Recall: Register X, associated CES X.

A quantum state is represented by a density operator.

Set of all density operators $D(X) = \{ \rho \in \text{Pos}(X) : \text{tr} \rho = 1 \}$.

Spectral decomposition: $\rho = \sum_{i=1}^{\dim(X)} p_i \cdot U_i \cdot U_i^* \quad (p_i \in \mathbb{R})$

Def: State is pure if density operator is rank 1.

Obs:

1. $D(X)$ convex
2. Extreme points of $D(X)$: $\{ UU^* : U \in X, \text{null} U = 1 \}$
3. $D(X)$ compact

To see 3, $D(X)$ is clearly bounded, so only need to show $D(X)$ closed, or equivalently, $\text{L}(X)^* \backslash D(X)$ open.

$\text{L}(X)^* \backslash D(X) = \{ A \in \text{L}(X) : A \in \text{Hermitian} \cup \{ A \in \text{L}(X) : A \in \text{Pos}(X) \}$

Each of these 3 sets are open (first principle), and so is their union.

(See LN for alt proof.)

Intuitively, $A \in \text{Hermitian}$, $A \in \text{Pos}(X)$, $\text{tr} A \neq 1$ are properties robust against small perturbations.

Def: Let X_1, \ldots, X_n, be registers, $\rho_i \in D(X_i)$.

Then $\rho_1 \otimes \rho_2 \otimes \cdots \otimes \rho_n \in D(X_1 \otimes X_2 \cdots \otimes X_n)$.

It is called a "product state."
Def: X register. A measurement is specified by

1. $\Gamma = \text{non-empty finite set }$ (of outcomes)

2. function $M: \Gamma \rightarrow \text{Pos}(X)$

\[\sum_{a \in \Gamma} m(a) = 1_X \]

Each $m(a)$ is a "measurement operator" corresponding to outcome a.

Axiom: If state is $\rho \in D(X)$, and above measurement applied, then

1. outcome register is in state $6 = E_{a \lambda}$
2. X ceases to exist (demolition meas)

Obs: All linear functions from $D(X)$ to prob vectors correspond to measurements.

Obs: We will derive non-demolition meas from demolition meas later.

Def: If $m(a)$ is a projector for each $a \in \Gamma$, M is called a projector meas.

NB: Since $\sum_{a \in \Gamma} m(a) = 1_X$, the meas's project onto mutually orthogonal subspaces.

Def: If $m(a) = u_a u_{\lambda a}^*$ for an orthonormal basis $\{u_a\}$ of X

we say that the measurement is along the basis $\{u_a\}$.

\[\sum_{a \in \Gamma} m(a) = 1_X \]
Example: Holevo-Helstrom theorem.

Task: Alice picks 0, 1 with prob \(p_0, p_1 \).

If outcome is 1, prepares \(\rho_1 \) in register \(X \).

She gives \(X \) to Bob, who measures with \(j \in \{0, 1\} \).

What means maximizes \(\text{Prob}(\text{ij}) \)?

Lemma: \(M \in \text{Herm}(X), \|M\|_1 = \max \{ \text{Tr} MT : T \in \text{Herm}(X), -I_X \preceq T \leq I_X \} \)

Proof: Let \(M = \sum K \lambda_K x_K x_K^* \) be qec decompt.

\[
M^+_0 = \sum_{K, \lambda_K > 0} \lambda_K x_K x_K^*,
\]

\[
I_M^+_0 = \sum_{K, \lambda_K > 0} x_K x_K^*,
\]

Then \(M = M^+_0 - M^-_0, \|M\|_1 = \text{Tr} M^+_0 + \text{Tr} M^-_0 \).

\(\circ \) Let \(-I_X \preceq T \preceq I_X \).

Define \(T^+ \) similarly to \(H_Z \).

Then: \(T^+ \leq I, T^- \leq I \) \((\text{omt}\ X) \)

\[
\text{Tr} MT = \text{Tr} (M^+_0 - M^-_0) (T^+_0 - T^-_0) \\
= \text{Tr} M^+_0 T^+_0 + \text{Tr} M^-_0 T^-_0 - \text{Tr} M^+_0 T^-_0 - \text{Tr} M^-_0 T^+_0 \\
\leq \text{Tr} M^+_0 \leq \text{Tr} M^-_0 \\
= \| M \|_1 \).
\]

\(\circ \) \(T = I^+_0 - I^-_0 \), all 4 ineq are equalities.

