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The present paper onentrates on the optimal 3-ut problem. From the above remarks,it follows that this problem is max-SNP-hard, and the approximation algorithm of [8℄ hasa performane guarantee of 43 . Later, C�alinesu, Karlo�, and Rabani [1, 2℄ gave an approxi-mation algorithm having a performane guarantee of 76 . We give a further improvement thatis based on their approah.Chopra and Rao [4℄ and Cunningham [5℄ investigated linear-programming relaxations ofthe 3-ut problem, showing results on lasses of faets and separation algorithms. Here arethe two simplest relaxations. (By a T-path we mean the edge-set of a path joining two ofthe terminals. By a wye we mean the edge-set of a tree having exatly three nodes of degreeone, eah of whih is a terminal. For a set A, a subset B of A, and a vetor z 2 RA, z(B)denotes Pj2B zj.) minimize Pe2E exe(LP1) subjet tox(P ) � 1; P a T -pathxe � 0; e 2 E:minimize Pe2E exe(LP2) subjet tox(P ) � 1; P a T -pathx(Y ) � 2; Y a wyexe � 0; e 2 E:It follows from some simple observations about shortest paths, and the equivalene of op-timization and separation, that both problems an be solved in polynomial time. It wasproved in [5℄ that the approximation algorithm of [7℄ delivers a 3-ut of value at most 43times the optimal value of (LP1). (In partiular, the minimum weight of a 3-ut is at most43 times the optimal value of (LP1).) It was onjetured that the minimum weight of a3-ut is at most 1615 times the optimal value of (LP2). The examples in Figure 1 (from [5℄)show that this onjeture, if true, is best possible. In both examples, the values of a feasiblesolution x of (LP2) are shown in the �gure. The weights e are all 2 for the example on theleft. For the one on the right they are 1 for the edges of the interior triangle, and 2 for theother edges. In both ases the minimum 3-ut value is 8, but the given feasible solution of(LP2) has value 7.5.
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Reently, C�alinesu, Karlo�, and Rabani [1, 2℄ gave a new linear-programming relax-ation. Although their approah applies to any number k of terminals, we ontinue to restritattention to the ase when k = 3. They need to assume that G be a omplete graph. (Ifany missing edges are added with weight zero, the resulting 3-ut problem is equivalent tothe given one, so this assumption is not limiting.) The relaxation is based on the followingobservations. First, every minimal 3-ut is of the form �(R1; R2; R3), where ti 2 Ri for alli. Here, where R is a family of disjoint subsets of V whose union is V , �(R) denotes theset of all edges of G joining nodes in di�erent members of the family. Sine  � 0, there isan optimal 3-ut of this form. Seond, the inidene vetor x of a minimal 3-ut is a kind ofdistane funtion, that is, it de�nes a funtion d(v;w) = xvw on pairs of nodes of G whih isnon-negative, symmetri, and satis�es the triangle inequality. Finally, with respet to d thedistane between any two terminals is 1, and the sum of the distanes from any node v tothe terminals is 2. The resulting linear-programming relaxation is:minimize Pe2E exe(LP3) subjet toxvw = 1; v; w 2 T; v 6= wPv2T xvw = 2; w 2 Vxuv + xvw � xuw � 0; u; v; w 2 Vxe � 0; e 2 E:This relaxation is at least as tight as (LP2). To see this, suppose that (after addingmissing edges to make G omplete), we have a feasible solution x to (LP3). Then for anypath P of G joining u to v, x(P ) � xuv, by applying the triangle inequality. It follows thatx(P ) � 1 for any T -path P . Moreover, any wye Y is the disjoint union of paths P1; P2; P3from some node v to the terminals. It follows that x(Y ) � Pw2T xvw = 2. Thus everyfeasible solution of (LP3) gives a feasible solution of (LP2) having the same objetive value.The �rst example of Figure 1 shows that the optimal value of (LP3) an be stritly greaterthan the optimal value of (LP2). On the other hand, the seond example shows that thereis no hope to prove in general that the minimum weight of a 3-ut is less than 1615 times theoptimal value of (LP3).It was proved in [1, 2℄ that the minimumweight of a 3-ut is at most 76 times the optimalvalue of (LP3). As a onsequene, an approximation algorithm for the optimal 3-ut problemhaving a performane guarantee of 76 was derived. (It is lear that (LP3) an be solved inpolynomial time, sine it is of polynomial size.) However, it was left open whether or not thisresult ould be strengthened; the seond example of Figure 1 shows an example for whihthe minimum weight of a 3-ut an be as large as 16/15 times the optimal value of (LP3),and this is the worst example given in [1, 2℄. (To see that x of that example does extend toa feasible solution of (LP3), we simply de�ne x on eah missing edge uv to be the minimumlength, with respet to lengths xe, of a path from u to v.)In this paper we show that the minimum weight of a 3-ut is at most 1211 times theoptimal value of (LP3), and we show that the onstant 1211 is best possible. As a onsquene,we give an approximation algorithm for the optimal 3-ut problem and prove that it has aperformane guarantee of 1211. These results were obtained independently by Karger, Klein,Stein, Thorup, and Young [10, 11℄. We also provide a more preise bound, whih depends3



