geq 0$, and $t+m$ is even and at least 4. A tooth T_{j} is degenerate if $T_{j} \backslash\left(H_{1} \cup H_{2}\right)=\emptyset$; otherwise it is nondegenerate. Assume that $T_{1}, T_{2}, \ldots, T_{t}$ are nondegenerate teeth and (if $m \geq 1$) that T_{t+1}, \ldots, T_{t+m} are degenerate teeth. Assume also that T_{1} intersects only H_{1}, T_{2} intersects only H_{2}, and $T_{k}, k=3, \ldots, t+m$, intersects both H_{1} and $H_{2} . T_{1}$ and T_{2} are called pendent teeth; the others are nonpendent. The ladder inequality associated with $H_{1}, H_{2}, T_{1}, \ldots, T_{t+m}$ is defined as follows:

$$
\begin{align*}
\sum_{i=1}^{2} x\left(E\left(H_{i}\right)\right) & +\sum_{j=1}^{t} x\left(E\left(T_{j}\right)\right)+\sum_{j=t+1}^{t+m} 2 x\left(E\left(T_{j}\right)\right)+x\left(E\left(T_{1} \cap H_{1}: T_{2} \cap H_{2}\right)\right) \tag{2}\\
\leq & \sum_{i=1}^{2}\left|H_{i}\right|+t+m-2+\sum_{j=1}^{t}\left(\left|T_{j}\right|-d_{j}-1\right)+\sum_{j=t+1}^{t+m} 2\left(\left|T_{j}\right|-2\right)
\end{align*}
$$

where d_{j} denotes the number of handles intersected by tooth T_{j}.
Many of the known classes of valid inequalities for $\operatorname{STSP}(V)$ are generalizations of the comb inequalities, and are determined by two families of node subsets, called handles and teeth. These include clique tree inequalities [7], bipartition inequalities [1], and binested inequalities [8]. However, in all of these classes the left hand side is of the form

$$
\sum \alpha_{i} x\left(E\left(H_{i}\right)\right)+\sum \beta_{j} x\left(E\left(T_{j}\right)\right)
$$

The last term of the left hand side of the ladder inequalities does not fit this model. In fact, if that term is dropped, (2) becomes a special kind of bipartition inequality. The smallest ladder inequality (on 8 nodes) was introduced in [1] to illustrate a way in which a bipartition inequality can fail to be facet-inducing.

A general ladder inequality $a x \leq a_{0}$ is presented in Figure 1(a). Nodes are numbered in such a way that the handles are $H_{1}=\{2 k: k=1,2, \ldots, t+m-1\}$ and $H_{2}=\{2 k+1$: $k=1,2, \ldots, t+m-1\}$, and the pendent teeth $T_{1}=\{1,2\}$ and $T_{2}=\{h, 3\}$. The hollow nodes w, u, g and g^{\prime} are optional; any of them may be present or absent. Any node may appear any number of times, at least once for each node $1, \ldots, 7$ and h. Additional copies of a node are called clones and will be discussed in Section 5. In the dashed box, we allow any even number (possibly zero) of additional nonpendent teeth to be present.

Every nonpendent tooth may be either nondegenerate (if a node like g or g^{\prime} is present) or degenerate (if there is no such node). In the latter case, the tooth is contained in the union of the handles. Every coefficient $a_{i j}$ in the corresponding ladder inequality $a x \leq a_{0}$ is determined by the total weight of all sets containing both nodes i and j. The weights for the degenerate teeth are 2. (For instance, if node g in Figure 1(a) does not exist, then tooth $\{6,7\}$ is degenerate and thus has weight 2.) All other weights are one. The weights are not shown on the figure, to avoid overcrowding it. The fourth term on the left hand side of inequality (2) is represented by a bipartite graph, reduced to a single edge in Figure 1(a). Finally, the right hand side a_{0} is as given in inequality (2). Part (b) of Figure 1 will be explained in Section 4.

We now prove the validity of the ladder inequalities. For $i=1,2$, let $\hat{T}_{i}=T_{i} \backslash H_{i}$ and $\hat{H}_{i}=H_{i} \backslash\left(\cup_{j=1}^{t+m} T_{j}\right)$.

Theorem 3.1 The ladder inequality (2) is valid for $\operatorname{STS}(V)$.
PROOF: Add the following valid inequalities for $\operatorname{STSP}(V)$, and divide the resulting inequality by 3 :
(i) the comb inequality obtained by deleting \hat{H}_{2} and T_{2},
(ii) the comb inequality obtained by deleting \hat{H}_{2}, T_{2} and $H_{2} \cap T_{j}$ for $j=3, \ldots, t$,
(iii) the sum of the degree constraints for each $v \in H_{2}$,
(iv) the sum of the degree constraints for each $v \in\left(T_{1} \cap H_{1}\right) \cup\left(T_{2} \cap H_{2}\right)$,
(v) the SE inequality for $\left(\cup_{j=3}^{t+m} T_{j}\right) \cup \hat{H}_{1} \cup \hat{H}_{2}$,
(vi) the sum of the SE inequalities for $T_{j} \cap H_{1}, j=3, \ldots, t$,
(vii) the sum of the SE inequalities for \hat{T}_{1}, T_{2} and $T_{2} \cap H_{2}$,
(viii) twice the sum of the SE inequalities for $T_{j} \cap H_{2}, j=3, \ldots, t+m$,
(ix) twice the sum of the SE inequalities for $T_{j}, j=t+1, \ldots, t+m$,
(x) twice the sum of the SE inequalities for $T_{j} \cap H_{1}, j=t+1, \ldots, t+m$,
(xi) twice the SE inequality for \hat{T}_{2}.

It is straightforward to check that for all edges e, the integer part of the coefficient of x_{e} in the resulting inequality is its coefficient in (2). The right hand side RHS is

$$
\text { RHS }=\frac{1}{3}\left(\left|H_{1}\right|+\left|T_{1}\right|-2+\sum_{j=3}^{t+m}\left(\left|T_{j}\right|-2\right)+\frac{t+m-2}{2}\right)
$$

$$
\begin{aligned}
& +\frac{1}{3}\left(\left|H_{1}\right|+\left|T_{1}\right|-2+\sum_{j=3}^{t}\left(\left|T_{j} \backslash H_{2}\right|-2\right)+\sum_{j=t+1}^{t+m}\left(\left|T_{j}\right|-2\right)+\frac{t+m-2}{2}\right) \\
& +\frac{2}{3}\left|H_{2}\right|+\frac{2}{3}\left|T_{1} \cap H_{1}\right|+\frac{2}{3}\left|T_{2} \cap H_{2}\right|+\frac{1}{3}\left(\sum_{j=3}^{t+m}\left|T_{j}\right|+\left|\hat{H}_{1}\right|+\left|\hat{H}_{2}\right|-1\right) \\
& +\frac{1}{3} \sum_{j=3}^{t}\left(\left|T_{j} \cap H_{1}\right|-1\right)+\frac{1}{3}\left(\left|\hat{T}_{1}\right|-1\right)+\frac{1}{3}\left(\left|T_{2}\right|-1\right)+\frac{1}{3}\left(\left|T_{2} \cap H_{2}\right|-1\right) \\
& +\frac{2}{3} \sum_{j=3}^{t+m}\left(\left|T_{j} \cap H_{2}\right|-1\right)+\frac{2}{3} \sum_{j=t+1}^{t+m}\left(\left|T_{j}\right|-1\right)+\frac{2}{3} \sum_{j=t+1}^{t+m}\left(\left|T_{j} \cap H_{1}\right|-1\right)+\frac{2}{3}\left(\left|\hat{T}_{2}\right|-1\right) \\
& =\sum_{i=1}^{2}\left|H_{i}\right|+t+m-2+\sum_{j=1}^{t}\left(\left|T_{j}\right|-d_{j}-1\right)+\sum_{j=t+1}^{t+m} 2\left(\left|T_{j}\right|-2\right)+\frac{2}{3} .
\end{aligned}
$$

Rounding down each coefficient and the right hand side to the nearest integer, we obtain the desired result.

