Geometry of Radix Representations

William J. Gilbert*

1. Introduction

The aim of this paper is to illuminate the connection between the geometry and
the arithmetic of the radix representations of the complex numbers and other
algebraic number fields. We indicate how these representations yield a variety of
naturally defined fractal curves and surfaces of higher dimensions.

As is well known, the natural numbers can all be represented using any integer
b, larger than one, as base, with the digits 0,1,2....,5 — 1. All the integers,
both positive and negative, can be represented without signs by means of the
negative integral base b, less than minus one, using the natural numbers 0, 1,
20, |b] — 1 as digits [6, §4.1]. Each Gaussian integer may be uniquely repre-
sented in binary form as > _ga.(— 1+ i), where each a.=0or 1, [1, §4.3; 6,
§4.1]. We will unify and generalize such representations.

2. Algebraic Number Fields

We now describe more precisely what we mean by a radix representation in an
algebraic number field. Let p be an algebraic integer whose minimum polynomial
is X"+ p, X" T4 o+ pix + py; let

N = |Norm(p)| = |(—1)" pl-

We will try to represent elements of the algebraic number field @(p) using the
radix p and natural numbers as digits. We restrict ourselves here to only
considering digits which are natural numbers, as this appears to be the obvious
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generalization of the familiar number systems and it is more convenient for doing
arithmetical calculations. However, usually for geometric reasons, it is sometimes
necessary to use nonintegral digits. In such cases, the results obtained may be
slightly different. The largest set of algebraic numbers we could expect to
represent, without using negative powers of the radix, is the ring Z[p]. Note that
this ring may not be the whole ring of algebraic integers A N Q(p) in the number
field. We say that p is the base (or radix) of a full radix representation of Z[p] if
each element z of Z[p] can be written in the form z = 3V, _,a,p*, where the digits
a, are natural numbers such that 0 < g, < N. We denote this representation by
z=(aa,_,...a4a,.

The reason that the norm yields the correct number of digits is due to the
following observation.

Lemma . Let ¢ and d be two integers in Z. Then ¢ = d (mod p) in Z[p] if and only if
c=d(modN)inl.

Proof. Suppose ¢ = d (mod p) in Z[p]. Then there exist rational integers g; such
that

C~d=p(qnpn—|+ +q2p+ql)=qnpn+ +q2p2+qlp
= = Gu(Pa@" AP p) G e’ e

= (qnfl - ‘InPnfl)P"Vl + -+ (‘11 - ‘]nPl)P — 4nPo-

Since 1,p,p% ..., p" ! are linearly independent over Q, it follows that ¢ — d

= —¢q,po- As N = | po|, we have ¢ = d (mod N).
Now N = *py= Fp(p" '+ p,_p" 2+ --- + p)), so that N is divisible by
p in Z[p] and the converse implication follows. [ ]

This lemma implies that the quotient ring Z[p]/(p) is isomorphic to Z, and
that 0,1,2, ..., N — 1 form a complete set of representatives of the congruence
classes modulo p in Z[p]. Clearly, the digits of any radix representation of Z[p]
must form a complete set of representatives of these classes.

If an element of Z[p] can be represented using the base p and digits 0,1,
2, ..., N — 1, the representation is unique. It does not matter whether p yields a
full or only a partial radix representation. The proof of the uniqueness uses the
above lemma and is the same as for ordinary decimals.

Katai and Szabo [5] show that, for each positive integer m, the Gaussian
integers can be represented by the radix —m + i (and —m — i) using the digits
0,1,2,...,m%~ In particular, the complex numbers can be written as “decimals”
in base —3 + /; for example, (241)_,,,=2(-3 + P +4-3+i)+1=5-28i
The bases mentioned above are the only ones that will represent all the Gaussian
integers in the required form. Knuth (see [6, §4.1]) has defined a “quater-
imaginary” number system for the complex numbers based on the radix 2i,
which has norm 4. All the elements of Z[2], that is, Gaussian integers with even
imaginary parts, can be uniquely represented in this system. Gaussian integers
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with odd imaginary parts can be represented if we allow expansions to one radix
place; for example (31.2),, = 3(2i) + 1 + 22i)"' = 1+ 5i.