on the value of the least ommon denominator of the omponents of an optimal solutionto (LP3).The main results above were desribed in the short paper of the last two authors [6℄. Theurrent paper ontains more detailed proofs. In addition, we answer one question that wasleft open in [6℄. Namely, we show that the performane guarantee of the algorithm is bestpossible; that is, no better guarantee holds for this algorithm.2 Triangle embeddingsC�alinesu, Karlo�, and Rabani [1, 2℄ onsidered an extremely useful geometri relaxation,whih they showed was equivalent to the linear-programming relaxation (LP3). Let 4denote the onvex hull of the three elementary vetors e1 = (1; 0; 0), e2 = (0; 1; 0), ande3 = (0; 0; 1) in R3. By a triangle embedding of G we mean a mapping y from V into 4 suhthat y(ti) = ei for i = 1; 2; 3. A triangle embedding y determines a vetor x 2 RE as follows.For eah edge uv, let xuv be one-half the L1 distane from y(u) to y(v). It is easy to see thatthis x is a feasible solution to (LP3). Conversely, a feasible solution x of (LP3) determinesa triangle embedding y as follows. For eah node v, let y(v) = (1� xt1v; 1 � xt2v; 1� xt3v).Given a triangle embedding y we an obtain x as above, and then use x to obtain atriangle embedding y0. It is easy to see that y = y0. It is not true, on the other hand,that every feasible solution of (LP3) arises in this way from a triangle-embedding. However,it is \almost true". The following result is impliit in [1, 2℄, and we inlude a proof forompleteness.Theorem 1 Let x be a feasible solution of (LP3), let y be the triangle embedding determinedby x and let x0 be the feasible solution of (LP3) determined by y. Then x0 � x, and if x isan optimal solution of (LP3), so is x0.Proof. First, observe that the seond statement is a onsequene of the �rst and thenon-negativity of . Now let uv 2 E. Both y(u) and y(v) have omponent-sum 1. Therefore,y(u)�y(v) has omponent-sum zero, and so one-half of the L1 distane between y(u) and y(v)is the sum of the non-negative omponents of y(u)� y(v). Hene we may assume, perhapsby interhanging u with v and relabelling the terminals, that one-half of the L1 distanebetween y(u) and y(v) is the sum of the �rst two omponents of y(u)� y(v). Therefore,x0uv = 12ky(u)� y(v)k1 = y1(u)� y1(v) + y2(u)� y2(v)= 1� xut1 � (1� xvt1) + 1 � xut2 � (1� xvt2)= xut3 � xvt3� xuv;as required. �The approximation algorithm of C�alinesu, Karlo�, and Rabani uses the following ideas.Suppose that (LP3) is solved, and an optimal solution x� that arises from a triangle em-bedding is found. For a number � between 0 and 1 that is di�erent from x�rv for ev-ery v 2 V and r 2 T , and an ordering r; s; t of T , de�ne Rr = fv 2 V : x�rv < �g,4



Rs = fv 2 V nRr : x�sv < �g, Rt = V n(Rr [ Rs). We all the 3-ut �(Rr; Rs; Rt) uniform(with respet to this x�). It is easy to see that there are O(n) uniform 3-uts. The algorithmof [1, 2℄ simply hooses the uniform 3-ut having minimum weight. It is proved to haveweight at most 76 times the minimum weight of a 3-ut.We onsider a slight generalization of the notion of uniform 3-ut. Let �;�0 be twonumbers hosen as � was above, and let r; s; t be an ordering of T . De�ne Rr = fv 2 V :x�rv < �g, Rs = fv 2 V nRr : x�sv < �0g, Rt = V n(Rr [ Rs). We all the 3-ut �(Rr; Rs; Rt)at (with respet to this x�). Clearly, every uniform 3-ut is at. It is easy to see that thereare O(n2) at 3-uts. Our approximation algorithm simply hooses the at 3-ut havingminimumweight. We will show that it has weight at most 1211 times the weight of an optimal3-ut. This result is based on a tight analysis of the bound for the optimal 3-ut problemgiven by (LP3).3 Linear programming againIt is easy to hek that if the optimal value of (LP3) is zero, then there is a 3-ut of weightzero. Therefore, we may assume that the optimal value is positive. De�ne� := infG; optimal value of (LP3)minimum weight of a 3-ut :So our problem may be restated as �nding the value of �. By multiplying  by an appropriatepositive number, we may assume that the minimum weight of a 3-ut is 1. It is now moreonvenient to determine the best lower bound on the value of (LP3).Assume that G is �xed, and that an optimal solution x� of (LP3) is also �xed. We mayassume that x� is rational, sine it is an optimal solution of a linear-programming problemhaving rational data. Therefore, there exists a positive integer q suh that qx� is integer-valued. By Theorem 1, we may assume that x� arises from a triangle-embedding y�, and it iseasy to see that qy� is integral, as well. Therefore, we an think of y� as embedding the nodesof G into a �nite subset 4q of 4, onsisting of those points y 2 4 for whih qy is integral.We de�ne the planar graph Gq = (4q; Eq) by uv 2 Eq if and only if the L1 distane betweenu and v is 2q . Figure 2 shows G9. (Note that the de�nition of the verties as points in R3and the edges as straight line segments joining their ends provides a natural embedding intothe plane de�ned by x1+x2+x3 = 1. We make use of this embedding whenever the ontextassumes Gq to be a plane graph.)For nodes u; v of Gq, we denote by dq(u; v) the least number of edges of a path in Gqfrom u to v. It is easy to see that dq(u; v) is equal to q2 times the L1 distane from u to v.Theorem 2 Let G;  be a 3-ut instane, let x� be a rational-valued optimal solution of(LP3), with orresponding triangle-embedding y�, and let q be a positive integer suh thatqx� is integral. Then there is a 3-ut instane on graph Ĝ with nodeset 4q and edge-weightŝ suh that:(a) x̂ de�ned by qx̂uv = dq(u; v) for all uv 2 E is a feasible solution of (LP3) (for Ĝ; ̂),and ̂x̂ � x�; 5