4 Primitive ladder inequalities

For any inequality $a x \leq a_{0}$, we define its support graph to be $G_{a}=\left(V, E_{a}\right)$, where $E_{a}=\left\{e \in E: a_{e} \neq 0\right\}$. In this section, we consider a subclass of ladder inequalities $a x \leq a_{0}$ which have a spanning support graph (that is, G_{a} contains no isolated nodes) and satisfy the following properties:

- $\left|H_{i} \cap T_{j}\right| \leq 1$ for any pair H_{i} and T_{j},
- $\left|T_{j} \backslash\left(H_{1} \cup H_{2}\right)\right|=1$ for $j=1, \ldots, t$, and
- $\left|H_{i} \backslash\left(\cup_{j=1}^{t+m} T_{j}\right)\right| \leq 1$ for $i=1,2$.

The inequalities in this class are called primitive ladder inequalities. Thus, Figure 1(a) shows a general primitive ladder inequality if no node has any clone. (Hollow nodes may be present or absent, and there may be any even number of teeth in the dashed box).

Note that any $a x \leq a_{0}$ can be written in the following form

$$
\sum_{i=1}^{l} \omega_{i} x\left(E\left(L_{i}\right)\right)+b x \leq a_{0}
$$

where the L_{i} 's are subsets of V. By complementing L_{i} with respect to $a x \leq a_{0}$, we mean adding to the inequality the multiples of degree constraints $-\frac{\omega_{i}}{2} x(\delta(v))=-\omega_{i}$ for all
$v \in L_{i}$ and $\frac{\omega_{i}}{2} x(\delta(v))=\omega_{i}$ for all $v \in V \backslash L_{i}$. The resulting inequality is clearly equivalent to $a x \leq a_{0}$ but has different coefficients. To facilitate the polyhedral proof, we need a unique representation of valid inequalities for $\operatorname{STS}(V)$. This representation is given by the following lemma.

Lemma 4.1 Let $a x \leq a_{0}$ be any valid inequality for $S T S P(V)$, and let h, u and v be any three distinct nodes in V. Define $B \equiv \delta(h) \cup\{(u, v)\}$. Then there is a unique (up to positive multiples) inequality $c x \leq c_{0}$ that is equivalent to $a x \leq a_{0}$ and satisfies $c_{e}=0$ for all $e \in B$.

The lemma follows directly from Remark 4.2 in Grötschel and Padberg [5] by observing that B corresponds to a basis of the column vectors in the node-edge incidence matrix. We call such a representation, $c x \leq c_{0}$, an ($h, u v$)-canonical form, or an ($h, u v$)-canonical inequality. An example of a ladder inequality in ($h, 13$)-canonical form $c x \leq c_{0}$ is presented in Figure 1(b). This can be obtained by complementing tooth T_{2}. Note that $c_{31}=c_{3 i}=0$ for all $i \geq 4$ and even, $c_{21}=c_{24}=c_{26}=2, c_{52}=c_{51}=1$, etc. Note also that if g is absent, then $c_{67}=3$.

For any valid inequality $b x \leq b_{0}$ for $\operatorname{STSP}(V)$, a Hamiltonian cycle C on V is said to be b-tight if $b(C)=b_{0}$, where $b(C) \equiv \sum_{e \in C} b_{e}$.

We now outline the polyhedral proof. In this proof, we will make reference to the general primitive ladder inequality shown in Figure 1. In particular, we will use the node labels (numbers $1, \ldots, 6$, and letters u, w, g, g^{\prime}) as shown in that figure. The hollow nodes g, g^{\prime} may be assigned to nondegenerate teeth, $\{6, g, 7\}$ and $\left\{4, g^{\prime}, 5\right\}$, respectively, as needed in the proof. The other hollow nodes w and u represent the cases that some node in a handle may not be contained in any tooth. Unless otherwise specified, the statements of the proof are true with and without any subset of hollow nodes.

Let $c x \leq c_{0}$ be the ($h, 13$)-canonical ladder inequality shown in Figure 1(b), and let $f x \leq f_{0}$ be a facet-inducing ($h, 13$)-canonical inequality that dominates $c x \leq c_{0}$, that is, such that, for all $x \in S T S P(V), c x=c_{0}$ implies $f x=f_{0}$. Since $f_{e}=c_{e}=0$ for all edges e in $\delta(h)$, the star of h, any c-tight Hamiltonian path P, that is, $c(P)=c_{0}$, on $V \backslash\{h\}$, is also f-tight, that is, $f(P)=f_{0}$. (Indeed, path P can be converted, in a unique way, into a c-tight cycle C by connecting its endnodes to node h, and thus $f_{0}=f(C)=f(P)$.) Therefore, it suffices to compare pairs of c-tight paths on $V \backslash\{h\}: P$ and P^{\prime}, that is,
compute $f(P)-f\left(P^{\prime}\right)=0$ to derive the coefficients of $f x \leq f_{0}$. Each comparison and its implication are denoted by

$$
P \sim P^{\prime} \Longrightarrow \text { "some expression". }
$$

Note that the above implication may involve some obvious node (or tooth) permutations and use earlier results on the f coefficients. Such steps are iterated until $f x \leq f_{0}$ is shown to be some multiple α of $c x \leq c_{0}$. It then follows that $c x \leq c_{0}$, hence $a x \leq a_{0}$, is facet-inducing.

(a) A ladder inequality

(b) The ladder in ($h, 13$)-canonical form

Figure 1: Ladder inequalities

Figure 2: Four c-tight paths

Figure 2 and Figure 3 present 12 types of c-tight paths on $V \backslash\{h\}$ used in the proof. Each path may be represented by either the corresponding edge set or the sequence of nodes.

We are now in a position to prove the following result.
Proposition 4.2 All primitive ladder inequalities are facet-inducing.
PROOF: For simplicity, let "+" stand for set union and "-" for set difference. Let $\alpha \equiv f_{23}$ and $\gamma \equiv f_{12}$.

Claim 1. $\quad f_{e}=0$ for all e such that $c_{e}=0$.
Proof: Since by definition $f_{13}=0, P_{1} \sim P_{1}-(1,3)+(3,6) \Longrightarrow f_{3 i}=f_{13}=0$ for all $i \geq 4$ and even.

