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1 IntroductionA 2-factor of an undirected graph G = (V;E) is a spanning subgraph H of G that hasdegree 2 at each node. Equivalently, it is a set of node-disjoint circuits that include allof the nodes. Of course, a special case is a Hamiltonian circuit of G. Deciding whetherG has a Hamiltonian circuit is a well-known NP-complete problem, whereas decidingwhether G has a 2-factor can be done in polynomial time, due to its equivalence toproblems in matching. We consider a class of problems intermediate in di�culty to thesetwo problems. A 2-factor H is k-restricted, (or just restricted), for k an integer, if eachcomponent of H has more than k nodes. If k = n � 1 (in fact, if n=2 � k � n � 1),then any restricted 2-factor is a Hamiltonian circuit. If k = 0, then every 2-factor is arestricted 2-factor.In fact, much is known about the complexity of determining whether a given G hasa restricted 2-factor. For k = 0; 1; 2, matching techniques due to Edmonds can be usedto answer the question e�ciently. (Note that these problems are all equivalent if thegraph has no loops or multiple edges, but otherwise there are di�erences.) For k = 3(\triangle-free 2-factors"), Hartvigsen [9] gave an e�cient algorithm. His solution isdi�cult. On the other hand, for k � 5 the problem has been proved to be NP-completeby Papadimitriou; see [3]. So from the point of view of computational complexity, onlythe case k = 4 remains open.The optimal restricted 2-factor problem is, given G = (V;E) and edge weights (ce :e 2 E), to �nd a maximum-weight restricted 2-factor. Of course, this optimizationproblem is at least as hard as the corresponding decision problem discussed above. So itis NP-hard for k � 5. In fact, Vornberger [11] has proved that the optimization problemis NP-hard for k = 4 also. So from the complexity point of view, the only open caseis k = 3, the \optimal triangle-free 2-factor problem". If one assumes that the graph iscomplete and the weight function satis�es the triangle inequality, then the optimizationproblem remains NP-hard for k � 4. (This follows from the proof in [11].) However,under this assumption there is a polynomial-time algorithm that guarantees to �nd asolution of weight at most twice optimal; see Goemans and Williamson [5].In this paper we study these problems from a polyhedral viewpoint. There is a greatdeal of evidence that this approach can lead to linear-programming based techniques that2



provide excellent bounds and even provably optimal solutions. An example, which hasreceived a lot of attention, is the (symmetric) travelling salesman problem (TSP). Onemotivation for polyhedral results on restricted 2-factors is that they generalize results forthe TSP. Another is the open case k = 3 for which (unlike the NP-hard cases) we mayhope for a complete description of the polyhedron. A third is that there seems to be asense in which for smaller values of k the polyhedron is better-behaved.We consider mainly the \bipartition inequalities", a class of inequalities that wasintroduced for the TSP by Boyd and Cunningham [1]. They include well-known earlierclasses like subtour elimination, comb, and clique-tree inequalities. They extend theclique-tree class by dropping the restriction to a tree structure, and by allowing someof the \teeth" to be \degenerate". There is a natural way to choose a subfamily ofbipartition inequalities for each k, namely, by requiring teeth to have size at most k. Weprove that these \k-bipartition inequalities", are valid for the restricted 2-factor problemfor that k. We prove that for a k-bipartition inequality to be facet-inducing for therestricted 2-factor polytope, it must satisfy a certain connectivity condition, namely, itcan have no cutset consisting of degenerate teeth. This result is new even for the TSPpolytope. Moreover, for k = 3, we obtain necessary and su�cient conditions for a k-bipartition inequality to be facet-inducing. The resulting class is large, but it has a nicestructure. However, it is unfortunately not complete; we also show that even for k = 3,there are facet-inducing inequalities that are not in this class.The paper is organized as follows. In Section 2, we describe the class of bipartitioninequalities and prove their validity for the k-restricted 2-factor polytope. We also estab-lish local necessary conditions for a k-restricted factor to satisfy a k-bipartition inequalitywith equality. In Section 3, we prove necessary conditions for a bipartition inequality tobe facet inducing, and conjecture that they are su�cient. In Section 4 we deal with thetriangle-free 2-factor problem, that is, with the case when k = 3. We characterize thefacet-inducing bipartition inqualities for this case. In fact, we prove the conjecture of theprevious section for k = 3. Our results also show that, for k = 3, the characterization is agood one, as the conditions can be checked by solving a few bipartite matching problems.Finally, we show that the known classes of inequalities are still not su�cient to de�nethe triangle-free 2-factor polytope. 3



We end this section with some terminology and notation. We shall use the wordfactor to mean k-restricted 2-factor, whenever it is possible to do so without confusion.It is convenient to treat the optimal factor problem as a problem on a simple completegraph. This has the slight disadvantage that we lose the distinction among the casesk = 0; 1; 2, but our contributions do not apply to these cases anyway. So we work withthe complete graph Kn = (V;E), where jV j = n � 4, and we write elements of E as (i; j)or ij. Notice that ij = ji.For S � V , we denote V nS by S. For S; T � V , E(S : T ) denotes fij 2 E : i 2 S; j 2Tg. For S � V , E(S) denotes E(S : S) and �(S) denotes E(S : S). For v 2 V , we mayabbreviate �(fvg) to �(v). For B � E and x 2 RE, x(B) denotes P(xij : ij 2 B). Wemay write x(S) instead of x(E(S)) for S � V whenever no confusion arises. Generally,we do not distinguish between a subset C of E and its incidence vector x 2 f0; 1gEde�ned by xij = 1 if and only if ij 2 C.Given c 2 RE, the following is an integer linear programming formulation of theoptimal factor problem.minimize P (cijxij : ij 2 E)(1) subject to(1a) x(�(v)) = 2; v 2 V ;(1b) x(S) � jSj � 1; S � V and 2 � jSj � k;(1c) xij � 0; ij 2 E;(1d) xij integer, ij 2 E:The constraints (1a) are called degree constraints and (1b) are called subtour elimination(SE) constraints. A factor is the union of node-disjoint cycles, called subtours, coveringall nodes in Kn, and moreover, each subtour contains more than k edges.The convex hull of feasible solutions to (1) is a bounded polyhedron, which we denoteby P k. We use standard terminology and results from polyhedral theory. See Schri-jver [10].We say that two sets meet or intersect if they have non-empty intersection. Theintersection graph of a family of sets is the graph having a node for each member of thefamily, with two nodes being adjacent if they meet.4



2 Bipartition inequalitiesIn this section, a large class of inequalities, called bipartition inequalities, will be shownto be valid for P k. This class was �rst introduced by Boyd and Cunningham [1] for theTSP polytope as a generalization of the clique-tree class.Let H = fH1; : : : ;Hhg be a collection of mutually disjoint subsets of V called handles,and let T1; T2; : : : ; Tt+m be mutually disjoint proper subsets of V called teeth. A toothis called degenerate if it is contained in the union of the handles; otherwise it is callednondegenerate. Assume that no Tj is contained in any Hi, and that Tj is nondegenerateif and only if 1 � j � t. Assume also that each handle Hi intersects 2ki +1 teeth, whereki is a positive integer, and dj denotes the number of handles intersected by tooth Tj forall j; 1 � j � t+m. The bipartition inequality associated with these handles and teethis given byhXi=1 x(Hi) + tXj=1x(Tj) + t+mXj=t+1 djdj � 1x(Tj)(2) � hXi=1 jHij+ hXi=1 ki + tXj=1(jTjj � dj � 1) + t+mXj=t+1 djdj � 1(jTjj � dj):Notice that in the special case when h = 0, t = 1, and m = 0, the bipartitioninequality is just an SE inequality. In the special case when h = 1 and Tj \H1 6= ; forall j, it is the well-known comb inequality. Finally, when m = 0 and the intersectiongraph of the Hi and Tj is a tree, we have the clique-tree inequalities of Gr�otschel andPulleyblank [8]. Recently, Carr [2] has shown that, when the numbers of handles andteeth are �xed, there is a polynomial-time algorithm to solve the separation problem forbipartition inequalities.Figure 1 represents two bipartition inequalities. The hollow nodes, labelled v0 andv00, represent optional nodes that may or may not exist. In the case when the optionalnodes do not exist, both inequalities have right-hand side c0 = 8. The coe�cient ce ofthe left-hand side depends on the total weight of the sets that contain e. Weights of 1are omitted for simplicity, and thus only the weights of degenerate teeth are given. Forinstance, cvv0 = css0 = 2 for the inequality on the left and cvv0 = 2; css0 = 0 and crw = 1for the one on the right. 5