For the complex quadratic fields Q(/— m), where —m =2,3 (mod4) and
— m# — 1, one good base is provided by J— m itself. Given any integer
a + by— m in the field, first write the rational integers a = (a, . . . a,4).. ,, and
b=(b,...bby_, inbase —m.It then follows that

a+bJ—m=(bab, a,_,...babyag)—,

where ¢ = max(r,s).

Given an arbitrary number field, it is not always possible to find a base for its
integers. For example, in the biquadratic field Q(/7 /10 there is no integer «
such that Z[a] = AN Q(/7,Y10) (see [8, p. 46]). However, it may still be possible
to represent the integers in the field by allowing radix expansions using negative
powers of the base.

The usual arithmetic operations of addition and multiplication can be per-
formed using these radix representations in much the same way as ordinary
arithmetic base N. The only difference is in the carry digits. For example, the
root p of the cubic P(x) = x>+ x>+ x + 2 is a base for Z[p]. Since p is also a
root of (x — 1)P(x), we have p*+ p =2 and so 2 = (10010),. Hence, whenever
we have an overflow of 2 in any one column when doing an arithmetical
operation, we have to carry 1001 to the next four higher columns.

3. Geometry of Representations

The elements of Q(p) can be pictured as points in Q" using coordinates 1,p,
0% ..., p" . However, if Q(p) = Q(i) it is often more useful to use the Argand
diagram instead. In @", the points of Z[p] correspond to the integer lattice points.
The radix representations in base p map injectively to the lattice points. If pis a
base for a full representation of Z[p], then all the lattice points will be covered; if
not, the image will be some infinite subset.

These images can be viewed as n-dimensional jigsaw puzzles whose rth piece
consists of the union of unit n-dimensional cubes centered at the points whose
base p representation is of length r. The (r + I)st piece is formed from N — 1
copies of the first r pieces translated in Q" along the directions of p’,
20", ..., (N—=2)p", and (N — 1)p". For example, in the jigsaw in the Argand
diagram in Figure 1 derived from the base 1 — i, each piece is twice the size of
the previous piece. Each little square corresponds to one Gaussian integer with
the origin at the center black square. Since the jigsaw only fills up half the
Argand diagram, 1 —i only provides a partial radix representation of the
Gaussian integers. However, exactly the same pieces put together in Figure 2
using base — 1 + i fill the entire plane; this demonstrates the fact that —1 + i is
a base for all the Gaussian integers.
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Figure 1. The Gaussian integers in base 1 — i.

In Figure 3, the elements of Z[w] are represented in the base —2 — w, where w
is a complex cube root of unity. This base is a root of x%+ 3x + 3, so it has norm
3. Each element of Z[w] is pictured as a unit hexagon in the Argand diagram with
the origin being the black one. The figure shows the radix representation up to
six places, and if continued it would fill the plane, since —2 —w is a good base
for Z[w).

Figures 4 and 5 show three-dimensional models derived from the cubic fields
generated by the polynomials x> + x>+ x — 2 and x” + x” + x + 2 respectively.
The former only yields a partial representation, while the latter, if extended,
would fill the whole of Z° and so provide a full radix representation.

C. Davis and D. Knuth [2] use bases 1 + i and 1 + 2w in their investigation of
the dragon and ter-dragon curves in the Argand diagram.
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Figure 2. The Gaussian integers in base —1 + /.

4. Fractal Curves and Surfaces

It is natural to extend a radix representation to an infinite expansion using
negative powers of the base. We say that an element of Q(p) can be written in
base p if it has an expansion of the form 3, _ __a,p* where 0 < g, < N for all
k; we denote this expansion by (a,a,_,...ay"a_,a_,...), Terminating ex-
pansions correspond to elements of Q(p) whose denominators are some power of
the norm.

From a geometric point of view, it is tempting to try to complete the
representations of Q" to representations of R". However, if l,p,pz, e, p"‘l are
linearly dependent over R, different points of R” would correspond to the same
number. Therefore, besides the rational numbers, the only fields whose represen-
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Figure 3. A fragment of the elements of Z[w] in base —2 — w.

tations we could complete are the complex quadratic fields; these fields can all
be represented in the Argand diagram.