Figure 2: G9(b) The optimal 3-ut value for Ĝ; ̂ is at least that for G; ;() ̂e = 0 for all e =2 Eq;(d) For every at 3-ut of Ĝ with respet to x̂, there is a at 3-ut of G with respet to x�having no larger weight.Proof. We use the mapping y� from V to 4q, and we assume that x� arises from y�.Suppose that two nodes u; v of G are mapped to the same point of 4q by y�. Form G0 byidentifying u with v and, where multiple edges are formed, replaing the pair by a singleedge whose weight is their sum. Then every 3-ut of G0 determines a 3-ut of G having thesame weight, so the minimum weight of a 3-ut of G0 is at least the minimum weight of a3-ut of G. Moreover, x� also determines a triangle-embedding of G0, so there is a feasiblesolution of (LP3) for G0 having value x�. Finally, every at ut of G0 gives a at ut of G ofthe same weight. Thus the theorem is true for G if it is true for G0, and so we may assumethat y� is one-to-one.Now suppose that y� is not onto, that is, that there is an element z of 4q suh thaty�(v) 6= z for all v 2 V . We an form a graph G0 from G by adding a node v and an edge uvof weight zero for every u 2 V . It is easy to see that the minimum weight of a 3-ut of G0 isthe same as that of G. Also, if we map the new node to z, we get a triangle embedding of G0,and it orresponds to a feasible solution of (LP3) on G0 having value equal to x�. Finally,every at ut of G0 orresponds to a at ut of G of the same weight. So the theorem is truefor G if it is true for G0. It follows that we may assume that y� is onto. Therefore, we mayassume that V = 4q, and that y� is the identity mapping.Now suppose that there exists uv 2 EnEq, suh that uv = " > 0. Let P be the edge-setof a path in Gq from u to v suh that jP j = dq(u; v). Derease uv to zero, and inrease eby " for all e 2 P . We denote the new  by 0. Then, sine every 3-ut using e uses an edgefrom P , the minimum weight of a 3-ut with respet to 0 is not less than that with respetto . (Similarly, every at 3-ut has value with respet to 0 not less than that with respetto .) Now 0x� = x� � "dq(u; v) + "dq(u; v) = x�. This argument an be repeated as longas there is suh an edge uv. �6



(Remark: It an be shown that x̂ of Theorem 2 is an extreme point of the feasible regionof (LP3).)For eah positive integer q, let F (q) be the optimal value of the following linear-programmingproblem. minimize 1qPe2E e(Pq) subjet to(S) � 1; S a 3-ut of Gqe � 0; e 2 Eq:The dual problem is maximize P zS(Dq) subjet toPe2S zS � 1q ; e 2 EqzS � 0; S a 3-ut of Gq:Proposition 3 � = infq F (q).Proof. Let �0 denote infq F (q). It is easy to see from Theorem 2 that �0 is a lower boundfor �.Now, onsider an optimal solution � to (Pq) for some q. Clearly, the optimal weight ofa 3-ut in the weighted graph (Gq; �) is 1. However, x̂ as de�ned in Theorem 2 is a feasiblesolution to (LP3) for (Gq; �) with objetive value F (q). Thus, � � F (q). Sine q is arbitrary,it follows that � � �0. The result follows. �We used CPLEX to solve (Pq) and (Dq) for all values of q up to 50, and then were ableto �nd solutions for general q.Theorem 4 For q � 1,F (q) = 8><>: 1112 + 112(q+1); if q � 0 mod 31112 + 112q ; if q � 1 mod 31112 + 112q � 112q2 ; if q � 2 mod 3Moreover, there is an optimal solution of (Dq) for whih zS is positive only if S is a at3-ut.It is easy to see that Proposition 3 and Theorem 4 have the following onsequene.Theorem 5 For any 3-ut instane, the minimum weight of a 3-ut is at most 1211 times theoptimal value of (LP3), and the onstant 1211 is best possible. �Theorem 5 has been proved independently by Karger et al. [10℄, whose approah issomewhat di�erent, but also uses a linear-programming analysis of triangle-embedding.7