���������� ���� ���� ��ttt ttttd dv0 v00v v0s s0r r0w22 ���������� ���� ����������ttt ttttd dt tt t0v0 v00v v0s s0r r0w2Figure 1: Two bipartition inequalitiesA k-bipartition inequality is one for which every tooth has size at most k. The mainresult of this section is the following. It generalizes a result of [1] for the travellingsalesman problem.Theorem 2.1 Any k-bipartition inequality cx � c0 is valid for P k.For the remainder of this section cx � c0 denotes a k-bipartition inequality de�nedby (2). Consider the following maximization problem:z�(c) = maxfcx : x 2 P kg:(3) A factor x� is said to be c-optimal if cx� = z�(c), and to be c-tight if cx� = c0. Theinequality cx � c0 is valid for P k if and only if z�(c) � c0 and is face-inducing if andonly z�(c) = c0. We will show the validity of cx � c0 by induction on the number ofhandles de�ning cx � c0. To do so, we �rst apply a procedure to transform a c-optimalfactor x� to into a c-optimal factor x̂ having a special structure. Then, we \decompose"cx � c0 with respect to x̂ into two bipartition inequalities with smaller number of de�ninghandles, and use induction.For any factor x, let �(x) denote the number of subtours in x. Given any subset Sof V and a factor x such that x(E(S)) < jSj � 1, we can apply the following procedure2OPT . This will be used repeatedly in our proofs. It is analogous to the well-knownlocal optimization procedure of the same name. In fact, we will need it only for the case6



where S = Tj or S = Hi \ Tj, where Tj is a tooth and Hi is a handle of the bipartitioninequality cx � c0.Procedure 2OPTGiven: a vector c 2 RE, a factor x, and a subset S of V such that x(E(S)) < jSj � 1.Step 0. If there is exactly one subtour of x that visits S, then go to Step 1; else go toStep 2.Step 1. The subtour must enter (and leave) S at least twice, so it contains a pathuv � � � pq � � �u0v0 such that v; p; v0 2 S and u; q; u0 2 S. Replace uv, u0v0 in x by uu0 andvv0 to obtain �x. STOP.Step 2. Choose a pair of edges uv; u0v0 that are in di�erent subtours of x, with v; v0 2 Sand u; u0 2 V n S, such that cuv + cu0v0 is minimum over all such pairs. Replace uv andu0v0 by uu0 and vv0 to obtain �x. STOP.It is easy to see that 2OPT has the following property.Proposition 2.2 2OPT terminates with a factor �x such that �x(E(S)) > x(E(S)) and�(�x) � �(x). Moreover, c�x � cx if and only if cuv + cu0v0 � cuu0 + cvv0 .Lemma 2.3 Let T be a tooth and H be a handle of a bipartition inequality cx � c0, andlet S = H\T . Suppose that x� is a c-optimal factor with x�(H\T ) < jH\T j�1. If 2OPTis applied with x = x� and S = H \ T , then 2OPT replaces an edge in E(T \H : TnH)and an edge in E(T \H : HnT ) by an edge in E(T \H) and an edge in E(TnH : HnT ).The resulting factor x̂ is also c-optimal.Proof: 2OPT replaces a pair of edges uv and u0v0 in �(S) with uu0 and vv0, wherevv0 2 E(S). By de�nition of c, cuv + cu0v0 � cvv0 . Since x� is c-optimal, this inequalitymust hold with equality, and moreover cuu0 = 0. As cvv0 � 2 we have cuv = cu0v0 = 1,which implies that u 2 TnS and u0 2 HnS. It follows that uu0 2 E(H n S : T n S),proving the lemma.Lemma 2.4 Let x� be a c-optimal factor. Then there exists a c-optimal factor x̂ suchthat 7



(a) x̂(Hi \ Tj) = jHi \ Tjj � 1 for all i and j with Hi \ Tj 6= ;;(b) x̂(Hi) = x�(Hi) and x̂(Tj) = x�(Tj) for all i and j;(c) x�(�(Hi) \ fe : ce = 0g) � x̂(�(Hi) \ fe : ce = 0g) for all Hi 2 H.Proof: Apply 2OPT with S = Hi\Tj for any handle-tooth pair violating (a). It followsfrom Lemma 2.3 that (b) and (c) are satis�ed by the resulting factor x̂. We can repeatthis until (a) is also satis�ed.For any S � V , a factor x is said to saturate S if x(S) = jSj � 1. We say that afactor x̂ is simple if it satis�es condition (a) of Lemma 2.4.We describe a decomposition of cx � c0 relative to a �xed handle H and a �xedc-optimal simple factor x̂. This construction will be used not only in the proof of Theo-rem 2.1, but in the proofs of subsequent results. Let D be the index set of the degenerateteeth, and let N be the index set of the nondegenerate teeth. For a �xed H 2 H, de�neSj � Tj \ H for all j with Tj \ H 6= ;. Let J 0 denote the index set of the teeth thatintersect H, and de�ne J to be fj 2 J 0 : dj � 3; or dj = 2 and j 2 Ng. With respectto the factor x̂ and H, de�ne J0(x̂) to be fj 2 J : x̂(Sj : Tj n Sj) = 0g, and J+(x̂) tobe JnJ0(x̂). De�ne the following set of teeth relative to x̂ and H: for every j 2 J0(x̂),T 0j = Sj [fvjg, where vj is a �xed element of Tj nSj ; for every j 2 J+(x̂), T 0j = Sj [fvjg,where vj is the element of Tj n Sj satisfying x̂vjs = 1 for some s 2 Sj , and T 0j = Tj for allj 2 J 0nJ . By de�nition and the property of x̂, we havex̂(T 0j) = x̂(Sj) = jSjj � 1 = jT 0jj � 2; for all j 2 J0(x̂);(4) x̂(T 0j) = jT 0jj � 1 = jSjj; for all j 2 J+(x̂):(5) We now construct two bipartition inequalities from cx � c0. Let ax � a0 be thebipartition inequality obtained from cx � c0 by deleting the handle H and all the teeththat intersect only H, and replacing Tj by Tj n Sj for each j 2 J0(x̂): Let bx � b0 be acomb inequality de�ned by the handle H and all teeth T 0j. So ax � a0 and bx � b0 arek-bipartition inequalities with fewer than h handles.8



Using (4) and (5), we can now express cx̂ and c0 in terms of ax̂ + bx̂ and a0 + b0,respectively, as followscx̂ = ax̂+ bx̂+ 1 + 2 + 3; where1 � X � x̂(Tj n Sj)(dj � 1)(dj � 2) + x̂(T 0j)(dj � 1) : j 2 J0(x̂) \D! ;2 � X x̂(Tj)dj � 1 � x̂(T 0j) : j 2 J+(x̂) \D! ;3 � X��x̂(T 0j) : j 2 J+(x̂) \N� :c0 = a0 + b0 +  01 +  02 +  03; where01 � X djdj � 1(jTjj � dj)� dj � 1dj � 2(jTj n Sjj � dj + 1)� jSjj+ 1 : j 2 J0(x̂) \D!02 � X djdj � 1(jTjj � dj)� jTjj+ dj � jSjj+ 1 : j 2 J+(x̂) \D! ;03 � X��jSjj : j 2 J+(x̂) \ N�Lemma 2.5 Let x̂ be a simple c-optimal factor. Suppose that ax̂ � a0 and bx̂ � b0 hold.Then cx̂ � c0 also holds, and moreover, cx̂ = c0 if and only if ax̂ = a0, bx̂ = b0 andi =  0i for i = 1; 2; 3.Proof: It su�ces to show that i �  0i; i = 1; 2; 3. Note �rst that by (5), 3 =  03. Next,observe that for j 2 D \ J0(x̂), we havex̂(Tj n Sj) �X (jTj \Hij � 1 : Hi 2 H n fHg;Hi \ Tj 6= ;) = jTj n Sjj � dj + 1:(6)It follows from (4) that1 �X �jTj n Sjj � dj + 1(dj � 1)(dj � 2) + jSjj � 1(dj � 1) : j 2 J0(x̂) \D! =  01;(7)and from (5) that2 �X jTjj � 1dj � 1 � jSjj : j 2 J+(x̂) \D! =  02:(8) 9



