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COMPLEX BASES AND FRACTAL SIMILARITY*
Wiliam J. Gibert

Résumé

Les représentations des nombres complexes de base complexe produisent plu-
sieurs examples d'ensembles fractals, tel la courbe jumelle du dragon. Ces ensem-
bles comprennent les nombres complexes dont la partie entidre est Bgale i zéro dans
une base donnée. Les frontidres de ces ensembles consistent en des nombres comple-
xes ayant deux expansions Qifférentes dans la base donnée. Les ensembles eux-mémes
possddent une homoth&tie interne, mais non leur frontidre; cependant les frontiéres
possddent la propri&té d'8tre partiellement semblables & ¢lles-mBmes. Le concept
d'autosimilitude partielle est défini en termes généraux et plusieurs exemples sont
donnés. On peut mieux formuler cette autosimilitude partielle au meyen d'un graphe
orienté. Nous montrons comeent construire certains de ces graphes i partir de ba-
ses complexes. On peut obtenir, grice # 1'ordinateur, des approximations des fron-
tigres des ensembles d&rivés 3 partir de ces base en utilisant des chemins dans le
graphe correspondant. La matrice de transition du graphe permet de calculef 1a di-

mension d'homothétie de la frontigre,
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Introduction

Radix representations of complex numbers, using complex bases, yield many
examples of fractal sets, such as the space-filling twin dragon. These sets consist
of the complex numbers with zero integer part in a given base. The boundaries of
these sets consist of complex numbers having two different radix expansions in the
given base. The sets themselves are strictly seif-similar, but their boundaries
are not; however the boundaries have a kind of partial self-similarity. The concept
of partial self-similarity is defined in general, and various examples are given.
This partial self-similarity can best be expressed in terms of a directed graph. It
is shown how to constyuct some of these directed graphs from complex bases. Appro-
ximations to the boundary of the sets derived from complex bases can easily be drawn
by a computer, using paths in the corresponding directed graph. The similarity di-
mension of the boundary can be calculated from the transition matrix of the directed

graph.

1, Complex bases

The complex number z is said to be nepresented in the base b using the

digit set T if

N r

z = X arb where a 7.

=t
This is denoted, in radix notation, by z = (aN...alaO-a_la_z...)b. The number
(aN...alaa)b is called the .integer port of the representation. The set D is cal-
led a feasible digif set for the Gaussian integer base b, if every complex number

can be represented in the base b wusing the digit set 0, and if every Gaussian

integer has a unique representation using only the integer part.

For example, {0,1} is a feasible digit set for the base -1+i and so
provides a binary representation of all the complex mumbers. In this representa-
tion -4-i = (10111)—1+i and (-7+41i)/5 = (IOOI'BIj—1+i’ where the digits under the

bar are to be repeated indefinitely. The base -3+i gives a decimal representation
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of all the complex numbers using the usual digit set {0,1,2,...,9}. These are
examples where the digits are natural numbers. The only bases for which there exist
feasible digit sets of natural numbers are of the form -nti, for positive n.

{See [9] and also [51.}

There are also many more examples when the digits are allowed to be complex.
Some criteria for such digit sets are given in [1]. The digit set must be a com-
plete residue system modulo the base, and the number of digits must be the square
of the modulus of the base. For example, P = {0,#1,*i} is a feasible digit set

for the base 2+1.

For any base b with feasible digit set T, consider the set § of com-
plex numbers, whose integer part is zero. This set often has a fractal boundary.
For example, the set derived from the binary representation using base -1+i is the
space~filling twin dragon curve {see [5]1}). However, with the base 3 and digit set
{0,%1,+i,+1+i}, the set S, of numbers with zero integer part, is just the unit

square centred at the origin.

In general, this set S, of mumbers with zero integer part in the base b,
is a closed set of unit area in the complex plane. The set consisting of the com-
plex numbers with integer part Q in the base b is a translate of S by the
Gaussian integer (. Since every complex number is representable, the translates
of S by the Gaussian integers tile the whole of the complex plare (see [5; Figure
7]13. Points on the boundary 88 of S are complex numbers that have two represen-
tations, with different integer parts in the given base, one integer part being zero
[6]. For exaﬁple, we shall see that (2+1)/10 has the two representations
(0.00001) ;,; and (1.13010) ,,; and so lies on the boundary 3S for the base

=141,

2. Partial self-similarity

The set S, of complex numbers with zero integer part, is seif-similar be-

cause it is the union of m similar copies of itself, where m = Norm(b) = #0. The



68 Compfex bases and fractal simifarity
m similitudes are given by fa(z) = (z+a)/b, for a e P.

However the boundary 95 is not self-similar but does have a certain kind
of similarity. For example, the boundaries considered in [7] can be buiit up from

three parts, each of which is 2 union of various contracted copies of these parts.