4 An improved approximation algorithmAlgorithm 3-CUT1. Find a rational-valued optimal solution x� of (LP3).2. Find the triangle embedding y� determined by x�.3. Return the at 3-ut of minimum weight.As pointed out before, the �rst step an be performed in polynomial time. The polynomial-time algorithms for linear programming an be modi�ed to return a rational-valued optimalsolution, and one of polynomial size. The seond is easy. So is the third step, using theobservation made earlier that there are only O(n2) at 3-uts of G.Theorem 6 Algorithm 3-CUT returns a 3-ut of weight at most 1F (q)x� where q is a om-mon denominator for the omponents of x�.Proof. We may assume that the optimal value of a 3-ut is 1. Consider an optimal solutionz� of (Dq) as given by Theorem 4. ThenXS 1F (q)z�S � 1;and z�S > 0 only if S is a at 3-ut of Gq. Obtain ̂ from Theorem 2. Then,min weight of a at 3-ut of (G; )� min weight of a at 3-ut of (Gq; ̂) by part (d) of Theorem 2� minz�S>0 ̂(S)� XS 1F (q)z�S ̂(S)= 1F (q)XS z�S ̂(S)= 1F (q) Xe2E(Gq) ̂eXe2S z�S� 1F (q) Xe2E(Gq) ̂ex̂e� 1F (q)Xe2E ex�e by part (a) of Theorem 2: �Corollary 7 Algorithm 3-CUT returns a 3-ut of weight at most 1211 times the minimumweight of a 3-ut.Proof. Sine 1F (q) < 1211 and the optimal value of (LP3) is at most the minimum weight ofa 3-ut, the result follows immediately from Theorem 6. �8



5 Proof of Theorem 4To prove Theorem 4, it is enough to give feasible solutions of (Pq) and of (Dq) having thelaimed ommon objetive value. We shall give the details only for the ase when q = 3mfor some integer q � 2. Note that this is suÆient to obtain Theorem 5 and Corollary 7,sine a ommon denominator for the omponents of x� an always be hosen to have thisproperty. (In fat, to prove Corollary 7 and all but the \best possible" part of Theorem 5,suh a solution of (Dq) is enough.) The remaining ases are similar and do not add muhmore insight to the problem. Complete details of the other ases an be found in [3℄.For a terminal t and an integer j, let Rt(j) denote the set fv 2 Vq : dq(t; v) < jg. If a faetriangle of Gq has the same orientation as 4, it is alled upright; otherwise, it is inverted.A solution to (Dq)First we show a feasible solution of (Dq) having objetive value 1112 + 112(3m+1). This requiresassigning dual variables to at 3-uts of Gq. We need some terminology.We use the term row in the following tehnial sense. A row is de�ned by a straightline through the entre of a fae triangle and parallel to one of its three sides. The terminalopposite to the row is the terminal separated by the straight line from the other two terminals.When we speak of the fae triangles in the row, we mean all of the fae triangles that areinterseted by the line. When we speak of the edges in the row, we mean all of the edgesthat are interseted by the line. The distane between the row and its opposite terminal isde�ned as the shortest graph distane from the terminal to a vertex of one of the trianglesin the row. Some of the above de�nitions are illustrated on the left in Figure 3.
����

��������������������

r s

t

distance 5 from its
opposite terminal

A row having

t Figure 3: Illustrations for tehnial de�nitionsWe assign positive dual variables to two kinds of at 3-uts. The values assigned to the�rst type of 3-ut are determined by a weighting of the fae triangles of Gq. Atually, weassign weights only to upright fae triangles. Figure 4 shows weightings of the fae trianglesfor G6 and G9. (The weight of any fae triangle ontaining no number is understood to bezero.) 9
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A weighting for the general ase an be de�ned indutively. Think of G3m as onsistingof the rows at distane 3m � 1 from the terminals together with G3(m�1) (see Figure 5)and use the fae weighting for G3(m�1) with the following hanges. In eah row at distanem � 1 from its opposite terminal, eah upright triangle is assigned weight m. In eah rowat distane 3m � 1 from its opposite terminal, eah upright triangle between the two onesassigned weight m above, is assigned weight 3m� 1. Finally, eah upright triangle in a rowat distane m from its opposite terminal, whih was assigned weight m � 1 in G3(m�1), isassigned weight 3m � 2. Clearly, the sum of the weights of the fae triangles in eah rowof distane exatly m� 1 from its opposite terminal is m2. It is an easy indution to showthat the sum of the weights of the fae triangles in eah row of distane at least m from itsopposite terminal is m(3m+ 1).Given an upright fae triangle, onsider the set of all edges in the three rows ontainingthe triangle. Choose two at 3-uts of Gq whose union is this set, and whose intersetionis the set of edges of the fae triangle. (There is more than one way to do this. See theillustration on the right in Figure 3.) For eah of these two 3-uts, assign a z-value equal tothe weight of the fae triangle divided by B, where B = 6m2(3m+ 1).Let Ie denote the onstraint of (Dq) orresponding to an edge e. The ontribution to theleft-hand side of Ie by the variables whose values we have just assigned is the sum of theweights of the fae triangles in the two rows ontaining e divided by B. We now onsiderthree types of edges e:(a) Those for whih the two rows ontaining e are at distane at least m from their re-spetive opposite terminals, in whih ase this sum is twie m(3m+ 1)=B = 13m ;(b) Those for whih one of the rows ontaining e is at distane less than m � 1 from theopposite terminal (so the other is at distane at least m+1 from its opposite terminal),in whih ase this sum is m(3m+ 1)=B = 16m ;() Those for whih one of the rows ontaining e is at distane exatly m � 1 from theopposite terminal (so the other is at distane at least m+1 from its opposite terminal),in whih ase this sum is m(3m+ 1)=B +m2=B.Note that for edges of type (a) above, the dual variables already de�ned satisfy Iewith equality. We now assign positive z-values to some uniform 3-uts, whih will on-tribute to Ie only for edges e of types (b) and (). For eah uniform 3-ut S of theform �(Rr(j); Rs(j); V n(Rr(j) [ Rs(j))) where r and s are two distint terminals and j 2f1; 2; :::;m� 1g, we set zS = 112m. These ontribute to Ie only for edges of type (b), and it iseasy to see that those inequalities are now satis�ed with equality. Finally, for eah uniform3-ut S of the form �(Rr(m); Rs(m); V n(Rr(m) [ Rs(m))) where r and s are two distintterminals, we set zS = 2m+112m(3m+1). Note that these variables ontribute to Ie only for edges eof type (), and it is easy to hek that those inequalities are now satis�ed with equality.Hene we have de�ned a feasible solution to (Dq). It remains to ompute its objetivevalue. There are 3(m � 1) variables orresponding to uniform 3-uts with value 112m andthree variables orresponding to uniform 3-uts with value 2m+112m(3m+1). The ontribution ofthe other variables is two times the sum of the weights of the fae triangles divided by B.11



