| Chapter 3: Induction and the Binomial Theorem |
|---|
78 - 82. Find the value of each recursive mystery function on any n-tuple ( x1, x2, ..., xn ) and prove that your value is correct.
| 78. | ||||
| myst ( x1, x2, ..., xn ) | = | x1 | if n = 1 | |
| xn - myst ( x1, ..., xn-1 ) | if n > 1 | |||
| 79. | ||||
| myst ( x1, x2, ..., xn ) | = | x1 | if n = 1 | |
| xn myst ( x1, ..., xn-1 ) | if n > 1 | |||
| 80. | ||||
| myst ( x1, x2, ..., xn ) | = | x1 | if n = 1 | |
| xn | if xn > myst ( x1, x2, ..., xn-1 ) | |||
| myst ( x1, x2, ..., xn-1 ) | otherwise | |||
| 81. | ||||
| myst ( x1, x2, ..., xn ) | = | x1 | if n = 1 | |
| x1 - 2 myst ( x2, ..., xn ) | if n > 1 | |||
| 82. | ||||
| myst ( x1, x2, ..., xn ) | = | x1 | if n = 1 | |
| myst ( x1, ..., xn-1 ) + myst ( x2, ..., xn ) | if n > 1 |
83. Find a recursive definition for the function
| 1 | 1 | 1 | ||||||
| e ( n ) | = | 1 | + | - | + | - | + ... + | - |
| 1! | 2! | n! |
84. Discuss the following recursive definition of the GCD for a >= 0 and b >=0. Is it correct? Is it efficient?
| GCD ( a, b ) | = | b | if a = 0 | |
| GCD ( b, a ) | if b < a | |||
| GCD ( b - a, a ) | if b >= a > 0 |