Next, for any nondegenerate tooth, say, $\{6, g, 7\}$, let $P_{1}^{\prime} \equiv P_{1}-(7, g)+(7,6)=$ ($312 w 4 g^{\prime} 5 \cdots 76 g$).

Then $P_{1}^{\prime} \sim P_{1}^{\prime}-(1,3)+(3, g) \Longrightarrow f_{3 g}=0$ for all g. If node w does not exist, we are done; else consider edge $(3, w)$. Let $P_{1}^{\prime \prime} \equiv P_{1}-(2, w)+(2,6)=\left(3126 g 7 \cdots u 5 g^{\prime} 4 w\right)$. Then $P_{1}^{\prime \prime} \sim P_{1}^{\prime \prime}-(1,3)+(3, w) \Longrightarrow f_{3 w}=0$.
Claim 2. $\quad f_{e}=\alpha$ for all e such that $c_{e}=1$.
Proof: $P_{2} \sim P_{2}-(2,3)+(1,5) \Longrightarrow f_{1 i}=\alpha$ for all $i \geq 5$ and odd.

Figure 3: Eight other c-tight paths
$P_{11} \sim P_{11}-(2,3)+(3,5) \Longrightarrow f_{3 i}=\alpha$ for all $i \geq 5$ and odd.
$P_{2} \sim P_{2}-(2,3)+(2,5) \Longrightarrow f_{2 i}=\alpha$ for all $i \geq 5$ and odd.
$P_{3} \sim P_{3}-(1,6)+(3,5) \Longrightarrow f_{1 i}=\alpha$ for all $i \geq 4$ and even.
$P_{3} \sim P_{3}-(1,6)+(5,6) \Longrightarrow f_{i j}=\alpha$ for all $i, j \geq 4$ such that i and j belong to both different teeth and different handles.

If there is a nondegenerate tooth, $\{6, g, 7\}$, use three types of c-tight paths P_{5}, P_{6} and P_{7}.

$$
P_{5} \sim P_{5}-(1, g)+(2,3) \Longrightarrow f_{1 g}=\alpha
$$

$$
\begin{aligned}
& P_{5} \sim P_{5}-(1, g)+(2, g) \Longrightarrow f_{2 g}=\alpha \\
& P_{6} \sim P_{6}-(5, g)+(1, g) \Longrightarrow f_{i g}=\alpha \text { for all } i \geq 5, i \neq 7 \text { and odd. } \\
& P_{7} \sim P_{7}-(4, g)+(1,4) \Longrightarrow f_{i g}=\alpha \text { for all } i \geq 4, i \neq 6 \text { and even. }
\end{aligned}
$$

If there are at least two nonpendent, nondegenerate teeth, say, $\{6, g, 7\}$ and $\left\{4, g^{\prime}, 5\right\}$, we define $P_{6}^{\prime} \equiv P_{6}-\left(4, g^{\prime}\right)+(4,5)-(5, g)+\left(g, g^{\prime}\right)=\left(12 w 45 g^{\prime} g 67 \cdots u 3\right)$. Then we have $P_{6}^{\prime} \sim P_{6}^{\prime}-\left(g, g^{\prime}\right)+(1, g) \Longrightarrow f_{g g^{\prime}}=\alpha$.
If all nodes in the handles are contained in the union of teeth, we are done. Otherwise, do the following:
(i) If node w exists, the values of f_{e} for all edges $e \in \delta(w)$ such that $c_{e}=1$ are derived as follows.
$P_{4} \sim P_{4}-(1, w)+(1,4) \Longrightarrow f_{1 w}=\alpha$.
Let $P_{3}^{\prime} \equiv P_{3}-(2, w)-(4, w)+(2,4)-(1,6)+(1, w)+(6, w)=\left(5 g^{\prime} 421 w 6 g 7 \cdots u 3\right)$ and, if g^{\prime} exists, $P_{3}^{\prime \prime} \equiv P_{3}^{\prime}-\left(4, g^{\prime}\right)+(4,5)=\left(g^{\prime} 5421 w 6 g 7 \cdots u 3\right)$.
$P_{3}^{\prime} \sim P_{3}^{\prime}-(1, w)+(5, w) \Longrightarrow f_{5 w}=f_{1 w}=\alpha$. So $f_{k w}=\alpha$ for all $k \geq 5$ and odd.
$P_{3}^{\prime \prime} \sim P_{3}^{\prime \prime}-(1, w)+\left(g^{\prime}, w\right) \Longrightarrow f_{g^{\prime} w}=f_{1 w}=\alpha$.
When both w and u exist, construct $P_{3}^{\prime \prime \prime} \equiv\left(u 5 g^{\prime} 421 w 6 g 7 \cdots 3\right)$.
$P_{3}^{\prime \prime \prime} \sim P_{3}^{\prime \prime \prime}-(1, w)+(u, w) \Longrightarrow f_{u w}=f_{1 w}=\alpha$.
(ii) If node u exists, the values of f_{e} for all edges $e \in \delta(u)$ such that $c_{e}=1$ are derived as follows.
$P_{3} \sim P_{3}-(3, u)+(3,5) \Longrightarrow f_{3 u}=f_{35}=\alpha$.
$P_{2} \sim P_{2}-(3, u)+(1, u) \Longrightarrow f_{1 u}=f_{3 u}=\alpha$.
$P_{8} \sim P_{8}-(1, u)+(2, u) \Longrightarrow f_{2 u}=f_{1 u}=\alpha$.
For any nondegenerate tooth, $\left(354 g^{\prime} u 7 g 6 \cdots 21\right) \sim\left(g^{\prime} 453 u 7 g 6 \cdots 21\right) \Longrightarrow f_{g^{\prime} u}=$ $f_{3 u}=\alpha$.

Let $P \equiv\left(12 w 4 g^{\prime} 5 u 3 \cdots 7 g 6\right) . P \sim P-(3, u)+(6, u) \Longrightarrow f_{6 u}=f_{3 u}=\alpha$. So $f_{k u}=\alpha$ for all $k \geq 4$ and even.