Lemma 2.5 seems to say that there are other inequalities that hold with equalitywhenever cx � c0 does. However, what it really says is that for each factor satisfyingcx � c0 with equality, one can de�ne other inequalities that the same factor also satis�eswith equality. The new inequalities depend on the given factor. We are now ready toprove the validity of the bipartition inequalities.Proof of Theorem 2.1. We prove the theorem by induction on the number hof handles de�ning cx � c0. For h = 0, the inequality is the sum of SE constraintsx(Tj) � jTjj � 1, where jTjj � k. For h = 1, the inequality cx � c0 is a comb with ahandle H intersected by all teeth T1; : : : ; T2kh+1 of size at most k. To prove its validity,we use the usual technique known for the TSP. We add the inequalities:12x(�(v)) = 1; for all v 2 H;12x(Tj) � 12(jTjj � 1); j = 1; : : : ; 2kh + 1;12x(Tj nH) � 12(jTj nHj � 1); for all j such that jTj nHj � 2,12x(Tj \H) � 12(jTj \Hj � 1); for all j such that jTj \Hj � 2.Taking the integer part of each coe�cient and the right-hand side of the resulting in-equality yields cx � c0.Assume now that the theorem holds for the number of handles less than h. By Lemma2.4, it su�ces to check the validity of cx � c0 for any simple c-optimal solution x̂ to (3).With respect to x̂, we can construct as above ax � a0, bx � b0, as well as i;  0i; i = 1; 2; 3:By the induction hypothesis, ax � a0 and bx � b0 are valid for P k, and therefore cx � c0is valid by Lemma 2.5.Similar methods allow us to establish some further properties of c-tight factors. Theseproperties will be useful later. They are new even for the TSP. The �rst one indicatesthat there are exactly two ways for a tight factor to traverse a degenerate tooth. Theseare indicated in Figure 2. 10
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���������Figure 2: The two ways of traversing a degenerate toothTheorem 2.6 Let T be a degenerate tooth, let H1;H2; : : : ;Hd be the handles intersectingT , and let x� be a c-tight factor. If x� does not saturate T , thenx�(T ) = jT j � d and x�(T \Hi) = jT \Hij � 1 for i = 1; : : : ; d.Proof: First, we show that x�(T ) = jT j � d. Let x̂ be the simple factor producedfrom x� via Lemma 2.4. It will be enough to prove that x̂(T ) = jT j � d. First, supposethat d = 2, and let H;H 0 be the two handles met by T . Then, since T is degenerate,T = (H \ T ) [ (H 0 \ T ). Therefore, since x̂ is simple,x̂(T ) � x̂(H \ T ) + x̂(H 0 \ T )= jH \ T j � 1 + jH 0 \ T j � 1= jT j � 2:It follows, since x̂(T ) < jT j � 1, that x̂(T ) = jT j � 2 = jT j � d, as required.Now suppose that d � 3. Since x̂ does not saturate T , there is a proper nonemptysubset A of T such that x̂(A : TnA) = 0. First suppose that A can be chosen so thatA = T \H for some handle H. For this H we can apply the decomposition procedureto cx � c0, and we will have T = Tj, where j 2 J0(x̂). By Lemma 2.5, we have 1 =  01,and thus by (4), (7), x̂ satis�es (6) with equality. Finally, using Lemma 2.4, we havex�(T ) = x̂(T ) = x̂(A) + x̂(T nA) = (jAj � 1) + jT nAj � d + 1 = jT j � d;as required.Now suppose that any such A above meets at least two handles. Then there must bea proper partition (Q1; Q2; : : : ; Qq) of T such that for each i, Qi is contained in a unionof di � 2 handles, and moreover 11



x̂(Qi) = jQij � 1; x̂(Qi : T nQi) = 0:Form the bipartition inequality c0x � c00 from cx � c0 by replacing the tooth T bythe teeth Qi; i = 1; : : : ; q. (Notice that all these new teeth are degenerate.) We computec0x̂ = cx̂+ qXi=1 dix̂(Qi)di � 1 � dx̂(T )d � 1 ;and c00 = c0 + qXi=1 di(jQij � di)di � 1 � d(jT j � d)d� 1 :Therefore, since cx̂ = c0,c00 � c0x̂ = qXi=1 di(jQij � di � x̂(Qi))di � 1 � d(jT j � d � x̂(T ))d � 1= qXi=1 di(jQij � di � jQij+ 1)di � 1 � d(jT j � d� x̂(T ))d� 1= �d� d(jT j � d� x̂(T ))d� 1 = �d(jT j � 1� x̂(T ))d� 1 < 0;a contradiction to c0x̂ � c00. Hence the supposition is false.It remains to prove that x�(T \Hi) = jT \Hij�1 for all i. Suppose that x�(T \Hi) <jT \ Hij � 1 for some i. Apply 2OPT relative to x� and S = T \ Hi. Note that byLemma 2.3, the resulting �x must contain an edge e0 2 �(T ) with ce0 = 0, and moreoversatisfy c�x = cx� and �x(T ) = x�(T ) < jT j � 1. So we can apply 2OPT again relative to �xand S = T . Then 2OPT replaces e0, e1 2 �(T ) with e 2 E(T ) and e0 2 E(V n T ). Sincece0 + ce1 � 1 < djdj � 1 � ce + ce0;the new factor ~x 2 P k satis�es c~x > c�x = c0, a contradiction.The second result states that there are just two ways in which a tight factor cantraverse a handle, which we indicate in Figure 3.Theorem 2.7 Let x� be a c-tight factor, let H be a handle, and let 2kh+1 be the numberof teeth intersecting H. Then exactly one of the following is true:12
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��������������Figure 3: The two ways of traversing a handle(a) x�(H) = jHj � kh � 1, x�(�(H)) = 2kh+2, and x�(H \ Tj : TjnH) � 1 for all teethTj meeting H;(b) x�(H) = jHj � kh, x�(�(H)) = 2kh, and x�(H \ Tj : TjnH) � 1 for all but one ofthe teeth Tj meeting H.(Note that if case (b) holds, we will actually have x�(H \ Tj : TjnH) = 1 for all but oneof the teeth Tj meeting H.) We need the following observation.Lemma 2.8 Suppose that x̂ is a tight factor for the comb inequality having teeth T1; : : : ; T2h+1,each of size at most k. Then P2h+1j=1 (jTjj � 1 � x̂(Tj)) is equal to 0 or 1.Proof: If the comb inequality holds with equality, then in its derivation in the proof ofTheorem 2.1, at most one of the added inequalities is not tight, and that one must besatis�ed with a slack of exactly 12 . The result follows.Proof of Theorem 2.7. Consider the simple c-tight factor x̂ obtained from x� viaLemma 2.4. Then x̂(H) = x�(H) and (by the identity 2x(H) + x(�(H)) = 2jHj)x̂(�(H)) = x�(�(H)). Finally, since x̂ is constructed from x� by applying 2OPT withrespect to sets S of the form Hi \ Tj, by Lemma 2.3, the last condition of (a) and (b) issatis�ed by x̂ if and only if it is satis�ed by x�. Therefore, it will be enough to prove thetheorem for x̂ rather than x�.If we decompose cx � c0 relative to x̂ and the handle H, we get the comb inequalitybx � b0 de�ned byx(H) + 2kh+1Xj=1 x(T 0j) � jHj+ 2kh+1Xj=1 (jT 0jj � 1) � kh � 1:(9) 13



