Organization of materials in Sec 2.5

(1) Primes as indivisible units.

 $Def \Rightarrow Lemma \Rightarrow Prop. 2.53$

(2) Primes make up all other integers.

Def \Rightarrow Prop. 2.51 \Rightarrow Prop. 2.54 \Rightarrow Prop. 2.56 \Rightarrow Props. 2.57, 2.58 \Rightarrow Prop. 2.59 by 2.53 UFT char divisors chars gcd, lcm

- (3) Fundamental questions
 - How many? Prop. 2.51 (by Def)
 - How frequent? Prime number theorem
 - Primality test: Prop. 2.55 (uses UFT 2.54)

Summary of materials in Sec 2.5

- (1) Primes as indivisible units. Let p be prime.
 - Def: p has only two positive divisors 1, p.
 - Lemma: $\forall n \in \mathbb{Z}, \gcd(p,n) = 1 \text{ if } p \not | n, \gcd(p,n) = p \text{ if } p | n$
 - Prop. 2.53: $p|ab \Rightarrow (p|a \text{ or } p|b)$
- (2) Primes make up all other integers.
 - Prop. 2.51: all $n \geq 2$, $n \in \mathbb{Z}$ are products of primes.
 - Prop. 2.54 (UFT): the list of primes unique
 - Consequences of 2.54:
 - [UFT++] $n = p_1^{e_1} p_2^{e_2} \cdots p_m^{e_m}$ for some unique $p_1 < p_2 < \cdots < p_m, e_i > 0$
 - [2.56] Char of divisors: d|n iff $d=p_1^{d_1}p_2^{d_2}\cdots p_m^{d_m}$ where $\forall i,0\leq d_i\leq e_i$
 - -[2.57,2.58] Char of gcd, lcm:

If
$$n = p_1^{e_1} p_2^{e_2} \cdots p_m^{e_m}$$
, $k = p_1^{f_1} p_2^{f_2} \cdots p_m^{f_m}$ where $e_i, f_i \ge 0$,
then, $\gcd(n, k) = p_1^{\min(e_1, f_1)} p_2^{\min(e_2, f_2)} \cdots p_m^{\min(e_m, f_m)}$
$$\operatorname{lcm}(n, k) = p_1^{\max(e_1, f_1)} p_2^{\max(e_2, f_2)} \cdots p_m^{\max(e_m, f_m)}$$

- (3) Fundamental questions
 - How many? Prop. 2.51 (infinitely many)
 - How frequent? Prime number theorem (# primes $\leq n \approx \frac{n}{\ln n}$, so frequency $\approx \frac{1}{\ln n}$
 - Primality test for n: Prop. 2.55 (exhaustive search up to $\sqrt{|n|}$)