This completes the proof for Claim 2.
Claim 3. $\quad f_{e}=\gamma$ for all e such that $c_{e}=2$.
Proof: $P_{4} \sim P_{4}-(1,2)+(2,4) \Longrightarrow f_{2 i}=\gamma$ for all $i \geq 4$ and even.
To derive the remaining f_{e} in the handles with $c_{e}=2$, we distinguish, for node w and for node u, the cases with or without that node.
(i) If node w does not exist, then $P_{8} \sim P_{8}-(4,6)+(2,4) \Longrightarrow f_{i j}=\gamma$ for all distinct $i, j \geq 4$ and even. Otherwise, P_{8} includes w and we have

$$
P_{8} \sim P_{8}-(4, w)+(2,4) \Longrightarrow f_{k w}=\gamma \text { for all } k \geq 4 \text { and even. }
$$

Defining $P_{8}^{\prime} \equiv P_{8}-(6, w)+(2, w)=\left(35 g^{\prime} 4 w 21 u \cdots 7 g 6\right)$, we also have

$$
P_{8}^{\prime} \sim P_{8}^{\prime}-(4, w)+(4,6) \Longrightarrow f_{i j}=\gamma \text { for all distinct } i, j \geq 4 \text { and even, and }
$$

$$
P_{8} \sim P_{8}^{\prime} \Longrightarrow f_{2 w}=f_{6 w}=\gamma
$$

(ii) If node u does not exist, then $P_{9} \sim P_{9}-(5,7)-(2,3)+(2,4)+(3,5) \Longrightarrow f_{i j}=\gamma$ for all distinct $i, j \geq 5$ and odd. Otherwise, P_{9} includes u and we have

$$
\begin{aligned}
& P_{9} \sim P_{9}-(2,3)-(5, u)+(2,4)+(3,5) \Longrightarrow f_{k u}=\gamma \text { for all } k \geq 5 \text { and odd, and } \\
& P_{3} \sim P_{3}-(u, v)-(1,6)+(5, v)+(1, u) \Longrightarrow f_{5 v}=f_{u v}=\gamma, \text { where }(u, v) \in P_{3}, v \geq 7
\end{aligned}
$$ and odd. This shows that $f_{i j}=\gamma$ for all distinct $i, j \geq 5$ and odd.

For any nondegenerate tooth $\left\{4, g^{\prime}, 5\right\}$, we have
$P_{10} \sim P_{10}-(v, 5)+\left(5, g^{\prime}\right) \Longrightarrow f_{5 g^{\prime}}=\gamma$, where $v=u$ if u exists and $v=7$ otherwise.
$P_{10} \sim P_{10}-(2,4)+\left(4, g^{\prime}\right) \Longrightarrow f_{4 g^{\prime}}=\gamma$.
$P_{11} \sim P_{11}-\left(4, g^{\prime}\right)+(4,5) \Longrightarrow f_{45}=f_{4 g^{\prime}}=\gamma$.
This completes the proof for Claim 3.
Claim 4. $\gamma=2 \alpha$.
Proof: By Claims 1, 2 and $3, P_{1} \sim P_{4} \Longrightarrow \gamma=2 \alpha$.
Claim 5. For every degenerate tooth T, say $T=\{4,5\}$ (without g^{\prime}), we have $f_{45}=3 \alpha$. Proof: $P_{8} \sim P_{12} \Longrightarrow f_{45}=2 \gamma-\alpha=4 \alpha-\alpha=3 \alpha$.

From Claims 1-5, it follows that $f_{e}=\alpha c_{e}$ for all $e \in E(V)$. The proof of Proposition 4.2 is complete.

5 Lifting ladder inequalities

We have shown that all primitive ladder inequalities are facet-inducing for STS polytopes. In this section, we show by node lifting and cloning that all ladder inequalities are facetinducing. We begin with the following simple lemma on ($h, u v$)-canonical forms, which is used in our proofs.

Lemma 5.1 Let $c x \leq c_{0}$ be an ($h, u v$)-canonical facet-inducing inequality for $\operatorname{STSP}(V)$. If an $(h, u v)$-canonical inequality $f x \leq f_{0}$ satisfies $f(P)=f_{0}$ for all c-tight paths P on
$V \backslash\{h\}$, then $f=c$ and $f_{0}=c_{0}$, up to a positive multiple.
PROOF: Assume that $c x \leq c_{0}$ and $f x \leq f_{0}$ satisfy the assumptions of the lemma. Consider any c-tight cycle C and let $P \equiv C \backslash \delta(h)$. Since P is a Hamiltonian path on $V \backslash\{h\}$ and $c(P)=c(C)=c_{0}$, we have $f(P)=f_{0}$, implying $f(C)=f_{0}$. Since $c x \leq c_{0}$ is facet-inducing and both $c x \leq c_{0}$ and $f x \leq f_{0}$ are in ($h, u v$)-canonical form, this implies $f=c$ and $f_{0}=c_{0}$, up to a positive multiple.

We say that a valid inequality induces a nontrivial facet if it is not equivalent to either a nonnegativity constraint $x_{e} \geq 0$ or a bound constraint $x \leq 1$. The following two results show how large classes of nontrivial facets can be obtained by node lifting.

The first theorem allows us to add isolated nodes, that is, nodes that are not in the union of all handles and teeth, and therefore whose incident edges have zero coefficients in the ladder inequality (1). Actually, this node lifting theorem applies to a broad class of STSP facet-inducing inequalities, such as the well-known clique tree class. An inequality $a x \leq a_{0}$ for $S T S P(V)$ is a 2-tooth inequality if it satisfies
(i) it is a nontrivial valid inequality for $\operatorname{STSP}(V)$;
(ii) $a \geq 0$;
(iii) there exist (at least) two disjoint teeth $T_{1}=\left\{t_{1}, h_{1}\right\}$ and $T_{2}=\left\{t_{2}, h_{2}\right\}$ such that for each $i=1,2$, we have $a_{t_{i} h_{i}}>0$, and $a_{t_{i} v}=0$ for all $v \neq h_{i}$;
(iv) either $a_{h_{1} v} \geq a_{h_{1} t_{1}}$ or $a_{h_{1} v}=0$ for all $v \in V$.

Many of the known valid inequalities have this property, including all primitive clique tree, ladder and chain inequalities as well as many bipartition inequalities.

Theorem 5.2 (Adding an isolated node) Suppose that the 2-tooth inequality ax \leq a_{0} defines a nontrivial facet of $\operatorname{STSP}(V)$, and $q \notin V$. Let $a^{*} x^{*} \leq a_{0}^{*}$ be a lifted inequality for $\operatorname{STS}\left(V^{*}\right)$, where $V^{*}=V \cup\{q\}$, obtained by letting $a_{0}^{*}=a_{0}, a_{e}^{*}=a_{e}$ for all $e \in E(V)$ and zero otherwise. Then $a^{*} x \leq a_{0}^{*}$ is facet-inducing for $\operatorname{STSP}\left(V^{*}\right)$.