\(\therefore \text{Tr} MT = \| M \|_1 \).
Pf (HHT) Let Bob's measurement be M_0, M_1. ($M_0 = \text{max}$)

Let $T = M_0 - M_1$.

$\therefore \quad I = M_0 + M_1, \quad M_0 = \frac{1}{2} \left(I + T \right)$

As $0 \leq M_0 \leq I, \quad -I \leq T \leq I$.

$\text{Prob}(i \rightarrow j) = \text{Prob}(j = 0 \mid i = 0) \times p_0 + \text{Prob}(j = 1 \mid i = 1) \times p_1$

$= (\text{Tr} M_0 \rho_i) p_0 + (\text{Tr} M_1 \rho_i) p_1$

$= \frac{1}{2} \left[\text{Tr}(I + T) \rho_0 \rho_i + \text{Tr}(I - T) \rho_1 \rho_i \right]$

$= \frac{1}{2} \left(1 + \text{Tr}(\rho_0 \rho_0 - \rho_1 \rho_i) T \right)$

$\max_{M} \text{Prob}(i \rightarrow j) = \max_{\mathcal{M}} \frac{1}{2} \left(1 + \text{Tr}(\rho_0 \rho_0 - \rho_1 \rho_i) T \right)$

$\text{with max} T = I_+ - I_-$

$\text{proj onto } + \text{space of } \rho_0 \rho_0 - \rho_1 \rho_1$

$M_0 = \text{proj onto } + \text{space of } \rho_0 \rho_0 - \rho_1 \rho_1$
Sec 3.2 Info complete measurem: reading \mathfrak{c}_x.

Sec 3.1.3 Product measurements

For n registers X_1, X_2, \ldots, X_n, the meas

$M: \Gamma \to Pos (X_1 \otimes \cdots \otimes X_n)$

is a product meas if $\Gamma = \Gamma_1 \times \cdots \times \Gamma_n$, and \exists meas

$M_i: \Gamma_i \to Pos (X_i)$

s.t.

$M(a_1, \ldots, a_n) = M_1(a_1) \otimes M_2(a_2) \otimes \cdots \otimes M_n(a_n)$ \quad \forall \alpha \in \Gamma_i, \ i = 1, \ldots, n$

NB: when we say \exists meas M_i, we imply $\sum_{j=1}^{|\Gamma_i|} M_i(a_j) = 1 X_j$.

Qn: if all $M(a_1, \ldots, a_n)$ are tensor product operators, does it give a product meas?

More on this last part of course.
Sec 3.1.4 Channels

Channels transform states of one register into states of another register.

Mathematically: \(A \colon L(X) \to L(Y) \)

\[\text{s.t. } A \text{ is linear, trace-preserving, completely positive} \]

\[\text{so that } A \otimes A \text{ maps states to states} \]

- **trace preserving**: \(\text{Tr}(A(A)) = \text{Tr}(A) \)
- **completely positive**: \(\forall CES \pi, \ A \in Pos(X \otimes Z) \)

\[A \otimes A \in Pos(Y \otimes Z) \]

Physically, when \(A \) is applied to \(X \) in state \(\rho \)

\(X \) ceases to exist, replaced by \(Y \)

and state \(\rho \in D(X) \) is replaced by \(A(\rho) \in D(Y) \).

Returning to Sec 2.2:

\[T(X, Y) = L(L(X), L(Y)) \quad (\star \text{note linear}) \]

\[T(X, X) = T(X) \]

Nothing new yet: \(L(X), L(Y) \)'s are CES's.

We've learnt about linear ops in Sec 1.2.

- Ex. Addition and scalar mult. in \(T(X, Y) \)
- Ex. \(T(X, Y) \) is CES with dim...
- Ex. \(A \in T(X, Y), \ A^* \in T(Y, X) = L(L(Y), L(X)) \) defined by

\[\forall A \in L(Y), B \in L(X), \langle A, A(B) \rangle = \langle A^*(A), B \rangle \]
The tensor product (Sec 2.2.1) of \(\varphi_i : L(X_i) \to L(Y_i) \), \(i = 1, \ldots, n \),
denoted \(\varphi_1 \otimes \varphi_2 \otimes \cdots \otimes \varphi_n \),
takes \(L(X_1 \otimes X_2 \otimes \cdots \otimes X_n) \) to \(L(Y_1 \otimes Y_2 \otimes \cdots \otimes Y_n) \),
and for all \(A_i \in L(X_i) \), \(i = 1, \ldots, n \),
\[\varphi_1 \otimes \varphi_2 \otimes \cdots \otimes \varphi_n (A_1 \otimes A_2 \otimes \cdots \otimes A_n) = \varphi_1(A_1) \otimes \cdots \otimes \varphi_n(A_n) \]

NB \(\varphi \in \mathcal{L}(X,Y) \) are sometimes called superoperators

to distinguish them from operators.