We call a subset K of R" partially self-similfar if there are sets

Kl""’Kt such that

and, for each Ki, there are contraction maps ¢ijk (for i=1,...,t; j =1,...,t;

k=1,...,w(i,j) with w(i,j) » 0) such that

K. = U ¢, K..
i 3,k ijk™3

This definition of partial self-similarity is related to the recurrent sets of

Dekking [2], the partially self-similar curves of Dubuc [4] and the transfer matrix

of the fractal of Mandelbrot, Gefen, Aharony and Peyridre [10].

This partial self-similarity can be represented by means of a directed
graph, such as that shown in Figure 1. The nodes of the graph correspond to the
sets Kl""’Kt' Each Ky is a union of contracted copies of the Kj's and there
is one directed edge from K, to Kj for each contraction map wijk' Note that

the contraction wijk maps Kj to K, but that the arrow goes from the node Ki

‘/'—~:)¢%n-‘pqu'

¥, ‘pIZI‘leS’“.
FILRA

O/~ O

to the node Kj'

'922] L

©-©

Figure 1. The directed graph for a partial self-similarity.
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If the directed graph has only one node then the set is strictly self-

similar.

Suppose that each contractioﬁ map wijk’ in a partial self-similarity, is
a similitude with ratio Tk Suppose also that the set of similitudes satisfies
an open set condition, such as in [8] and [11], sc¢ that the subsets Ki do not
overlap too much. Then, as in [3; p. 91, a similarity argument shows that the simi-
larity dimension of the set K is the largest value of x such that the t x t

matrix, whose (i,j)th element is Z rijk’ has 1 as an eigenvalue.
k

If all the similitudes have the same ratio, so that rijk = r for all
i, 5 and k, then this similarity dimension is log A/log(1l/r}, where A is the
dominant eigenvalue of the matrix whese (i,j)th element is Nij’ the number of
edges from the node Ki to the node Kj. This matrix {Nij) is the transition
matrix of the directed graph and is called the transfer matrix of the fractal in

riol.

Hutchinson [8] shows that a closed and bounded self-similar set is uniquely
determined by its set of contraction maps. Is it true that a closed and bounded
partially self-similar set K is uniquely determined by its directed graph and the
contraction maps wijk that correspond te the edges? Furthermore, is each subset
Ki the closure of the fixed points of the compositions of contraction maps that

correspond to closed paths in the directed graph that start and end at the node Ki?

A simple example of partial self-similarity is the generalized Cantor set
shown in Figure 2, This is a subset of the unit interval. Its directed graph and
the corresponding contraction maps that are used in its comstruction are shown in
Figure 3. The edges labelled 0 and 1 in the directed graph correspond to the
similitudes wq(x) = (x+q)/2, for g =0 and 1, that contract the interval onto
its left and right halfs respectively. Hence ®117 ¥

o A 955 T 05y TV
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Figure 2. A generalized Cantor set.
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The directed graph and contraction maps of the generalized Cantor set.

Any point in the limit set K has a binary expansion (O.alaz...)z, where
a,3,... 1is a sequence of digits from {0,1} that correspond to an infinite path in

the directed graph, starting from the initial node K-

The transition matrix of the graph is [} é], with eigenvalues (1:V5)/2,
A1l the similitudes have ratio } so the similarity dimension of K is

log T/log 2 % 0.6942, where T = (1+/8)/2.
This example is actually strictly self-similar because
_ _ _ 2
K= Ky = w(K)) Uy (Ky) = 9, (Rp) U 97K,

The similitudes ¥, and wi have ratios 3 and ] respectively and so it follows
from [117 that its similarity dimension is the solution to (21* + (1)¥ = 1; that

is, log t/leg 2.
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We now present another example of partial self-similarity involving the
data structure, used in computer science, c¢alled a quadtree. A quadtree is a hie-
rarchical data structure based on recursive decomposition of the data., See [12] for
a2 survey of quadtrees. In computer graphics for example, a region of a square can
be defined using a quadtree as follows. Subdivide the square into four equal sized
quadrants and note in which of the quadrants the region lies. Subdivide each of the
quadrants containing parts of the region into four smaller quadrants and continue
the process. The region can be described by means of a tree with at most four

leaves at each note; hence the term quadtree. A node at the kth level corresponds

to a square in the kth

subdivision, and the subtrees leaving the given node cor-
respond to the quadrants containing the region, In practice, in computer science,
the region is only subdivided a finite number of times so that the resulting quad-

tree is finite. However, if the region is an arbitrary geometric set then an infi-

nite quadtree would be required.

If the subtree structures leaving two different nodes are the same then
form a new graph by equating these nodes; this new graph will not be a tree. If all
such pairs of similar nodes are equated and the resulting graph has only a finite
number of dissimilar nodes, then this is a directed graph of a partially self-similar
set, whose contractions are all similitudes of ratio 1. Conversely, any directed
graph with the property that each node has at most four edges, defined by distinct
quadrants, leaving it, defines a partially self-similar region in the square by

choosing one node as the jnitial node for a quadtree.