Therefore the objetive value is3(m� 1)12m + 3(2m+ 1)12m(3m + 1) + 2(m2 + 2m2(3m+ 1))B = 1112 + 112(3m + 1) ;as required.A solution to (Pq)We desribe a feasible solution  of (Pq) having objetive value 1112 + 112(3m+1). The solutionis given in terms of the integral vetor 0 = 4(3m+1) 2 REq . Figure 6 (ignoring the dottededges) shows G6. The numbers beside the edges are the values of 0, exept that values equalto 1 are omitted.
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Figure 6: G6 and (G06; 0)Here is the general onstrution. (The onstrution desribed in [6℄ ontained an error.)Divide G3m into three orner triangles of side m together with the middle hexagon. An edge12



in a orner triangle is alled a peel edge if it is parallel to some edge on the boundary ofG3m and of distane 1 from it. The orner subtriangle in a orner triangle is the trianglebounded by the peel edges and the boundary edges of the middle hexagon. (Note that whenm = 2, the orner subtriangle is a single point.) In eah orner triangle, the vertex on theorner subtriangle losest to the terminal is alled an apex. Put 0e = 3m + 1 for all edgesinident with the terminals. Put 0e = 2m + 2 for all other edges on the boundary of G3m.Put 0e = m � 1 for eah peel edge inident with an apex and a vertex on the boundary ofG3m. In eah orner subtriangle, put 0e = m� i� 1 if e is a peel edge of distane i from theapex and put 0e = 1 for all other edges parallel to a peel edge. Put 0e = 1 for all other edgesin the middle hexagon (inluding its boundary). Put 0e = 0 for all other edges. Figure 7(ignoring the values in italis) illustrates the de�nition of 0. The key result is the following.Lemma 8 The minimum weight of a 3-ut with respet to 0 is 4(3m+ 1).It follows that  is a feasible solution to (Pq). Its objetive value is the total 0-weight ofall edges, divided by 4(3m + 1)(3m). There are 6 edges e having 0e = 3m + 1, 3(3m � 2)edges e having 0e = 2m+2, 6 edges e having 0e = m� 1, 6 edges e having 0e = m� i� 1 fori = 0; :::;m� 3, and 3(m � 2)(m � 3) + 9m2 edges having 0e = 1, from whih we omputethe total 0-weight to be 33m2+12m. It follows that the objetive value of  is 1112 + 112(3m+1),as required.The ideas for the proof of Lemma 8 ome, essentially, from the result of Dahlhaus, etal. [7℄, showing that there is a polynomial-time algorithm to solve the optimal multiterminalut problem when G is planar and the number of terminals is �xed. Any minimal 3-ut ofGq has the form �(R1; R2; R3). There are two kinds of suh 3-uts, orresponding to thease in whih there is a pair i; j for whih there is no edge joining a node in Ri to a node inRj, and the other one where this is not true. We all these Type I uts and Type II uts,respetively.From (Gq; 0), de�ne a 3-terminal Steiner Tree Problem instane (G0q; 0) as follows: Wetake the planar dual of (Gq; 0) and split O, the vertex that orresponds to the outside fae,into three verties s1; s2; s3, whih we all the terminals of G0q. We also split the edgesinident with O as follows: an edge e is inident with si if e rosses an edge of Gq oppositeterminal ti. G06 is shown in Figure 6.Observe that a Type I ut orresponds to a Steiner tree of (G0q; 0) with no degree-3vertex. It is easy to see that, in order to show that suh a Steiner tree has weight at least4(3m+ 1), it suÆes to show the following.Proposition 9 The weight of a path in (G0q; 0) joining two distint terminals is at least2(3m+ 1).Now, observe that a Type II ut orresponds to a Steiner tree of (G0q; 0) with a degree-3vertex in V (G0q)nfs1; s2; s3g. For eah v 2 V (G0q)nfs1; s2; s3g, let li(v) denote the length,with respet to 0, of a shortest path from v to si in (G0q; 0) for eah i 2 f1; 2; 3g. To showthat suh a Steiner tree has weight at least 4(3m + 1), it suÆes to show the following.Proposition 10 For eah v 2 V (G0q)nfs1; s2; s3g, P3i=1 li(v) � 4(3m+ 1).13