By Lemma 2.5, bx̂ = b0, that is, (9) holds with equality for x = x̂, sox̂(H) = jHj � kh � 1 + 2kh+1Xj=1 �jT 0jj � 1� x̂(T 0j)� :Now by Lemma 2.8, x̂(H) = jHj � kh � 1 or x̂(H) = jHj � kh. By the identity 2x(H) +x(�(H)) = 2jHj, we have that x̂(�(H)) = 2kh + 2 in the �rst case, and x̂(�(H)) = 2khin the second. In the �rst case, again by Lemma 2.8, x̂ saturates each T 0j and thereforethere is an edge of x̂ from H \ Tj to TjnH for each j, as required. Finally, in the secondcase, there is an edge of x̂ from H \ Tj to TjnH for at least 2kh values of j. But sincex̂(�(H)) = 2kh, it follows that this is true for exactly 2kh values of j, as required.3 Degenerate cutsIn this section we describe an important necessary condition for a bipartition inequalityto be facet-inducing. We begin with some simple examples.Suppose that the intersection graph of the Hi; Tj is not connected, for example, thatthere is no handle and more than one tooth. Then it is easy to see that the inequalityis the sum of the inequalities corresponding to the connected components, and thus iscontained in the faces induced by those inequalities. There is one very special case inwhich such a bipartition inequality can be facet-inducing, namely, if there are just twoteeth which are complements of each other. Then the inequality induces the same faceas does the SE inequality determined by one of the teeth.As a second example, suppose there are just two handles and every tooth intersectingboth of them is degenerate. Then it is easy to see that the inequality is the sum of twocomb inequalities, each de�ned by one of the handles and the teeth that intersect it.Again, there is one case in which such an inequality can be facet-inducing, namely, whenthe two handles are complements of each other, for then the inequality induces the sameface as each of the comb inequalities.The above examples both have the property that there is a set W � V such thateach of W;W contains at least one node in some tooth or handle, and no handle ornondegenerate tooth intersects both W and W . In this situation we call the set of14



degenerate teeth intersecting both W and W a degenerate cut. The main result of thissection is the following.Theorem 3.1 Let cx � c0 be a bipartition inequality that does not have two complemen-tary handles or teeth. If cx � c0 has a degenerate cut, then it does not de�ne a facet ofP k.Notice that it follows from the theorem that a bipartition inequality having a tree asits intersection graph and having a degenerate tooth (and not having two complementaryhandles), cannot be facet-inducing. It is possible to prove this fact by showing that suchan inequality is a non-negative linear combination of d other bipartition inequalities,where d is the number of handles intersected by the degenerate tooth. For more generalbipartition inequalities, it need not be true that if there is a degenerate cut, then theinequality is a non-negative combination of other bipartition inequalities. This maysuggest why the proof of Theorem 3.1 is more di�cult than one might expect.For the remainder of this section, cx � c0 denotes a bipartition inequality containinga degenerate cut determined by W � V . Let C be the index set of the teeth intersectingboth W and W . For each j 2 C, let d0j denote the number of handles that are intersectedby Tj and contained in W , and let d00j denote the number of handles that are intersectedby Tj and contained in W . Clearly, dj = d0j + d00j . De�ne ax � a0 to be the bipartitioninequality whose handles are the handles contained in W and whose teeth are the teethnot contained in W , and bx � b0 to be the bipartition inequality whose handles are thehandles contained in W and whose teeth are the teeth not contained in W . It is easy toverify that cx � c0 can be represented as:ax+ bx�X dj � 2dj � 1x(Tj) : j 2 C! � a0 + b0 �X dj � 2dj � 1(jTjj � 1) : j 2 C! :(10)Lemma 3.2 Any c-tight factor x� satis�esax� + 2bx� �X "d00j � 1dj � 1 + 2d0j � 1dj � 1# x�(Tj) : j 2 C!(11) = a0 + 2b0 �X "d00j � 1dj � 1 + 2d0j � 1dj � 1# (jTjj � 1) : j 2 C! :15



Proof: Let I(x�) denote fj 2 C : x�(Tj) = jTjj � djg. By Theorem 2.6, we havex�(Tj) = jTjj � 1 for all j 2 CnI(x�), and x�(Tj \Hi) = jTj \Hij � 1 for all j 2 I(x�)and i such that Hi intersects Tj.For every j 2 I(x�), choose a handle Hi � W such that Hi intersects Tj and de�ne T 0jto be Tj\(W [Hi). De�ne âx � â0 to be the bipartition inequality obtained from ax � a0by replacing Tj by T 0j for each j 2 I(x�). Notice that x�(T 0j) = jT 0jj�d0j�1 for all j 2 I(x�).(This follows from Theorem 2.6 and the de�nition of T 0j.) Also notice that each T 0j is anondegenerate tooth of âx � â0. Therefore, âx is just ax+P(x(T 0j)�x(Tj) : j 2 I(x�))and â0 is just a0 +P(jT 0jj � jTjj : j 2 I(x�)). Since âx� � â0, we haveax� � â0 �X(x�(T 0j)� x�(Tj) : j 2 I(x�))= a0 +X(jT 0jj � jTjj : j 2 I(x�))�X(jT 0jj � d0j � 1 � (jTjj � dj) : j 2 I(x�))= a0 �X(dj � d0j � 1 : j 2 I(x�))= a0 �X(d00j � 1 : j 2 I(x�)):Thereforeax� � a0 �X(d00j � 1 : j 2 I(x�)):(12)By symmetry we havebx� � b0 �X(d0j � 1 : j 2 I(x�)):(13)Adding (12) and (13), we getax� + bx� � a0 + b0 �X(dj � 2 : j 2 I(x�)):(14)Since cx� = c0, we have from (10) thatax� + bx� �X dj � 2dj � 1x�(Tj) : j 2 C! = a0 + b0 �X dj � 2dj � 1(jTjj � 1) : j 2 C! :Since x�(Tj) = jTjj � 1 for all j 2 CnI(x�), it follows that (14) holds with equality, andtherefore that (12) and (13) also hold with equality. Now from this and the facts thatx�(Tj) = jTjj � 1 for j 2 CnI(x�) and x�(Tj) = jTjj � dj for j 2 I(x�), the truth of (11)follows by a straightforward calculation. 16



We have shown that each point x� of P k such that cx� = c0 satis�es an additionalequation (11), which we denote as gx = g0. We can show that the set F of such points isnot a facet, by showing that gx = g0 is not a linear combination of cx = c0 and equationsthat are satis�ed by all points of P k. The latter equations are described as follows.Lemma 3.3 The degree constraints (1a) constitute a minimal equality system for P k.Proof: It is well known (and easy to prove) that the degree constraints de�ne a minimalequality system for the TSP polytope. Since P k contains the TSP polytope and the degreeconstraints are valid for P k, the result follows.Proof of Theorem 3.1: Let A be the node-edge incidence matrix of Kn, so Ax = 2 isthe system of degree constraints. We must show that g, or equivalently g0 = c� g, is notin the row space of �Ac�. Notice thatg0x = (c� g)x = �bx+Xj2C d0j � 1dj � 1x(Tj):Let H1 be any handle in W . Choose three teeth T1, T2 and T3, intersecting H1, andchoose nodes v 2 H1 \ T1; u 2 H1 \ T2, w 2 H1 \ T3. Let c0x � c00 be obtained fromcx � c0 by complementing H1, that is,c0 = c� 12X(Ai : i 2 H1) + 12X(Ai : i 2 V nH1); c00 = c0 + jV nH1j � jH1j;(15)where Ai is the row of A indexed by node i. So we only need to show that g0 is not inthe row space of �Ac0�.Consider B = fvv0 : v0 2 V n T1g [ fuw; uu0 : u0 2 T1 n fvgg: (All of these edgesexist, because we are working in a complete graph.) Notice that B consists of a spanningtree plus one additional edge. Therefore, the columns of A indexed by B are linearlyindependent, and, since jBj = n, B forms a basis of E. Further observe that g0e = c0e = 0for all e 2 B, and so what remains to show is that c0 and g0 are linearly independent.Since cx � c0 does not have two complementary handles, by symmetry we may assumewithout loss of generality that W itself is not a handle. Let w0 2 W n H1 and choose�w 2 W with cw0 �w = 0. The proof is complete since c0w0 �w 6= 0 and g0w0 �w = 0.17