PROOF: Consider a facet-inducing 2-tooth inequality $a x \leq a_{0}$. Without loss of generality, we may assume that $a_{t_{1} h_{1}}=1$. Define $Y \equiv\left\{v \in V \backslash\left\{t_{1}\right\}: v=h_{1}\right.$ or $\left.a_{h_{1} v}>0\right\}$ and $Z \equiv V \backslash T_{1}$. Note that (i) implies that both Y and Z are nonempty. Since $h_{1} \in Y$ and $t_{2} \in Z \backslash Y$, both Y and $Z \backslash Y$ are nonempty subsets of $V \backslash\left\{t_{1}\right\}$. Let $c x \leq c_{0}$ be the
$\left(t_{1}, t_{2} h_{1}\right)$-canonical inequality obtained from $a x \leq a_{0}$ by complementing T_{1}. It is easily verified that this inequality satisfies the following properties:
(P1) $c \geq 0$ and the support graph $G_{c}=\left(V, E_{c}\right)$ of $c x \leq c_{0}$ consists of the isolated node t_{1} and a bi-clique structure induced by subsets Z and Y of V; that is, $E_{c}=E(Z) \cup E(Y)$, where $Z \cup Y=V \backslash\left\{t_{1}\right\}$, and $Y \backslash Z=\left\{h_{1}\right\}$;
(P2) $c_{e} \geq 1$ for all $e \in E(Z)$;
(P3) $c_{h_{1} v} \geq 1$ for all $v \in Y$ and $c_{h_{1} v}=0$ for all $v \in Z \backslash Y$; and
(P4) $c_{t_{2} h_{1}}=0 ; c_{t_{2} h_{2}}>1$ and $c_{t_{2} v}=1$ for all $v \in Z \backslash\left\{h_{2}\right\}$.
Let $a^{*} x \leq a_{0}^{*}$ be as defined in the theorem. Conditions (i) and(ii) imply that $a^{*} x \leq a_{0}^{*}$ is valid for $\operatorname{STSP}\left(V^{*}\right)$. Let $c^{*} x \leq c_{0}^{*}$ be the ($t_{1}, t_{2} h_{1}$)-canonical inequality obtained from $a^{*} x \leq a_{0}^{*}$ by complementing the tooth $\left\{t_{1}, h_{1}\right\}$. Comparing this inequality with the $\left(t_{1}, t_{2} h_{1}\right)$-canonical inequality $c x \leq c_{0}$, we observe that $c_{e}^{*}=c_{e}$ for all $e \in E(V)$, that $c_{q h_{1}}^{*}=0$ and $c_{q v}^{*}=1$ for all $v \in Z$, and that $c_{0}^{*}=c_{0}+1$.

Let $f x \leq f_{0}$ be any $\left(t_{1}, t_{2} h_{1}\right)$-canonical facet-inducing inequality for $\operatorname{STS} P\left(V^{*}\right)$ that dominates $c^{*} x \leq c_{0}^{*}$. Let $\alpha \equiv f_{q t_{2}}$.
Claim 1. $\quad f_{q h_{1}}=0$ and $f_{q z}=\alpha$ for all $z \in Z \backslash Y$.
Proof: We have assumed that $a x \leq a_{0}$, and thus $c x \leq c_{0}$ as well, is not equivalent to a trivial inequality $x_{e} \geq 0$. Therefore, for every $z \in Z \backslash Y$, there exists a c-tight path P on $V \backslash\left\{t_{1}\right\}$ containing edge $\left(z, h_{1}\right)$. By (P3), $c_{z h_{1}}=0$, and thus the edge e connecting the endnodes of P satisfies $c_{e}=0$, for otherwise $c\left(P \cup\{e\} \backslash\left\{\left(z, h_{1}\right)\right\}\right)>c_{0}$. This implies by (P1) that path P has the form $P=\left(u \cdots z h_{1}\right)$ with $c_{u h_{1}}=0$ and $u \in Z \backslash Y$. Let $P^{\prime} \equiv P \cup(q, u), P^{\prime \prime} \equiv\left(h_{1} q u \cdots z\right)$ and note that both P^{\prime} and $P^{\prime \prime}$ are c^{*}-tight paths on $V^{*} \backslash\left\{t_{1}\right\}$.
(i) First, let $z=t_{2}$. Comparing P^{\prime} with the c^{*}-tight path $\left(h_{1} q u \ldots t_{2}\right)$ implies $f_{q h_{1}}=$ $f_{h_{1} t_{2}}=0$.
(ii) Next, comparing $P^{\prime \prime}$ with $\left(h_{1} q z \cdots u\right)$ yields $f_{q z}=f_{q u}$.
(iii) Now, consider any other $z \in Z \backslash Y, z \neq t_{2}$. If $u=t_{2}$, then comparing P^{\prime} and the c^{*} tight path $\left(u \ldots z q h_{1}\right)$ yields $f_{q z}=\alpha$ and Claim 1 is proved for node z. Else, $u \neq t_{2}$ and we may write $P=\left(u \cdots v t_{2} s \cdots z h_{1}\right)$. By (P4), we have $c_{v t_{2}}=1$ or $c_{t_{2} s}=1$ (or both). If $c_{v t_{2}}=1$, then comparing c^{*}-tight paths ($h_{1} u \cdots v q t_{2} s \cdots z$) and ($h_{1} u \cdots v q z \cdots s t_{2}$) yields $f_{q z}=f_{q t_{2}}=\alpha$. If $c_{t_{2} s}=1$, then comparing $\left(u \cdots v t_{2} q s \cdots z h_{1}\right)$ and $\left(t_{2} v \cdots u q s \cdots z h_{1}\right)$
yields $f_{q u}=\alpha$, and therefore by (ii), $f_{q z}=f_{q u}=\alpha$. We have shown that $f_{q z}=\alpha$ for all $z \in Z \backslash Y$ and the proof of Claim 1 is complete.

Claim 2. $\quad f_{q w}=\alpha$ for all $w \in Z \cap Y$.
Proof: Since $c x \leq c_{0}$ is a nontrivial inequality, for any $w \in Z \cap Y$, there exists a c-tight cycle C on V containing edge $\left(t_{1}, w\right)$. Thus, there exists a c-tight path $P \equiv(w \cdots s)$ on $V \backslash\left\{t_{1}\right\}$, obtained by deleting from C the edges incident with t_{1}. Note that, by (P2) and (P3), $c_{w s} \geq 1$. By property (P 4), path P must contain an edge (u, v) incident with t_{2} and with $c_{u v}=1$. (Otherwise, P would contain $\left(h_{2}, t_{2}\right)$ and $\left(t_{2}, h_{1}\right)$ with $c_{t_{2} h_{1}}=0$, implying that $c\left(P \cup\{(w, s)\} \backslash\left\{\left(t_{2}, h_{1}\right)\right\}\right) \geq c_{0}+1$, a contradiction.) Let $P \equiv(w \ldots u v \ldots s)$ and $P^{\prime} \equiv P \cup\{(w, s)\} \backslash\{(u, v)\}$. Comparing P^{\prime} and P yields $c_{w s} \leq 1$ and therefore $c_{w s}=1$. Thus P^{\prime} is also a c-tight path on $V \backslash\left\{t_{1}\right\}$. Now comparing $P^{\prime} \cup\{(q, u)\}$ and $P^{\prime} \cup\{(q, v)\}$ yields $f_{q u}=f_{q v}=\alpha$, since $t_{2} \in\{u, v\}$. Finally, comparing the two c^{*}-tight paths $(w \cdots u q v \cdots s)$ and $(u \cdots w q v \cdots s)$, we obtain $f_{q w}=f_{q u}=\alpha$. The proof of Claim 2 is complete.

Consider the following inequality for $\operatorname{STS}(V)$,
(3) $\sum_{e \in E\left(V \backslash\left\{t_{1}\right\}\right)} f_{e} x_{e} \leq f_{0}-\alpha$.