2

2

3

3

2

3

1

1

1

1

1

1 1

1 1

1

1

1

111

1

1 1

1 1 1

1

3m+1

m−1

m−2

1

m−1

1

t1

2m+2 2m+22m+2

3m+1 3m

4m

3m+1

m−1

m−1 m−2

2m+2

2m+2

3m+1

3m+1

m−1

m−1

m−2

2m+4

2m+3

2m+5

m−2

m−1

m−1

1

1

1 2m+5
2m+4

2m+3

2m+4

3m+2 3m+1

4m−3

4m−2

2m+6

4m−4

2m+6

2m+5Figure 7: Gq for q = 3m14



Hene, Lemma 8 follows from Propositions 9 and 10.Before we prove Propositions 9 and 10, we need some further notation and tehnialresults. Let v 2 V (G0q)nfs1; s2; s3g. Let f(v) denote the fae-triangle to whih v orresponds.There is a natural oordinate system for the elements of V (G0q)nfs1; s2; s3g. For eah v 2V (G0q)nfs1; s2; s3g, de�ne pv 2 R3 as follows: For eah i 2 f1; 2; 3g, pvi is the smallest numberthat is the (graph) distane in Gq between a vertex of f(v) and a vertex on the side of 4opposite terminal ti. For example, in Figure 6, we have pu = (4; 0; 1) and pv = (1; 2; 1). Thefollowing is immediate.Lemma 11 Let v 2 V (G0q)nfs1; s2; s3g. If f(v) is upright, then pv1 + pv2 + pv3 = 3m � 1. Iff(v) is inverted, then pv1 + pv2 + pv3 = 3m � 2.For eah i 2 f1; 2; 3g, we are going to de�ne �i 2 Rfsig[(V (G0q)nfs1;s2;s3g) with �isi = 0 suhthat �i gives a feasible potential for the shortest-path problem from si to all the non-terminalverties of G0q. (This will ertify the optimality of shortest paths.) We onsider two ases.Case 1: f(v) is in the middle hexagon. If f(v) is upright, then set �iv = 2m + 2 + 2pvi ;otherwise, set �iv = 2m + 2 + 2pvi + 1.Case 2: f(v) is in a orner triangle. If pvi � 2m, then set �iv = 6m + 2. If pvi < 2m, thennote that 0 � pvi � m� 1 and there exist j; k suh that fi; j; kg = f1; 2; 3g with pvj � m� 1and pvk � m.Suppose pvi = 0. If pvj = 0, then set �iv = 3m+ 1; otherwise, set �iv = 2m+ 2.Suppose pvi � 1. If pvj = 0, then set �iv = 4m; otherwise, set �iv = 3m+ 1 + pvi � pvj .Figure 7 illustrates some of the entries of �1 in italis. From the piture, it is obviousthat �iu + 0uw � �iw for all uw 2 E(G0q � (fs1; s2; s3gnfsig)). Hene, we have the next twolemmas. The �rst is immediate.Lemma 12 For eah i 2 f1; 2; 3g, li(v) � �iv for all v in V (G0q)nfs1; s2; s3g.Lemma 13 Let i; j 2 f1; 2; 3g be distint. The weight of the shortest path between si and sjis at least the minimum value of �iv + �jv over all v suh that pvi = 0.Proof. This follows from the previous lemma and that pvi = 0 for every neighbour v of si.�Proof of Proposition 9.By symmetry, we may assume that the terminals are s1 and s2. By Lemma 13, it suÆesto show that for every v 2 V (G0q)nfs1; s2; s3g suh that p1v = 0, we have �1v+�2v � 2(3m+1).From the de�nition of �1 and �2, we see that if p2v = 0, then �1v = �2v = 3m + 1, giving�1v+�2v � 2(3m+1); otherwise, �1v � 2m+2 and �2v � 4m, again giving �1v+�2v � 2(3m+1).�Proof of Proposition 10.We onsider two ases.Case 1: f(v) is in the middle hexagon. 15