Q. What is a super-superoperator? (As maybe...)

Important superoperators and channels:

1. Identity \(I_X : L(X) \to L(X) \) \((I_{L(X)} = I_X) \)

\[I_X(A) = A \]

Linear, trace preserving, completely positive.

Also called the "noiseless channel" on \(X \).

2. Transpose \(T : L(X) \to L(X) \)

\[T(A) = A^\top \]

Linear, trace preserving, \textbf{not} completely positive.

\[U = \sum_{i=1}^{\dim(X)} e_i \otimes e_i \quad \left(\sum_{i=1}^{\dim(X)} e_i \right) \]

\[I \otimes T(uu^\top) \neq 0 \]

\(\triangleright \)
3. Kraus maps \(T: L(X) \to L(Y) \)

\[
T(A) = \sum_{k=1}^{\infty} \kappa_k A \kappa_k^*,
\]

st. \(\kappa_k \in L(X, Y), \sum_{k=1}^{\infty} \kappa_k^* \kappa_k = I_X \)

linear, trace preserving: \(\text{tr}(T(A)) = \sum_{k=1}^{\infty} \text{tr}(\kappa_k A \kappa_k^*) = \sum_{k=1}^{\infty} \text{tr}(\kappa_k^* \kappa_k A) = \text{tr}A \)

Complete positive: \(\forall \Xi, \forall \Phi \in \text{Pos} (X \otimes \Xi) \)

\[
(\kappa_k \otimes 1_{\Xi}) \Phi (\kappa_k \otimes 1_{\Xi})^* \in \text{Pos} (Y \otimes \Xi)
\]

Same when sum over \(k \).

4. Trace: \(\text{Tr} : L(X) \to \mathbb{C} \)

\[
A \mapsto \text{tr}A
\]

linear, trace-preserving. To see complete positivity, use an o.n basis \(\{ x_i \} \)

and \(\text{tr}(A) = \sum_{i=1}^{\dim(X)} x_i^* A x_i \) st. \(\sum_{i=1}^{\dim(X)} x_i x_i^* = I_X \) \(\text{i.e.} \) \(\text{Tr} \) is a Kraus map.

\(\text{or: Partial trace} \) is also a CP channel \(\forall Y \).

\[
\text{Tr}_X \otimes I_Y =: \text{Tr}_X
\]

Pf 1: has Kraus form \(\sum_{i=1}^{\dim(X)} (x_i^* \otimes I_Y) A (x_i \otimes I_Y) \)

Pf 2: if \(\text{Tr}_X \) CP, \((\text{Tr}_X \otimes I_Y) \otimes I_\Xi \) preserves positivity \(\forall Y, \Xi \).
5. Measurements (Sec 6.1)

(a) Non-demolition measurements / instruments

Consider a measurement on X defined by $\mu: \Gamma \rightarrow \text{Pos}(X)$

$$\sum_{a \in \Gamma} \mu(a) = I_X.$$

Let $M_a \in L(X, \mathbb{C})$ satisfy $M_a^* M_a = \mu(a).$

(eg, $\mathbb{E} = X$, $M_a = \mu(a)^{1/2}$: *function on normal obs*).

Consider $\Xi(A) = \sum_{a \in \Gamma} M_a A M_a^*\otimes E_a E_a^*$

in $L(\mathbb{C})$ in $C^*.$

Ex: show that Ξ is linear, trace-preserving, completely-positive.