Denote this inequality by $\hat{f} x \leq \hat{f}_{0}$ and observe that it is in $\left(t_{1}, t_{2} h_{1}\right)$-canonical form. Consider any Hamiltonian path P on $V \backslash\left\{t_{1}\right\}$, say $P=(u \ldots v)$. By property (P1), P must have at least one endnode v in Z. Letting $P^{*} \equiv(u \ldots v q)$, we have $f_{0} \geq f\left(P^{*}\right)=$ $\hat{f}(P)+\alpha$. This shows that inequality (3) is satisfied by any Hamiltonian path on $V \backslash\left\{t_{1}\right\}$. Furthermore, if P is c-tight on $V \backslash\left\{t_{1}\right\}$, then P^{*} is c^{*}-tight, and therefore also f-tight, on $V^{*} \backslash\left\{t_{1}\right\}$. That is, $f_{0}=f\left(P^{*}\right)=\hat{f}(P)+\alpha$. Thus, every c-tight path on $V \backslash\left\{t_{1}\right\}$ satisfies (3) with equality. Since $c x \leq c_{0}$ is facet-inducing for $S T S P(V)$, Lemma 5.1 implies that, with the appropriate positive multiple, $c_{0}=\hat{f}_{0}=f_{0}-\alpha$ and $c_{e}^{*}=c_{e}=\hat{f}_{e}=f_{e}$ for all $e \in E\left(V \backslash\left\{t_{1}\right\}\right)$.

Finally, from the c-tight path $P=(w \cdots u v \cdots s)$ in the proof of Claim 2, we obtain two c^{*}-tight paths $(w \cdots u q v \cdots s)$ and $(q w \cdots u v \cdots s)$. Since $c_{u v}=1$, we have $f_{u v}=1$. Therefore comparing these paths yields $\alpha+1=2 \alpha$. So $\alpha=1$.

This shows that $f_{0}=c_{0}+1=c_{0}^{*}$ and $f_{e}=c_{e}^{*}$ for all $e \in E\left(V^{*}\right)$, implying that $c^{*} x \leq c_{0}^{*}$, or equivalently $a^{*} x \leq a_{0}^{*}$, is facet-inducing for $\operatorname{STS} P\left(V^{*}\right)$. The proof of Theorem 5.2 is complete.

We remark that the above theorem is not only of theoretical interest but also of practical importance in polyhedral computations for the TSP. Since all facet-inducing 2 -tooth inequalities for small STS polytopes also induce facets for large STS polytopes by adding isolated nodes, they can be effectively used as cutting planes for solving the large TSP's. Moreover, they have small support graphs, and thus require far less computer memory to store. As a consequence, we may expect facet-inducing 2-tooth inequalities derived from the study of small STS polytopes to play a role in the efficient solution of large STS problems. Denis Naddef pointed out to us that an example arose in computation for which ladder inequalities improved the LP bound. This example is discussed in detail in [4].

To show that any ladder inequality is facet-inducing, we use the following node-cloning result, which is an extension of Theorem 4.1 in Queyranne and Wang [10].

Theorem 5.3 (A sufficient condition for node cloning) Let u and q be any two nodes such that $u \in V$ and $q \notin V$. Let $V^{*} \equiv V \cup\{q\}$. Assume that $c x \leq c_{0}$ is a nontrivial facet-inducing ($u, p w$)-canonical inequality for $\operatorname{STSP}(V)$ satisfying $c_{e} \geq 1$ for all e with $c_{e} \neq 0$, and moreover the following condition:
Condition $\mathcal{B}(u, D ; \omega)$: There exists a scalar $\omega \geq 1$ and a partition $\left(\{u\}, D, U, U^{\prime}\right)$ of V such that:

B1. $c_{e}=0$ for all $e \in E\left(D: U^{\prime}\right)$;
B2. $1 \leq c_{e} \leq \omega$ for all $e \in E(D: U)$; and
B3. $c_{e} \geq \omega$ for all $e \in E(U)$.
Then the inequality $c^{u} x \leq c_{0}^{u}$, defined by $c_{0}^{u}=c_{0}, c_{e}^{u}=c_{e}$ for all $e \in E(V)$ and $c_{e}^{u}=0$ for all $e \in \delta(q)$, is facet-inducing for $\operatorname{STSP}\left(V^{*}\right)$.

PROOF: Let $d \in D$, and let $f x \leq f_{0}$ be a ($u, q d$)-canonical inequality that dominates $c^{u} x \leq c_{0}^{u}$ and defines a facet of $\operatorname{STSP}\left(V^{*}\right)$.

Claim 1. $f_{q v}=0$ for all $v \in U^{\prime} \cup D$.

Proof: Consider any nodes $v \in D$ and $v^{\prime} \in U^{\prime}$. Note $c_{v v^{\prime}}=0$ by (B1). Since $c x \leq c_{0}$ is not equivalent to any $x_{e} \geq 0$, there is a c-tight cycle C on V, thus a c-tight path $P \equiv C \backslash \delta(u)=\left(s \cdots v v^{\prime} \cdots t\right)$ on $V \backslash\{u\}$ containing $\left(v, v^{\prime}\right)$. Let $P^{\prime} \equiv P \cup\{(s, t)\} \backslash\left\{\left(v, v^{\prime}\right)\right\}$. Since $0 \leq c(P)-c\left(P^{\prime}\right)=c_{v v^{\prime}}-c_{s t}$, P^{\prime} is also c-tight. Comparing $P^{\prime} \cup\{(q, v)\}$ and $P^{\prime} \cup\left\{\left(q, v^{\prime}\right)\right\}$ yields $f_{q v}=f_{q v^{\prime}}$. Since $f_{q d}=0$, the claim follows.
Claim 2. $f_{q v}=0$ for all $v \in U$.
Proof: Consider any node $v \in U$. Let C^{\prime} be a c-tight cycle on V containing $u v$. Then $P^{\prime} \equiv C^{\prime} \backslash \delta(u)=\left(v \cdots v^{\prime}\right)$ is the c-tight path on $V \backslash \delta(u)$. If $v^{\prime} \in U^{\prime} \cup D$ then construct two c-tight paths as in (i) to show that $f_{q v}=0$. Otherwise $v^{\prime} \in U$. In this case P^{\prime} has the form $\left(v \cdots r s \cdots v^{\prime}\right)$ where $r \in U$ and $s \in D$. (Note that P^{\prime} contains no edge $e_{0} \in E\left(D: U^{\prime}\right)$, since otherwise $c\left(P^{\prime} \cup\left\{\left(v v^{\prime}\right)\right\} \backslash\left\{e_{0}\right\}\right)>c_{0}$, a contradiction.) By (B2) and (B3), $P^{\prime \prime} \equiv P^{\prime} \cup\left\{\left(r, v^{\prime}\right)\right\} \backslash\{(r, s)\}$ is a c-tight path on $V \backslash \delta(u)$. Comparing $P^{\prime \prime} \cup\{(q, v)\}$ and $P^{\prime \prime} \cup\{(q, s)\}$ yields $f_{q v}=f_{q s}=0$. So Claim 2 also holds.