Now we describe a second necessary condition for a bipartition inequality to be facet-inducing. It is simpler than the degenerate cut condition. However, it is not clear thatit can be checked e�ciently. The valid inequality ax � a0 is dominated by the validinequality bx � b0 if every x 2 P k satisfying ax = a0 also satis�es bx = b0. (Equivalently,the face induced by ax � a0 is contained in the face induced by bx � b0.)Lemma 3.4 Let cx � c0 be a k-bipartition inequality. If cx � c0 is dominated by thenonnegativity constraint �xe � 0 for some e 2 E, then it is not facet inducing for P k.Proof. No subtour elimination constraint is dominated by �xe � 0. So cx � c0is de�ned by at least one handle. If cx � c0 has at least two handles, we choose ahandle, say H1 such that e 62 E(H1). If cx � c0 is a comb inequality, then we canassume that it is de�ned to have handle H1 with e 62 E(H1). Let T1, T2 and T3 beteeth intersecting H1. Since e 62 E(H1), there exist two teeth, say T1 and T2, such thate 62 �(T1\H1)[�(T2\H1). Let c0x � c00 be obtained from cx � c0 by complementing H1;see (15). Let v 2 T1\H1; u 2 T2\H1; w 2 T3\H1. So B = fvv0 : v0 2 V nT1g[fuw; uu0 :u0 2 T1 n fvgg forms a basis with c0f = 0 for all f 2 B. Now e 62 B by construction of B,so it is enough to show that c0x � c00 is not a multiple of �xe � 0. This is true becauseany edge f of E(T1) [ E(T2) di�erent from e has c0f 6= 0. It follows that cx � c0 is notfacet inducing.We conjecture that the two necessary conditions are together su�cient for a biparti-tion inequality to be facet inducing.Conjecture 3.5 Let cx � c0 be a k-bipartition inequality having no complementary han-dle or tooth. Then cx � c0 is facet-inducing for P k if and only if it has no degeneratecut and it is not dominated by a non-negativity inequality.In the next section we prove this conjecture for k = 3. In the process, we show thatthe second necessary condition can be checked e�ciently if k = 3.4 Facet-inducing bipartition inequalities for k = 3In this section we characterize the 3-bipartition inequalities that induce facets of P 3. Infact, we prove Conjecture 3.5 for the case when k = 3.18



Theorem 4.1 Let cx � c0 be a 3-bipartition inequality having no complementary handleor tooth. Then cx � c0 is facet-inducing for P 3 if and only if it has no degenerate cutand it is not dominated by a non-negativity inequality.It is not at all obvious that the above characterization is a good one, in that it is notclear how easy it is to see that a given 3-bipartition inequality is not dominated by a non-negativity inequality. We are going to show that this property is equivalent to a matchingcondition in a certain bipartite graph. This is Theorem 4.4 below. Theorem 4.4 not onlyshows that Theorem 4.1 is a good characterization; it also is essential in its proof.For the remainder of this section cx � c0 denotes a 3-bipartition inequality. Thecondition that cx � c0 is not dominated by a non-negativity inequality is equivalent tothe condition that, for every edge e; there is a c-tight factor using e. As a preliminary to�nding a condition for this, let us consider the problem of determining whether there is ac-tight factor at all. (In other words, is the inequality supporting, that is, does it inducea non-empty face?) We will obtain a a necessary condition from the results of Section 3.First, we need the following result.Lemma 4.2 If there exists a c-tight factor, then there exists a c-tight simple factor thatsaturates every tooth meeting three handles.Proof: Let x� be a c-tight factor. By Lemma 2.4, we can choose x� to be simple. LetT be a tooth that meets three handles H1, H2, H3 and is not saturated by x�. Chooseri 2 Hi \ T , i = 1; 2; 3. Note that by Theorem 2.6 x�e = 0 for e 2 E(T ).For i = 1; 2; 3, let Ci be the subtour in x� through ri, let viri and risi be the two edgesof Ci incident with ri, and let 2ki + 1 be the number of teeth intersecting Hi. Noticethat x�(Hi \ T : TnHi) = 0, which implies that x� satis�es (with respect to Hi = H) (b)of Theorem 2.7. Therefore, x�(�(Hi)) = 2ki and each tooth T 0 meeting Hi other than Thas exactly one edge in (Hi \ T 0 : T 0nHi). Therefore, viri; risi =2 �(Hi), so vi; si 2 Hi.We now show that there exists a c-tight simple factor such that each such Ci abovecontains at least 5 nodes. Suppose that Ci in x� contains 4 nodes ri; vi; si; q.Case 1. Ci is contained in Hi (or equivalently, q 2 Hi).In this case, since x� is simple, only ri in Ci meets a tooth, for otherwise Ci meetsanother tooth T 0, and thus there are two teeth T; T 0 meetingHi with x�(Hi\T : T nHi) =19



x�(Hi \ T 0 : T 0 nHi) = 0, contradicting (b) of Theorem 2.7. So cf = 1 for all f 2 Ci.Next, we claim that x� must contain some other edge uv in E(Hi nCi) with cuv = 1, forotherwise by (b) of Theorem 2.7 (where T1; : : : ; T2ki+1 are the teeth meeting Hi),jHij � ki = x�(Hi) = 2ki+1Xj=1 (jHi \ Tjj � 1) + 4 � jHij � 3 � (2ki + 1) + 4 = jHij � 2ki;a contradiction. (Note that the inequality depends on the fact that none of vi; si; q is ina tooth.) So replacing uv and rivi by uri and vvi merges Ci with another subtour.Case 2. q 62 Hi.By (b) of Theorem 2.7, we must have both cviq � 1 and cqsi � 1, which implies thatq is in some tooth T 0 and both vi and si are in T 0 \Hi, a contradiction to the fact thatx� is simple.Repeating this argument for each Ci of cardinality four yields the desired x�. There-fore, we may assume that jCij � 5 for i = 1; 2; 3. A new simple c-tight factor saturating Tcan be constructed by replacing v1r1; r1s1; v2r2; r2s2; v3r3 with v1s1; v2s2; r1r2; r2r3; r1v3.Repeating this argument for other nonsaturated teeth meeting three handles, we obtainthe desired factor.Now let x be a factor as in the above lemma, and let T be a (degenerate) toothmeeting three handles. If a handle H meeting T satis�es x(H \ T : TnH) = 2, then wesay that T occupies H. Notice that since T is saturated by x, T must occupy one ofthe handles that it meets, say H. Now by Theorem 2.7 there can be at most one toothoccupying H. (If we have two such teeth and (a) holds, then we have x(�(H)) � 2kh+3,and if (b) holds, we have x(�(H)) � 2kh + 1, so in both cases we have a contradictionto Theorem 2.7.) Therefore, the number of teeth meeting three handles cannot exceedthe number of handles. (As an example of a 3-bipartition inequality that cannot besupporting because it violates this condition, consider the one having three handles ofsize �ve, and �ve teeth of size three, such that each tooth intersects each handle in asingle node.) More generally, there must be an injection from the set of such teeth tothe set of all handles so that each such tooth is mapped to a handle that it meets. Thiscondition can be described in terms of the existence of a matching in a bipartite graph,where there is a node for each handle and a node for each tooth meeting three handles,and adjacency corresponds to non-empty intersection.20



The above necessary condition for a bipartition inequality to be supporting is almostsu�cient, but it needs to be amended to handle some exceptions. To give one example ofsuch an exception, consider the bipartition inequality having three handles of size threeand three teeth of size three, such that each tooth meets each handle in exactly one node,and there are ten nodes in total. Here we see that the matching condition is satis�ed; infact, if there were nine nodes only, the inequality would be supporting. However, theremust be a subtour through the node that is in no handle, and this makes it impossibleto obtain a tight factor. Notice that this di�culty persists if there are one, two, or threenodes not in any handle, but disappears if there are four or more (because we can makea subtour on just those additional nodes). We can deal with the exceptions by modifyingthe de�nition of the bipartite graph mentioned above.Given the bipartition inequality cx � c0, let nT denote the number of pendent teeth,and let n0 denote the number of isolated nodes, that is, nodes in no handle or tooth, letVH denote fHi : 1 � i � hg, letS = 8>>><>>>: fv; v0g; if nT = 0 and jVH j � 2 with 1 � n0 � 3;fvg; if nT = 1 and jVH j � 2;;; otherwise,and let VT denote fTj : dj = 3g [ S. We de�ne the graph G(c) to have nodeset VH [ VT ,with node Hi adjacent to a node Tj if and only if Hi \ Tj 6= ; and every node of Sadjacent to every handle node Hi: (There are no other adjacencies.) Note that G(c)is bipartite with bipartition fVH ; VTg. In particular, no matching of G(c) can havecardinality larger than VT . Whether this bound is tight or not determines whether theinequality is supporting. (We remark that it is easy to check that every bipartitioninequality having fewer than two handles is supporting.)Theorem 4.3 Let cx � c0 be a 3-bipartition inequality having at least two handles. Thencx � c0 is supporting for P 3 if and only if there exists a matching in G(c) of cardinalityjVT j.A further re�nement of the matching approach allows us to characterize the 3-bipartition inequalities not dominated by a non-negativity inequality. We state thisresult next. (Notice that it does provide the promised good characterization, and hence21