For example, the directed graph in Figure 4 yields the partially self-

similar set in Figure 5., The transition matrix of the graph is

]
L = T T ]
- ]
—_ e e

whose eigenvalues are approximately 3.2143, 1, 0.4608 and ~0.6751. Hence the

similarity dimension is approximately 1.6845.
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Figure 4. The directed graph of a quadtree.

(a) {b)

Fipure 5. A quadtree fractal,

This method can easily be applied to higher dimensions and, in particular,

to three dimensional octrees.



William J. Gilbert 73

3. Fractal sets derived from complex bases

In this section we illustrate a method for finding the fractal boundary of
the set of points with zero integer part in a complex base. This procedure is more
general than the ad hec method given in [7]. For each base, a directed graph will
be constructed using the points with two radix expansions in that base. This graph
determines the partial self-similarity of the boundary and can be used to generate

the boundary on a computer, as well as to calculate its similarity dimension.

Let D be a feasible digit set for a complex base b. Any point on the
boundary, 88, of the set of complex numbers with zero integer part, has two differ-

ent expansions in the base b of the form

(%) (o'plpzps"‘pj"‘}b = (Q"qlqzqs"‘qj“'}b

where Pj.d5 € P and Q € Z[il. The boundary set, 35, can be approximated by tak-
ing the points in the above expansions to k radix places; that is, by considering

points of the form (U.plpéps...pk)b. All the possible expansions for peints on

the boundary can be obtained by the methods used in [6]. That paper can be modified
to find all the nmumbers with two expansions instead of those with three expansions.

For example, Figure 0 is the modification of [6; Figure 5] required to fimd all the

complex mumbers with two different expansions in the base -1+i using the digit set

= {0,1}.

The labels on the directed edges in Figure & refer to the digits P; and
q_:i in the jth pesition of the expansion (*}. Each path in the directed graph,
starting at the top node, yields two sequences of digits corresponding to two ex-
pansions in the base ~l1+i representing the same complex mumber. The radix point

can be placed at any place in these sequences, FEach point on the boundary 35 cor-

responds to a pair of sequences in which one integer part is zero and the other is not.
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Fipure 6. The directed graph for the base -1+i.

For example, consider the path that starts at the top and traverses the graph
counter-clockwise until it yeaches the right-hand triangie; it then loops indefinite.

ly around this triangle. The labels on the edges yield the two sequences

¢ ¢ 0 0 0 1

1 11010

where the last three digits are repeated indefinitely. Hence one point on the bound-
ary 38 is (0.00{]01}_1+i = (1'11010)-1+i; another point is (00000.100)_1+i =

(11102.000) , ..

The kth approximation to the boundary 85 can easily be illustrated
using a computer. Each expansion, using k radix places in the base b, corresponds
to a small sguare in the complex plane using the grid that is a contraction of the
integer grid by the factor b_k. Compute the expansions of all the points on tﬁe
boundary to k radix places by finding all the paths of length k in the directed
graph. For each of these expansions, plot the corresponding square of area |b\'2k

in the plane. Figure 7 illustrates the boundary for the base -I+i wusing approxi-

mations to 8 and te 14 radix places.
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Eigure 7
Approximations of the boundary of the set derived from the base -1+i,

The directed graph in Figure 6 also yields the partial self-similarity of
the boundary. Ir proceeding from the kth approximation to the (k+1)St approxi-
mation, one extra radix place is added to the expansion. Each square in the kth
approximation is represented by an expansion (0.p1p2...pk)b and corresponds to a
path of length k in the directed graph, that ends im a certain node K. For each
directed edge leaving K there is an expansion {0.p1p2...pkpk+1]b in the (k+1)St
approximation. Hence the square in the kth approximation is replaced by a number
of smaller squares in the (k+1)St approximation and there is one smaller square

corresponding to each directed edge leaving K.

The directed graph for each set derived from the bases -nti with digits
{0,1,2,...,n2} can all be obtained from [6]. Figure 8 shows the approximations of

the boundary of the set derived from the base -2+i wusing 4 and 7 radix places.
The dominant eigenvalue in the transition matrix of the graph obtained from
the base -n+i is the largest positive root, An, of

22+ 20-122 - a-D% - (%)
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Figure 8
Approximations of the boundary of the set derived from the base -2+i,

All the similitudes are obtained from multiplication by b-l and so have a ratieo of
Vn2+1. Hence the similarity dimension of the boundary 3885 is 2 log Rn/log{n2+1).
In particular, the dimension of Figure 7 is approximately 1.5236 and that of Fi-

gure 8§ is approximately 1.6087. These results agree with [7].
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