Finally, consider any c-tight cycle C on V. Clearly $C^{*}=C \cup\{(q, u),(q, v)\} \backslash\{(u, v)\}$, where $(u, v) \in C \cap \delta(u)$, is a Hamiltonian cycle on V^{*} satisfying $c^{u}\left(C^{*}\right)=c_{0}^{u}$, and hence is f-tight. Further using the above claim, we have $f(C)=f\left(C^{*}\right)=f_{0}$. Since $c x \leq c_{0}$ defines a facet, by Lemma 5.1, we have $f_{e}=c_{e}$ for all $e \in E(V)$ and $f_{0}=c_{0}$.

Theorem 5.4 All ladder inequalities are facet-inducing.
PROOF: Let $b x \leq b_{0}$ be any ladder inequality. Clearly, there exists a corresponding facet-inducing primitive ladder inequality $a^{\prime} x \leq a_{0}^{\prime}$ obtained by discarding all isolated nodes in G_{b} and shrinking each nonempty set $H_{i} \cap T_{j}, T_{j} \backslash\left(H_{1} \cup H_{2}\right)$ and $H_{i} \backslash\left(\cup_{j=1}^{t+m} T_{j}\right)$ into a singleton set. If G_{b} contains s isolated nodes, we apply Theorem $5.2 s$ times to $a^{\prime} x \leq a_{0}^{\prime}$ to obtain a facet-inducing ladder inequality $a x \leq a_{0}$ with G_{a} containing s isolated nodes. To clone any other node u, we consider $a x \leq a_{0}$ as being a general facet-inducing ladder inequality for $\operatorname{STSP}(V)$. Recall that $V^{*}=V \cup\{q\}$. We need to show that the inequality $a^{u} x \leq a_{0}^{u}$, obtained by replacing $\{u\}$ with $\{u, q\}$, is also facet-inducing for $\operatorname{STSP}\left(V^{*}\right)$. Let $c x \leq c_{0}$ and $c^{u} x \leq c_{0}^{u}$ be their respective ($u, v w$)canonical inequalities. Then $c^{u} x \leq c_{0}^{u}$ is exactly the inequality obtained in Theorem 5.3 from $c x \leq c_{0}$. Thus, to show that $a^{u} x \leq a_{0}^{u}$ is facet-inducing, it is enough to check that $c x \leq c_{0}$ satisfies the conditions of Theorem 5.3 for each of the following cases. (Note that by symmetry, the following also applies to the cases with respect to H_{1}.)

Case 1: $u \in T_{2} \backslash H_{2}$. Construct $c x \leq c_{0}$ by complementing T_{2}, as in Figure 1(b). Then, $c x \leq c_{0}$ satisfies the required conditions and $\mathcal{B}\left(u, T_{2} \cap H_{2} ; 1\right)$.
Case 2: $u \in T_{j} \backslash\left(H_{1} \cup H_{2}\right), 3 \leq j \leq t$. Construct $c x \leq c_{0}$ by complementing T_{j}. Then, $c x \leq c_{0}$ satisfies the required conditions and $\mathcal{B}\left(u, T_{j} \cap H_{2} ; 1\right)$.
Case 3: $u \in H_{2} \backslash\left(\cup_{j=1}^{t+m} T_{j}\right)$. Construct $c x \leq c_{0}$ by complementing H_{2}. Then, $c x \leq c_{0}$ satisfies the required conditions and $\mathcal{B}\left(u, T_{2} \cap H_{2} ; 1\right)$.
Case 4: $u \in H_{2} \cap T_{j} . j \geq 3$. Construct $c x \leq c_{0}$ by complementing H_{2} and T_{j}. Then, $c x \leq c_{0}$ satisfies the required conditions and $\mathcal{B}\left(u, T_{j} \backslash\left(H_{1} \cup H_{2}\right) ; 1\right)$ if $3 \leq j \leq t$; or $\mathcal{B}\left(u, T_{j} \cap H_{1} ; 2\right)$ if $t+1 \leq j \leq t+m$.
Case 5: $u \in H_{2} \cap T_{2}$. Construct $c x \leq c_{0}$ by complementing H_{2}, T_{2} and then adding the degree constraints $-x(\delta(s))=-2$ for all $s \in S \equiv T_{1} \cap H_{1}$. Then, $c x \leq c_{0}$ satisfies the required conditions and $\mathcal{B}\left(u, T_{2} \backslash H_{2} ; 1\right)$. (Note that $U=V \backslash\left(T_{2} \cup H_{2} \cup\left(T_{1} \cap H_{1}\right)\right)$ in the partition ($\left.\{u\}, D, U, U^{\prime}\right)$.)

The proof is complete.

6 The Chvátal rank of ladder inequalities

Let P be a rational polyhedron in \boldsymbol{R}^{E}, that is, $P=\{x: A x \leq b\}$, where A and b are rational, and let P_{I} denote the convex hull of the integral points in P. Define P^{0} to be P and for $i \geq 1, P^{i}$ to be the set of points satisfying all integral inequalities $a x \leq a_{0}$ derived from P^{i-1} by the following rounding procedure: For any finite set of m (say) inequalities $C x \leq d$ valid for P^{i-1} and $\lambda \in \boldsymbol{R}_{+}^{m}$ such that λC is integral, take $a=\lambda C$ and $a_{0}=\lfloor\lambda d\rfloor$. So each P^{i} contains P_{I} and $P^{0} \supseteq P^{1} \supseteq \cdots \supseteq P^{i}$. These definitions were introduced by Chvátal [3], and the rounding procedure is closely related to the cutting plane methods of Gomory. It can be proved that each P^{i} is itself a polyhedron, and that there is an integer k, depending on P, such that $P^{k}=P_{I}$. (See Chvátal [3] for details.)

The (Chvátal) rank of an inequality $a x \leq a_{0}$ valid for P_{I} is the least i such that $a x \leq a_{0}$ is valid for P^{i}. It is a measure of the complexity of the derivation of the inequality by the above procedure. Suppose that we take P to be a subtour polytope, that is, the solution set of (1.a), (1.b) and (1.c). Then P_{I} is $S T S P(V)$, and it is of interest to classify facet-inducing inequalities by their rank. Of course, the non-negativity and SE inequalities have rank 0 . It is well known that comb inequalities have rank 1 [2].

From this and our proof for the validity of the ladder inequalities, it follows that each ladder inequality has rank at most 2 .

In the remainder of this section, we prove that each ladder inequality has rank at least 2 , hence exactly 2 . There is an apparently "obvious" technique for proving that an integral inequality $a x \leq a_{0}$, which is valid for P_{I}, cannot be obtained from inequalities of rank 0 by the rounding procedure. Namely, we show that there is no solution λ to

$$
\lambda A=a, \quad \lambda \geq 0, \quad \lambda b<a_{0}+1 .
$$

By the duality theorem of linear programming, this is equivalent to showing that there is $\bar{x} \in P$ with $a \bar{x} \geq a_{0}+1$. However, there is a difficulty with this argument. It may be that there are inequalities of which $a x \leq a_{0}$ is a non-negative combination, that are obtainable by rounding, although $a x \leq a_{0}$ itself is not. This difficulty does not disappear even if we know that $a x \leq a_{0}$ is facet-inducing for P_{I}, since it still may have an equivalent form that is obtainable by rounding.