shows that Theorem 4.1 is also a good characterization.) In fact, we will not actuallyprove Theorem 4.3, since we do not need it, and its proof is similar to the proof of The-orem 4.4. (Again, it is easy to check that a bipartition inequality having fewer than twohandles cannot be dominated by a non-negativity inequality.)Theorem 4.4 The 3-bipartition inequality cx � c0 is not dominated by a non-negativityinequality if and only if there exists a matching of cardinality jVT j in G(c)nfHi;Hlg forevery pair of nodes Hi;Hl in VH .The proof of this theorem requires some technical ideas that will also be useful later.A node v is a tip of cx � c0 if it is in a tooth but in no handle. A factor x� is said tostrongly saturate a tooth Tj of cx � c0 if it saturates Tj and, if dj = 2, Tj = fp; q; rg,and q is a tip, then x�pq = x�qr = 1. A factor is special if it is c-tight, simple, and stronglysaturates every tooth.Lemma 4.5 Let cx � c0 be a supporting 3-bipartition inequality, and let x� be a c-tightsimple factor. Let ~E = fe 2 E : ce = 0 and e is not incident to any tip g: Then thereexists a special factor ~x such that for all e 2 ~E, ~xe = 1 whenever x�e = 1.Proof: Let x� be a c-tight simple factor. If every tooth is strongly saturated by x�,there is nothing to prove. So suppose that there exists a tooth T not strongly saturatedby x�. Let d be the number of handles intersected by T . We demonstrate below how anew c-tight simple factor x̂ can be constructed from x� such that the new factor satis�esx̂e = 1 for all e 2 ~E with x�e = 1 and strongly saturates T as well as all teeth that arestrongly saturated by x�. By repeating this process, we can construct ~x, as required.We distinguish four cases:Case 1. d = 1. Then there exists a tip u 2 T such that x� contains e = uv with ce = 0.Applying 2OPT with respect to T , we obtain x̂ from x� by replacing e and another edgee0 2 E(H) (since otherwise ce0 = 0 implies cx̂ > c0), where H intersects T , with an edgein E(T ) and some other edge, as required.Case 2. d = 2. Let r 2 H1 \ T and r0 2 H2 \ T . If T is degenerate, then crr0 = 2.Applying 2OPT with respect to T , we obtain x̂ from x� by replacing some edges rv and22



r0v0 in x� with rr0 and vv0. Since cx̂ � c0, we must have crv = crv0 = 1 and cvv0 = 0, andthe required x̂ is obtained.Now consider T = fr; w; r0g with a tip w, and consider the subcases:Case 2a. If x� satis�es x�rr0 = x�rw = 1, then we have some q 62 T with x�wq = 1, andreplacing rr0 and wq with wr0 and qr yields the desired x̂.Case 2b. If x�rr0 = 1 and x�rw = x�wr0 = 0, then applying 2OPT with respect to T eitherresults in a factor violating cx � c0 (a contradiction), or in a factor as in Case 2a.Case 2c. If x�rw = 1 and x�rr0 = x�wr0 = 0, then applying 2OPT with respect to T givesthe desired x̂.Case 2d. If x�rw = x�rr0 = x�wr0 = 0, then applying 2OPT with respect to T yields a newfactor. Set the new factor to be x�, and we are in the Case 2c.Case 3. d = 3. This case is handled by the same construction as was used in the proofof Lemma 4.2.The proof is complete.We are now able to prove that the matching condition of Theorem 4.4 is necessary.Proof of necessity in Theorem 4.4. Let vi 2 Hi\Tj and vl 2 Hl\Tp be a pair of nodessatisfying cvivl = 0. Since cx � c0 is not dominated by a non-negativity inequality, thereexists a c-tight factor x� such that x�vivl = 1. Moreover, since vivl 2 ~E, by Lemma 4.5,there exists a special factor ~x with ~xvivl = 1. This implies that no degenerate tooth canoccupy Hi or Hl, because if a handle H is occupied, then by Theorem 2.7, we have mustbe in case (a), have jfe 2 �(H) : ~xe > 0 < cegj = 2kh +2, which means that no edge of ~xhaving ce = 0 can be in �(H). Now we construct a matching M in G(c)nfHi;Hlg.We begin with M = ;. For every degenerate tooth Tj that occupies a handle H in~x, we put the corresponding edge (Tj;Hi) into M . As observed above, M remains amatching. If S = ;, we are done. So we just have to handle the two special cases.Case 1. nT = 0 and jVH j � 2 with 1 � n0 � 3: (So S = fv; v0g.)Let C0 be a subtour of ~x containing at least one isolated node. Since n0 � 3; ~x isspecial, and nT = 0, C0 must contain at least one node from some handle H. We havece = 0 for every edge e of C0 in �(H). It follows that H is not occupied by any toothmeeting three handles. (As above, by Theorem 2.7, such a handle H satis�es ce > 0for all e 2 �(H) for which ~xe > 0.) If H is the only handle having a node in C0, then23



~x uses two edges in �(Hi) for which ce = 0, but this would contradict Theorem 2.7,which implies that there can be at most one such edge. So C0 visits at least two handles.Suppose that, beginning from an isolated node u, and proceeding in both directions onC0, we let H1, H2, be the two handles �rst encountered. We add (v;H1) and (v0;H2) toM . To show that we still have a matching, we need to show that neither H1 nor H2 isoccupied by a tooth, or is one of Hi;Hl. Both follow from Theorem 2.7. The �rst oneis a consequence of the fact that occupied handles satisfy ce > 0 for all e 2 �(H) forwhich ~xe > 0. The second follows from the fact that the only edge e 2 �(Hi) for which~xe > 0 = ce, is vivl, and similarly for Hl. But the edge of C0 that �rst enters H1 (or H2)is incident to an isolated node, so it cannot be vivl. So M is the desired matching.Case 2. nT = 1 and jVH j � 2. (So S = fvg.)Let T1 = fv1; t1g be the pendent tooth and let H be the handle it meets. Let C0be the subtour of ~x meeting T1. Then C0 must contain edge t1v1 where t1 is a tip andv1 =2 T1. (We are using the fact that ~x saturates both T1 and H \ T1.) If we proceedalong C0 from t1 to v1 and beyond, we �nd an edge of e of C0 on which C0 �rst entersa handle H 0. (It cannot enter a tooth, because ~x is special, and T1 is the only pendenttooth.) We add (v;H 0) to M . (It is possible that H 0 = H.) To show that M remainsa matching, we must show that H 0 is not occupied by a tooth, and that H is di�erentfrom both Hi and Hl. The former is true because ce = 0 and an occupied handle cannotbe entered by such an edge of ~x. The latter follows from the fact that e enters H 0 froman isolated node or a tip, whereas the only edge e0 of ~x with ce0 = 0 entering Hi or Hl isvivl, which does not have this property.The following construction, called the C-construction, will be useful in the sequel.Let M be a matching of G(c) of cardinality jVT j. For each tooth Tj, construct a path Pjof length jTjj � 1 in Tj such that(i) If Tj intersects a handle Hi in two nodes r; s, then rs is an edge of Pj ;(ii) Pj enters and leaves a handle Hi if and only if HiTj 2M .Then for each handle Hi, there are 2ki +1 paths Pj visiting Hi, and at least 2ki of themhave an end in Hi. Choose 2ki such nodes and ki paths Qi` joining them in pairs, so thatevery node of Hi not in any Pj is in exactly one of these paths. De�ne the set C to be24