By Lemma 12, it suÆes to show that 3Xi=1 �iv � 4(3m + 1). Suppose f(v) is upright.Then �iv = 2m+ 2 + 2pvi for i = 1; 2; 3. By Lemma 11,3Xi=1 �iv = 3Xi=1 (2m+ 2 + 2pvi ) = 6m+ 6 + 2(3m � 1) = 4(3m + 1):Now, suppose f(v) is inverted. Then �iv = 2m + 2 + 2pvi + 1 for i = 1; 2; 3. By Lemma 11,3Xi=1 �iv = 3Xi=1 (2m+ 2 + 2pvi + 1) = 6m+ 9 + 2(3m � 2) = 4(3m + 1) + 1 > 4(3m + 1)as desired.Case 2: f(v) is in a orner triangle.By symmetry, we may assume that pv1 � 2m. Hene, �1v = 6m+2 by onstrution. Now,it follows from Proposition 9 that l2v+l3v � 2(3m+1). Therefore, 3Xi=1 liv � 6m+2+2(3m+1) =4(3m+ 1): �6 Bad Examples for Algorithm 3-CUTSine the onstant 1211 is best possible in Theorem 5, it is natural to ask if it is best possible inCorollary 7. The two issues are di�erent. By Theorem 6, the weight of the at 3-ut deliveredby Algorithm 3-CUT is at most 1=F (q) times the optimal value of (LP3). It follows that,if that value is lose to F (q) times the weight of an optimal 3-ut, then Algorithm 3-CUTwill deliver a 3-ut that has weight lose to the weight of an optimal 3-ut. Therefore, badexamples for Theorem 5 do not diretly provide bad examples for Corollary 7. However,suh examples do exist.Theorem 14 For eah q � 0 (mod 6), there exist a weighted graph (Hq; ) and an embeddingof Hq determining an optimal solution for (LP3), suh that Algorithm 3-CUT delivers a at3-ut (with respet to the embedding) having weight 12(q+1)11q+12 times the weight of some 3-ut.Here is the lass of graphs that we will use to prove Theorem 14. Let q = 6m where m isa positive integer. Construt the weighted graph (Hq; ) as follows. Take (Gq; 0). For eahoutside edge e on the line joining t2 and t3, redue the weight on e by 2m + 2. Let ~v bethe vertex at the midpoint between t2 and t3. Let ~u and ~w be the two neighbours of ~v thatlie on the line joining t2 and t3 with ~u loser to t2. Remove the edges ~u~v and ~v ~w. Add theedge ~u ~w with weight 2m and the edges t2~v and t3~v, eah with weight 2m+2. The resultingweighted graph (Hq; ) is depited in Figure 8.Before proving Theorem 14, we briey desribe the origin of the above onstrution.When seeking bad examples, there are two main issues to onsider. First, we need to identifyweighted graphs suh that the ratio of the weight of the best at 3-ut with respet to some16
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embedding of the graph into 4 and the weight of the optimal 3-ut is lose to 1211. Seond,given suh a weighted graph, we need to make sure the embedding does yield an optimalsolution to (LP3). It is not lear how to resolve both issues at the same time. What followsis an outline of our approah.We foused on graphs that have vertex-set4q for small values of q. (That is, we assumedthat the graphs were already embedded into 4.) Initially, the graphs were assumed to beomplete. We did the following for eah graph G we hose. For eah (non-at) 3-ut C in G,we generated a linear-programming problem. For eah edge, there is a variable representingits unknown weight. For eah at 3-ut, we have a onstraint that ensures that it has weightat least 1. The objetive funtion is to minimize the weight of the 3-ut C.We went through all the 3-uts of G and identi�ed andidates that gave the best pos-sible ratio. We then went through the proess one again for these andidates, eah timegradually reduing the number of edges that are not in Eq. We then experimented with theweight vetor to see if the embedding we started with atually gave an optimal solution tothe linear-programming problem with the given weight vetor. A pattern gradually emergedand it allowed us to guess whih graphs to onsider for higher values of q. After performingthe omputations on the andidates for higher values of q, we formulated a onjeture onwhat would be an in�nite family of bad examples for q � 0 (mod 6). Finally, we proved theonjeture using analytial methods.Proof of Theorem 14.Sine V (Hq) = 4q, the 3-tuples of the verties give an embedding of Hq into 4. Notethat a at 3-ut in this embedding has the same weight as the orresponding at 3-ut in(Gq; 0). By Lemma 8, every 3-ut in (Gq; 0) has weight at least 4(q + 1). Thus every at3-ut in (Hq; ) has weight at least 4(q + 1).Now, the 3-ut �(ft3g; ft2; ~vg; V (Hq)nft2; t3; ~vg):has weight (6m+ 1) + (4m� 1) + 2 + (2m+ 2) + (4m� 1) + (6m+ 1) = 22m+ 4 = 11q+123 .Thus the ratio of the value of an optimal at 3-ut in the embedding of Hq to the value ofthis 3-ut is 4(q + 1)=((11q + 12)=3) = 12(q + 1)=(11q + 12). As q approahes in�nity, theratio approahes 1211 . Hene, it remains to show that the embedding given by the 3-tuples ofthe verties of Hq determines an optimal solution to (LP3).By Theorem 1, it suÆes to show that the embedding is optimal formin Xuv2E(Hq) 12uvkxu � xvk1subjet toxu 2 4; u 2 V (Hq)nft1; t2; t3gxti = ei; i = 1; 2; 3:Observe that the objetive value given by the embedding is 22m + 4. (This an also beseen using the alulation in the paragraph following Lemma 8.) We show that 22m+4 is theoptimal value using linear-programming duality. Sine  � 0, writing xu as (xu; yu; zu)T , wean rewrite the above minimization problem as the following linear-programming problem.This problem was introdued by Calinesu et al. [1, 2℄.18