We find that these complex quadratic fields yield some fascinating geometry
by examining the regions of the Argand diagram corresponding to radix expan-
sions of a given form. The regions whose points have expansions of the form
(a,...ay-a_,...), for some fixed power r, have boundaries that are naturally
defined fractal curves. Figure 6 shows all the complex numbers that are repre-
sentable in base 1 — i using expansions of any length. This region is in fact two
space-filling dragon curves joined tail to tail. Mandelbrot [7, p. 313] has calcu-
lated the fractal (i.e. Hausdorff) dimension of the dragon’s “skin,” and it is
approximately 1.5236.
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Figure 4. The elements of Z[p] in base p where p* + pt+p—2=0.

Figure 7 is a close-up of the Argand diagram in which each region consists of
numbers having a fixed integer part in base —1+ /. (The axes in this figure are
at 45° to the edges.) The boundaries have the same fractal dimension as that of
Figure 6. Points on the boundary of two regions will have two representations in
base — 1 + i; each have different integral parts. Since the Argand diagram is
two-dimensional, there must be some points that lie on the boundary of three
regions, and they have three different representations; for example, (2 + i)/5
=001 _,,,=1110)_,,, = (1110.T01)_,,,, where the bars over the digits
indicate that they are to be repeated indefinitely.

For each base —m + i of the complex numbers, we can show [3] that the
fractal dimension of the boundary of the resulting regions is

(logA,,)/logym® + 1,

where A, is the positive root of A* — (2m — DA? — (m — DA — (m* + 1).

For an arbitrary number field Q(p), the boundary of the resulting regions in
@" may not contain as many points as we desire, because Q" is not complete.
However, we can still define the fractal dimension of the edge of a region S in Q"
as follows. Let € > 0 and let E, be the set of points within ¢ of the edge of S, that
is, points whose e-neighborhood contains points of S and points not in S. For
each positive number d, cover E by balls of radius o; < 2¢ and take the following
infimum over all such coverings:

€ _ 1 d
m§ = inf> 0.
i
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Figure 5. A fragment of the clements of Z[p] in base p where p + p~ + p + 2 = (.

Now let m, = sup, ,mj; this number is proportional to the d-dimensional
measure of the edge. The edge is said 1o have fractal dimension D if

m = | o foralld < D.

! iO foraltd = D,

This fractal dimension 1s a metric invariant and hence will remain unchanged
under a linear transformation. Therefore. whether we represent a complex
quadratic field by points in @ or by points in the Argand diagram. we will
obtain the same dimension.

Some bases p which only yield partial radix representations of Z[p] may not
give any infinite convergent radix expansions. For example, all infinite radix
expansions using the base of Figure 4 diverge because one of the roots of the
minimum polynomial, x* + x> + x — 2, has modulus smaller than one. Therefore
fractal surfaces cannot be constructed from this base. On the other hand. the
periodic radix expansions using the base p of Figure 5 do converge to points of
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Figure 6. All the complex numbers representable in base 1 — /.

Q(p). and this base will yield a fractal surface of dimension between two and
three.

| 5. Problems

These radix representations suggest many interesting problems, both geometric
and arithmetic. We mention three here.

Firstly, which algebraic integers yield full radix representations? For the
quadratic fields we can show that a root of the irreducible polynomial x? + cx +
d gives a full radix representation if and only if d > 2 and — 1 < ¢ < d. A root of
the linear polynomial x + d yields a complete representation if and only d > 2.

Secondly, find an algorithm for dividing a number in base p by a rational
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Figure 7. Complex numbers with given integer parts in base — 1 + i. (Thanks are due to
John Beatty, who programmed this at Lawrence Livermore Lab.)

integer. In [4] we give such an algorithm in the case of the negative integral bases.

Thirdly, calculate the fractal dimensions of the edges of the regions derived
from the representation whose base is the root of a given polynomial. In
occasional cases, such as p =y — m , this dimension will be integral, but it seems
that most bases yield fractal curves or surfaces of nonintegral dimension.

.
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