the union of the edge sets of all of the Pj and all of the Qi`. Note that G(V;C) has novertex of degree more than two, it has a node of degree one in each handle not coveredby M , and jC \ E(Hi)j = jHij � ki � 1 for each handle Hi. Also,c(C) = hXi=1(jHij � ki � 1) + tXj=1(jTjj � 1) + t+mXj=t+1 djdj � 1(jTjj � 1)= hXi=1(jHij � ki � 1) + t+mXj=1 dj + tXj=1(jTjj � dj � 1) + t+mXj=t+1 djdj � 1(jTjj � dj)= hXi=1 jHij+ hXi=1 ki + tXj=1(jTjj � dj � 1) + t+mXj=t+1 djdj � 1(jTjj � dj):This construction allows us to construct (many) special factors. In particular, ifG(c)nfHp;Hqg has a matching of cardinality jVT j, then G(V;C) will have a node ofdegree 1 in each of Hp;Hq. This allows us to add edges to C to form a special factor.Besides the exibility in the choice of p; q, there may be exibility in the choice of thepaths Pj , of the 2ki nodes in Hi for each i, and of the Qi`. We use this constructionrepeatedly to prove both Theorem 4.4 and Theorem 4.1.Proof of Theorem 4.4. We have already proved the necessity of the matching condition.For su�ciency, we need to show that for any edge uv, there exists a tight factor usinguv. For many choices of uv, this is easy.If uv 2 E(Hi) for some i, we �rst choose M so that Hi is not covered. Then it is easyto ensure that uv is an edge of some Pj or some Qi`.If uv 2 E(Tj) for some j, then it is easy to ensure that uv 2 Pj, with two exceptions.In the �rst exceptional case, dj = 2. Say that Tj = fu; v; wg, and Hi is the handlecontaining v. We choose M so that Hi is not covered. Then Pj will use uv. In the secondexceptional case, Tj = fu; v; wg, with w a tip, u 2 Hi and v 2 Hm. Then we choose Mso that Hi is not covered, and choose the Qi` so that u has degree one in G(V;C). Thenthe special factor resulting contains vw;wu and an edge us such that cus = 0. Replacingvw and us by uv and ws gives the required tight factor. (It is not special.)If cuv = 0 it is easy in most cases to construct C so that u; v both have degree oneor zero in G(V;C). We treat only the cases where it is not. One case is where u, say,is a node of some handle Hi but of no tooth. We choose M so that Hi is not covered,and construct C. Then u is incident with two edges su; ur of C and there is a w 2 Hi25



incident to just one edge of C. We replace su; ur in C by sr; wu. The other case is whereu, say, is a tip of a tooth Tj = fu; a; bg with a 2 Hi and b 2 Hm. We choose M so thatHm is not covered, and choose the Qi` so that b has degree one in G(V;C). Then wereplace ub by ab in C. Notice that we can apply these last techniques independently foreither of u or v, since we can choose M to miss any two handles.We are now ready to prove the main result of this section, Theorem 4.1. Since thenecessity of the conditions follows from Theorem 3.1, Lemma 3.4, and Theorem 4.4, weneed to prove su�ciency. We consider only the case where the number h of handlesde�ning cx � c0 is more than 1, for otherwise cx � c0 is an SE constraint or a combinequality, and hence the theorem holds by the well known polyhedral results for thetravelling salesman polytope P n. Since cx � c0 is not dominated by a non-negativityinequality, by Theorem 4.4, there exists a matching of cardinality jVT j missing any twohandles Hp;Hq. We will use these matchings and the C-construction to obtain tightfactors containing speci�c edges.Since there are at least two handles and no degenerate cut, there exist handles H andH 0 and a tooth T such that T = fr; w; r0g, T \H = frg, and T \H 0 = fr0g. Let T 0 be atooth di�erent from T that intersects H 0, and let s0 2 H 0\T 0. Note that T 0 may intersectH. Let T 00 be a tooth di�erent from T that intersects H. Figure 4 gives a picture of thesituation, but it is not completely general. Choose a node s 2 H \T 00. We de�ne B to be
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Figure 4: Proving su�ciency.frs0; r0s; ss0g [ fwv : v 2 V nfr; r0gg. Thus, B forms a basis and ce = 0 for all e 2 B. Let26



fx � f0 be a facet-inducing inequality that dominates cx � c0 with fe = 0 for all e 2 B.Let � = frr0. We successively derive all values of fe by comparing tight factors, that is,given tight factors x; x0, using the fact that 0 = cx � cx0 = fx � fx0 to derive valuesfor the fe. For a factor x, x4 (e1; : : : ; el; e01; : : : ; e0l) denotes the factor obtained from xby replacing edges e1; : : : ; el with e01; : : : ; e0l. (That is, we take the symmetric di�erenceof the factor x and the edge set fe1; : : : ; el; e01; : : : ; e0lg, but our notation makes explicitwhich edges are in and not in x.)Claim 4.6 fe = � for all e 2 E(T ).Proof: It is easy to arrange in the C-construction for C to contain rw and wr0 and forr and s0 to be incident with exactly one edge of C. Therefore, there is a tight factor xusing rw; wr0; and rs0. Comparing x with the tight factor x4 (rs0; wr0; rr0; ws0) givesfwr0 = �. Similarly, we have fwr = �, and frr0 = � by de�nition.Claim 4.7 fe = 0 for all e 2 �(T ) with ce = 0.Proof: For any node u such that cur = 0, it is easy to arrange in the C-constructionfor C to contain rw and wr0, and for u and r to be incident with at most one edge fromC. Thus there is a tight factor x using rw, wr0, and ur. Comparing x with the tightfactor x4 (ru;wr0; rr0; wu) gives fru = 0. Similarly, for each u such that cr0u = 0, wehave fr0u = 0. Finally, for every u such that cwu = 0, we have fwu = 0 by de�nition.Claim 4.8 If e 2 E(H) [ E(H 0) with ce = 1, then fe = �.Proof: As before, we can construct a tight factor x using ss0; rw;wr0. Notice that x0 =x4 (ss0; rw;ws0; rs) is also a factor, since by Theorem 2.7, x contains edges su 2 E(T 00)and s0u0 2 E(T 0), but neither ur nor s0r0. So, comparing x and x0 yields frs = �:Next, consider any pair of nodes u; v 2 H n frg. We can construct a tight factor xusing uv; rs0; rw;wr0. (The C-construction will automatically use the last two edges, andwe can arrange that uv is in some Qi`, and that r and s0 be incident to exactly one edge ofC.) Observe that x0 = x4 (uv;wr; rs0;ur; vr; ws0) and x00 = x4 (uv; rs0; wr0; vr;wu; r0s0)are also tight factors, and thus comparing x0 and x00 yields fur = fr0s0 . So we can derive27



that fr0s0 = fur = frs = � for all u 2 H n frg. Now comparing x and x0 gives fuv = �. Itfollows that fe = � for all e 2 E(H) with ce = 1. By symmetry, fe = � for all e 2 E(H 0)with ce = 1.Claim 4.9 If e 2 �(H) [ �(H 0) with ce = 0, then fe = 0.Proof: By Claim 4.7 and the symmetry between H and H 0, we need only considere = uv with v 2 H and fu; vg \ T = ;. Suppose that there exists a tight factor x thatuses uv; qr; rw;wr0 for some q 2 H, and moreover, uses edges qq0 and vv0, where q0; v0are distinct and di�erent from q; v; r. Then x4 (uv; qr; qv; ur) is also a tight factor, andby Claims 4.6, 4.7, and 4.8, comparing it with x shows fuv = 0. Now we explain how toconstruct x.If v is contained in some other tooth, then by Theorem 2.7, a tight factor x containinguv; rw;wr0 satis�es the desired property and such an x is easily constructed using theC-construction.If v is in no tooth, let x0 be a special factor containing uu0 for some u0 2 H \ T̂ forsome tooth T̂ and satisfying cuu0 = 0, where T̂ is another tooth meeting H. Then letv : : : vl be a path of all nodes in H that are not covered by any tooth (vl may be v itself),and the required x can be contructed from x0 by inserting v : : : vl between uu0 in x0 andremoving those nodes from other positions in x0.Now suppose that T 0 is intersected by another handle H 00, where fs00g = T 0 \H 00 and w0is a tip in T 0.Claim 4.10 There exists some scalar �0 such that fe = �0 for all e 2 E(T 0).Proof: Let �0 = fs0s00 . By the C-construction, we obtain a special factor x containingrs0; s0w0; w0s00. Comparing x with x4 (rs0; w0s00; rw0; s0s00) implies by Claim 4.7 fw0s00 =�0. Similarly, let x be a special factor containing r0s00; s0w0; w0s00; comparing x withx4 (r0s00; w0s0; r0w0; s0s00) implies fw0s0 = �0.Claim 4.11 fe = 0 for all e 2 �(T 0) with ce = 0.28