(SLP ) min Xuv2E(Hq) 12uv(Xuv + Yuv + Zuv)subjet toXuv � xu + xv � 0; uv 2 E(Hq)Xuv � xv + xu � 0; uv 2 E(Hq)Yuv � yu + yv � 0; uv 2 E(Hq)Yuv � yv + yu � 0; uv 2 E(Hq)Zuv � zu + zv � 0; uv 2 E(Hq)Zuv � zv + zu � 0; uv 2 E(Hq)xu + yu + zu = 1; u 2 V (Hq)nft1; t2; t3gxt1 = 1; yt1 = 0; zt1 = 0xt2 = 0; yt2 = 1; zt2 = 0xt3 = 0; yt3 = 0; zt3 = 1x; y; z � 0:Notie that, while there is one variable Xuv for eah edge uv 2 E(Hq)|that is, Xuv isthe same as Xvu|there is a onstraint Xuv � xu + xv � 0 for eah ordered pair (u; v) suhthat uv 2 E(Hq). A similar observation holds for Y and Z. Therefore, it is onvenient tointrodue the digraph H 0q obtained from Hq by replaing eah edge by a pair of oppositelydireted edges. Now, we write the dual of (SLP ). We make use of the notation fz(u)to denote the \net outow" from vertex u in H 0q, with respet to z 2 RE(H 0q), namely,fz(u) =Pw:uw2E(H 0q) zuw �Pw:uw2E(H 0q) zwu.(DSLP ) max Æt1 + "t2 + �t3 +Pu2V (Hq)nft1;t2;t3g �usubjet to�uv + �vu = uv2 ; uv 2 E(Hq)�uv + �vu = uv2 ; uv 2 E(Hq)uv + vu = uv2 ; uv 2 E(Hq)�u � f�(u); u 2 V (Hq)nft1; t2; t3g�u � f�(u); u 2 V (Hq)nft1; t2; t3g�u � f(u); u 2 V (Hq)nft1; t2; t3gÆti � f�(ti); i = 1; 2; 3"ti � f�(ti); i = 1; 2; 3�ti � f(ti); i = 1; 2; 3�; �;  � 0:We now give a feasible solution to (DSLP ) having objetive value 22m+ 4. We do thisin two steps. First, we �x the values of the omponents of �; Æ; "; � as follows. Let Let Udenote the set of points 1q (x; y:z) of 4q suh thatx = q3 and y = 0 or z = 0, orx = 4m� 2i, and y = i or z = i for some i 2 f0; :::; 2m� 1g; i 6= m, orx = 4m� 2i+ 1, and y = i or z = i for some i 2 f1; :::;mg, orx = 4m� 2i+ 1, and y = i� 1 or z = i� 1 for some i 2 fm+ 1; :::; 2mg.19



The irled verties in Figure 8 are the verties in U . Set�~v = 1;�u = 1=2 for all u 2 U;Æt1 = "t2 = �t3 = 6m+ 1;Æt2 = Æt3 = "t1 = "t3 = �t1 = �t2 = �6m� 1:Set all the other omponents of �; Æ; "; � to zero. Note that jU j = 2+2(2m�1)+2(2m) = 8m.The resulting objetive value isÆt1 + "t2 + �t3 +Xu2W �u = 3(6m+ 1) + 8m(1=2) + 1 = 22m+ 4:Hene, to omplete the proof, it is suÆient to to �nd �; �;  suh that all the onstraintsin (DSLP ) are satis�ed.If we ignore the equality onstraints for the moment, the problem redues to three sepa-rate feasible ow problems on H 0q. One has � as ow values and � and Æ as demands, anotherhas � as ow values and � and " as demands, and the last has  as ow values and � and� as demands. In eah of these problems, we seek ows suh that the net out-ow at everyvertex is at least the demand at the vertex.These ow problems an be simpli�ed further, as follows. Consider �, for example. Inview of the onstraint �uv + �vu = uv2 , to speify these two values, it is enough to speifytheir di�erene �̂uv = �uv � �vu, the \net ow" in diretion (u; v). Moreover, we an hoosean orientation (u; v) or (v; u) so that this di�erene is non-negative. Then the requirementon these netows is, again, that the net ow out of eah vertex be at least its demand, andthat, if edge uv is oriented from u to v, then its net ow be non-negative and at most uv2 .We desribe values for � and �, omitting those for , sine it is symmetrial to �. It isstraightforward to hek that they have the required properties.Values for �. This solution is indiated in Figure 9, where we show the orientations andnet ow values �̂. The verties in U have demand 12 and are irled. Any other vertex havingnonzero demand has the demand adjaent to the vertex. Note that a number of edges haveuv = 0 and are omitted from the �gure.Reall that ~v is the vertex on the midpoint of the line joining t2 and t3. Let ~u denotethe neighbour of ~v on the line between ~v and t2 and ~w denote the neighbour of ~v on the linebetween ~v and t3. Set �̂~u ~w = 0. For eah i 2 f2; 3g, set �̂~vti = ~vti=2. For any edge (u; v) ofH 0q that is parallel to one of the (oriented) line segments from t1 to t2 or t3, set �̂uv = uv2 .It remains to onsider the \horizontal" edges. First, suppose uv lies on the segmentbetween ~u and t2 or on the segment between ~w and t3. Assuming that (u; v) points towardthe terminal, set �̂uv = i, where i is the graph distane between v and ~v in Gq. Now supposethat uv lies on the horizontal line ontaining two verties w1; w2 2 U . If uv is on the segmentbetween w1 and w2, then set �̂uv = 0. Otherwise, if (u; v) points away from this segment, set�̂uv = uv2 . The only remaining possibility for a horizontal edge uv ours when the distanefrom t1 to u is less than 2m, in whih ase uv = 0, so �̂uv = 0. Note that the demandonstraints for � are atually satis�ed with equality at all verties exept ~v.Values for �. The solution we are about to desribe is indiated in Figure 10, whih showsthe net ows �̂ and the demands, as in Figure 9. Set �̂~u ~w = ~u ~w2 . Set �̂t2~v = �̂~vt3 = m + 1.20
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For eah edge (u; v) that is parallel to the (oriented) line segment from t2 to t1 or t3, set�̂uv = uv2 .
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