An instructive example that arises from the 6 -node TSP is the following inequality:

$$
a x=x_{12}+x_{13}+x_{23}+2 x_{14}+2 x_{25}+2 x_{36}+x_{45}+x_{46}+x_{56} \leq 8=a_{0} .
$$

This inequality is facet-inducing for $\operatorname{STS} P(V)$ with $|V|=6$. In fact, it is equivalent to a comb inequality with handle $\{1,2,3\}$ and teeth $\{1,4\},\{2,5\},\{3,6\}$. Hence it has rank 1. However, the point $\bar{x}=\frac{1}{2} a$ satisfies (1.a), (1.b) and (1.c) with $a \bar{x}=9=a_{0}+1$.

Actually, this difficulty was overlooked in some previous papers [1, 2], where it was claimed using the above argument that certain inequalities have rank at least two. These results are correct, but their proofs contain gaps that can be filled by the following result from [11]. Let $G x=g$ be the equality system for P_{I}, that is, the linearly independent equations whose solution set is the affine hull of P_{I}.

If G is written $\left(G_{B}, G_{N}\right)$ such that G_{B} is a nonsingular square matrix, we say that a valid inequality $a x \leq a_{0}$ for P_{I} is an integral B-canonical form if $a=\left(a_{B}, a_{N}\right)$ with $a_{B}=0$ and all components of a_{N} being relatively prime integers. Notice that for every rational valid inequality, there is a unique integral B-canonical form to which it is equivalent.

Proposition 6.1 Let $a x \leq a_{0}$ be an integral B-canonical form that is facet-inducing for P_{I}, and suppose that $G_{B}^{-1} G$ is integral. Then ax $\leq a_{0}$ has Chvátal rank at most 1 if and only if $z(a) \equiv \max \{a x: x \in P\}<a_{0}+1$.

For the STSP case, the equality system $G x=g$ consists of the degree constraints (1.a). Consider the integral B-canonical form of Lemma 4.1. It is easy to see that, for any column $g_{p q}$ of G_{N}, the vector $G_{B}^{-1} g_{p q}$, that is, the vector d that satisfies $G_{B} d=g_{p q}$ has components $0,-1,+1$. Namely, the +1 and -1 components alternate on the edges of the unique odd-length edge-simple path in B joining p to q. Hence Proposition 6.1 can be applied.

We are now in a position to prove the main result of this section.

Theorem 6.2 The ladder inequality (2) has Chvátal rank two.
PROOF: From the proof of Theorem 3.1, it follows that every ladder inequality $c \boldsymbol{x} \leq c_{0}$ has Chvátal rank at most two. We now show that it has Chvátal rank at least two. To do so, we first construct its ($h, 13$)-canonical form $a x \leq a_{0}$ where, as in Section 4 and Figure 1(a), nodes $h \in T_{2} \backslash H_{2}, 1 \in T_{1} \backslash H_{1}$ and $3 \in H_{2} \cap T_{2}$. Hence by Proposition 6.1, we just need to construct a feasible solution \bar{x} to the subtour polytope satisfying $a \bar{x} \geq a_{0}+1$.

For $j=3, \ldots, t+m$, let P_{j} be a Hamiltonian path on T_{j} that saturates both $T_{j} \cap H_{1}$ and $T_{j} \cap H_{2}$ with the endpoints $v_{j}^{1} \in T_{j} \cap H_{1}$ and $v_{j}^{2} \in T_{j} \cap H_{2}$. Let P_{2} be a Hamiltonian path on $V \backslash\left(\cup_{j=3}^{t+m} T_{j}\right)$ that saturates $T_{i} \backslash H_{i}, H_{i} \cap T_{i}, \hat{H}_{i}$ for $i=1,2$ with endpoints $v_{1} \in H_{1}$ and $v_{2} \in H_{2}$. Define the edge set

$$
P_{1} \equiv\left(\cup_{j=2}^{t+m} P_{j}\right) \cup\left\{\left(v_{j+i-1}^{i}, v_{j+i}^{i}\right) \in E\left(H_{i}\right): i=1,2 ; j \text { is even and } 4 \leq j \leq t+m-2\right\},
$$

and node sets $S_{1} \equiv\left\{v_{1}, v_{3}^{1}, v_{t+m}^{1}\right\}, S_{2} \equiv\left\{v_{2}, v_{3}^{2}, v_{4}^{2}\right\}$. Then P_{1} is a path system with all nodes in $S_{1} \cup S_{2}$ of degree 1 and all other nodes of degree 2 . Now define $\bar{x} \in \boldsymbol{R}^{E}$ by $\bar{x}_{e}=1$ for all $e \in P_{1}, \bar{x}_{e}=\frac{1}{2}$ for all $e \in E\left(S_{1}\right) \cup E\left(S_{2}\right)$ and $\bar{x}_{e}=0$ otherwise. It is easily verified, using the ($h, 13$)-canonical form $a x \leq a_{0}$ of the ladder inequality, that we have $a \bar{x}=a_{0}+1$.

References

[1] S.C. Boyd and W.H. Cunningham, "Small travelling salesman polytopes," Mathematics of Operations Research 16 (1991) 259-271.
[2] S.C. Boyd and W.R. Pulleyblank, "Optimizing over the subtour polytope of the travelling salesman problem," Mathematical Programming 49 (1991) 163-187.
[3] V. Chvátal, "Edmonds polytopes and a hierarchy of combinatorial problems," Discrete Mathematics 4 (1973) 305-337.
[4] J. Clochard and D. Naddef, "Using path inequalities in a branch and cut code for the sysmetric tracelling salesman problem," The Third IPCO Conference (1993) 291-311.
[5] M. Grötschel and M.W. Padberg, "On the symmetric travelling salesman problem II: lifting theorems and facets," Mathematical Programming 16 (1979) 281-302.
[6] M. Grötschel and M.W. Padberg, "Polyhedral theory," in: E.L. Lawler et al., eds., The Travelling Salesman Problem (J. Wiley \& Sons, 1985) pp. 251-305.
[7] M. Grötschel and W.R. Pulleyblank, "Clique tree inequalities and the symmetric travelling salesman problem," Mathematics of Operations Research 11 (1986) 537569.
[8] D. Naddef, "The binested inequalities for the symmetric travelling salesman polytope", Mathematics of Operations Research 17 (1992) 882-900
[9] M.W. Padberg and G. Rinaldi, "A Branch-and-Cut algorithm for the resolution of large scale symmetric travelling salesman problems," SIAM Review 33 (1991) 60-100.
[10] M. Queyranne and Y. Wang, "Hamiltonian path and symmetric travelling salesman polytopes," Mathematical Programming 58 (1993) 89-110.
[11] M. Queyranne and Y. Wang, "On the Chvátal rank of certain inequalities," in preparation.

[^0]: *Copyright (C) by the Society for Industrial and Applied Mathematics, in SIAM Journal on Optimization, 5 (1995), pp. 408-420. Research partially supported by grants from N.S.E.R.C. of Canada