Proof: By Claims 4.6-4.9 we only need to consider edges e = uv with cuv = 0, v 2fw0; s00g and u 62 T [H [H 0. Let x be a special factor containing us0; s0w0; w0s00. UsingClaim 4.10, comparing x with x 4 (us0; w0s00;uw0; s0s00) yields fuw0 = fus0 = 0. Nowconsider us00. Since cus00 = 0, u =2 H 00. Let x0 be a special factor containing us00; s00w0; w0s0;comparing x0 with x0 4 (us00; w0s0;uw0; s0s00) shows fus00 = fuw0 = 0.Now, notice that fe's for e 2 E(T 0) [ �(T 0) are proportional to those for e 2 E(T ) [�(T ), and so we can apply Claim 4.8 with respect to T 0. It follows that � = �0. Sincecx � c0 has no degenerate cut, by repeated applications of Claims 4.7{4.11, we derivethat for any handle Ĥ and any nondegenerate nonpendent tooth T̂ ,fe = �; for all e 2 E(Ĥ) [ E(T̂ ) with ce = 1, andfe = 0, for all e 2 �(Ĥ) [ �(T̂ ) with ce = 0.The above properties of f are used implicitly in the sequel.Let ~T be any pendent tooth intersecting some handle ~H, and u 2 ~T nH 0.Claim 4.12 fe = �ce for all e 2 E( ~T ).Proof: We may assume without loss of generality that H 0 = ~H. Suppose fvg = ~T \H 0.Then let x be the special factor containing vr; rw;wr0 and r0v0. Clearly, if j ~T j = 2, xcontains uv. For j ~T j = 3, let q 2 ~T nH 0, and we may assume that this x contains qu, uv.Comparing x with x4 (vr; uv; r0v0;ur; r0v; vv0) implies fuv = �. If j ~T j = 3, by symmetry,we derive fqv = �. Then comparing x with x4 (vr; uq;ur; vq) yields fuq = �.Now suppose that fv; qg = ~T \ H 0. First, let x be a special factor containingrv; rw;wr0; vq; qu and r0v0 2 E(H 0). So comparing x with x4 (rv; qu; r0v0; ru; r0v; qv0)implies fuq = �. By symmetry fuv = �. Next, observe that there exists a special factorx0 containing r0u; rw;wr0; vq; qu, and x0 must contain vv0 for some v0 2 H 0. Comparingx0 with x04 (ur0; vq;uv; qr0) implies fvq = 2�.Claim 4.13 fe = 0 for e = uu0 with u0 in any pendent tooth di�erent from ~T .Proof: If u0 is contained in a handle, then fuu0 = 0 by previous derivations. So supposethat u0 is contained in no handle. If T̂ is the tooth containing u0, then there exists a specialfactor x0 containing u0v; u0u00; r0w;wr; v0r0, where u0u00 2 E(T̂ ), v 2 H 0\ ~T and v0 2 H 0. If29



x contains uu00, then comparing x with x4 (u0v; uu00;uu0; vu00) shows fuu0 = 0. Otherwisewe have two cases. First, if ~T \H 0 = fvg, then assume that x contains uv, and comparingx with x4 (u0v; uv; r0v0;uu0; vr0; vv0) gives fuu0 = 0. Second, if ~T \fv; qg, we may assumethat x contains vq; uq, and then comparing x with x4 (u0v; uq; r0v0;uu0; vr0; qv0) yieldsfuu0 = 0.Claim 4.14 For any degenerate tooth ~T , fe = �ce for all e 2 E( ~T ).Proof: First, suppose that ~T intersects two handles H1 and H2 with ui 2 Hi \ ~T ,i = 1; 2. Assume without loss of generality that H = H1 since each handle inter-sects a nondegenerate tooth that connects two handles. There exists a special factor xcontaining ru2; rw;wr0, and some edge u0v0 2 E(H2). For j ~T j = 2, comparing x withx4(ru2; u0v0; u1u2; ru1; u0u2; v0u2) yields fu1u2 = 2�: For j ~T j = 3, we may assume withoutloss of generality that fu2; qg = ~T \H2. The factor x then contains u2q; qu1. Comparingx and x 4 (ru2; qu1; u0v0; ru1; u0u2; v0q) implies fu1q = 2�. By symmetry, fu1u2 = 2�.Finally, let q0 2 H2 \ T̂ with T̂ 6= ~T , and x0 be a special factor containing u1q0. So x0contains u1q; qu2. Comparing x0 with x04 (u1q0; u2q;u1u2; qq0) yields fqu2 = 3�:Second, suppose that T intersects three handles, say H1;H2;H3, and let ri 2 Hi \ ~T ,i = 1; 2; 3. By the C-construction, there exists a special tight factor x containingv1r2; r2r3; r3r1; r1s1 where v1; s1 2 H1, and v1 and s1 are each contained in teeth. Further-more, there exist nodes v2; s2 2 H2 and v3; s3 2 H3 such that x contains v2s2 and v3s3.Since x is special, then x� = x4 (v1r2; r2r3; r3r1; v2s2; v3s3; v1r1; v2r2; r2s2; v3r3; r3s3) isa tight factor. Comparing x with x� implies fr1r3 + fr2r3 = 3�. By symmetry, we havefr1r2 + fr2r3 = fr2r1 + fr3r1 = 3�. It follows that fe = 32� for e 2 E( ~T ).Let V0 be the collection of all nodes not contained in any handle or tooth, and T0 bethe collection of all nodes contained in some pendent tooth but in no handle.Claim 4.15 fe = 0 for all e 2 E(V0) [ E(V0 : T0).Proof: Let x be a special factor containing rs0. (Recall r 2 H \ T , s0 2 H 0 \ T 0.) Forany uv 2 E(V0), if x contains uv, let x� = x. Otherwise let x� be obtained from x byapplying 2OPT with respect to S = fu; vg. So x� is a special factor containing rs0, uv.30



Now observe that either x� 4 (uv; rs0;ur; vs0) or x� 4 (uv; rs0;us0; vr) is a tight factor,and comparing the resulting factor with x� yields fuv = 0.Next, consider any u 2 V0 and v 2 T0. Assume that v is contained in pendent toothT̂ , and v0 2 T̂ \H 0. We distinguish the following two cases:Case 1. If T̂ is the only pendent tooth, let x be a special factor containing vr0; r0w;wrand vv0 with v0 2 H 0\ T̂ . Thus we may assume that x contains some uu0 with u0 in somehandle, and hence fuu0 = 0. Further, note that x4 (uu0; vr0; vv0; v0r0; uv; vu0) is a tightfactor, and so comparing it with x implies fuv = 0.Case 2. If there exists a pendent tooth T 00 di�erent from T̂ , let v00 2 T 00 \H 00. Let x bea special factor containing v0v00. Set x� = x if x contains uv. If not, let x contain vq withcvq = fvq = 0, and replace vq with some subpath containing u to obtain x� containinguv. Now comparing x� with x�4 (uv; v0v00;uv0; vv00) shows fuv = 0.Combining the above lemmas, we have fe = �ce for all e 2 E. It follows that cx � c0induces a facet.5 Another facetSince the problem of existence of a restricted factor is solvable in polynomial time whenk = 3, we may hope that the optimal restricted factor problem is solvable in this case.Hence, we may hope that one could �nd a complete description by linear inequalitiesfor P 3. A natural �rst candidate for such a description is the set of all degree, non-negativity, and 3-bipartition constraints. However, this list is not su�cient in general.Consider the inequality cx � c0 indicated in Figure 5, where numbers on edges arecoe�cients, missing edges have coe�cient zero and the right-hand side is 16. Let us �rstexplain where this inequality comes from. There is a 3-bipartition inequality dx � d0having the same support. It has three handles and four degenerate teeth, one of sizethree and the others of size two. This inequality has a degenerate cut, and so is notfacet-inducing, by Theorem 3.1. In fact, the proof of that result allows us to identifya comb inequality px � p0 inducing a facet that properly contains the face F of P 3(9)induced by dx � d0. Of course, there must be other inequalities inducing faces properlycontaining F . One of them can be obtained as follows. Consider the inequalityqx � q031



de�ned to be dx � �px � d0 � �p0, where � is chosen as large as possible so that it isvalid for P 3(9). Then qx � q0 is equivalent to the inequality of Figure 5.Proposition 5.1 The inequality cx � c0 of Figure 5 is facet-inducing for P 3(9), and isnot equivalent to any non-negativity or bipartition inequality.The proof of this result is elementary, but not particularly short or illuminating, so itis not included here. It is not at all clear to us what class of inequalities this one mightbelong to, so we have no conjecture as to a complete description for P 3(n).
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