$\operatorname{Tr}_\mathbb{Z} \Xi(A) = \sum_{a \in \Gamma} (M_a \otimes E_a) A (M_a \otimes E_a)^*$

in $L(X, \mathbb{Z}\otimes C^*).$

(b) $\operatorname{Tr}_\mathbb{Z} \Xi(A) = \sum_{a \in \Gamma} \operatorname{Tr} (M_a A M_a^*) E_a E_a^*$

$$= \sum_{a \in \Gamma} \langle m_a, A \rangle E_a E_a^* = \text{meas defined by } \mu.$$

Since Ξ & $\operatorname{Tr}_\mathbb{Z}$ are both \mathbb{Q}-channels, so is meas defined by $\mu.$

(Note linearity, Tr-pr, cp all preserved under composition.)
(c) Partial measurements or meas one of many systems

Consider meas defined in (50), taking X to ZG (associated w/ X, Z, C).

Let Y be collection of all unmeasured regis.

Let $\rho \in D(XY)$ be initial state.

Final state after measurement is:

$$\Xi \otimes I_Y (\rho) = \sum_{a \in F} (M_a \otimes I_Y) \rho (M^*_a \otimes I_Y) \otimes e_a e_a^*$$

(Sec 3.3 + Sec 6.1)

(b) Unitary channels: if $U \in U(X)$

then $\Xi(A) = UAU^+$ is a \hat{Q} channel

Kraus map

(b) Mixed unitary channels if $U_k \in U(X)$, $k = 1, \ldots, r$

Sec 6.2.3 then $\Xi(A) = \sum_{k \in K} \rho_k U_k A U_k^+$ is a \hat{Q} channel

$f\rho k$ prob vector.

(c) Dephasing and depolarizing channels (Sec 6.3.2)

$X \subseteq S$, $\{e_a\}_{a \in A}$ fixed o.n. basis.

Dephasing channel $\Delta(A) = \text{diag}(A)$

$$\text{ie} \ (\Delta(A))_{a,a} = A_{a,a}$$

$$\Delta(A)_{a,b} = 0 \quad \text{if } a \neq b.$$

Depolarizing channel $\Omega(A) = \text{tr}(A) \frac{1}{\dim X}$
If $X = (C^2)^{\otimes n}$

$6_0, 6_1, 6_2, 6_3 = 1_{C^2}$ and Pauli X,Y,Z operators,
$(P_3)_i = 6_3$ on i-th qubit, tensored with 1_{C^2} on other qubits

then, \(\Delta(A) = \frac{1}{2^n} \sum_{i=0}^{3} \sum_{b_i=0}^{3} \left(\bigotimes_{i=1}^{n} (P_3)_i^{b_i} \right) A \left(\bigotimes_{i=1}^{n} (P_3)_i^{b_i} \right)^* \)

Kraus maps of channels as $b_0...b_n$ ranges over all possible n-bit strings

\(\Omega(A) = \frac{1}{4^n} \sum_{j=0}^{3} \sum_{j=0}^{3} \left(\bigotimes_{i=1}^{n} (P_3)_i^{b_i} \right) A \left(\bigotimes_{i=1}^{n} (P_3)_i^{b_i} \right)^* \)

ranging over 4^n tensor products of qubit Pauli operators

If $X = C^d$, let $Z_d = \{0, 1, ..., d-1\}$, $\omega = e^{2\pi i/d}$ (principal d-th root of unity)

Let $X = \sum_{a \in Z_d} \omega^a e_a^* \ (X1_a) = 1_{a+1}$

$Z = \sum_{a \in Z_d} \omega^a e_a e_a^* \ (Z1_a) = \omega^a (1_a)$

Let $W_{b,c} = X^b Z^c$. The set $\{W_{b,c}\}$ for $b,c \in Z_d$
are known as discrete Weyl operators or generalized Pauli operators,
orNice error basis.
Useful facts (proof as exercise):

- $\text{Tr}(W_{b,c}) = \begin{cases} 1 & \text{if } b = c = 0 \\ 0 & \text{otherwise} \end{cases}$

- $\langle W_g, b, W_{c,f} \rangle = \text{Tr}(z^{-b} x^{-g} x^c z^f) = \text{Tr}(W_c z^{-g} z^f) = \begin{cases} 1 & \text{if } c = g \text{ and } f = b \\ 0 & \text{otherwise} \end{cases}$

- $z x = w x z$

- $\mathfrak{g}_1 \oplus \mathfrak{g}_2$ generate the group $\{ W_a W_b \}_{a,b \in \mathbb{Z}_d}$ multiplicatively.

- $\{ \frac{1}{d} W_{b,c} \}_{b,c \in \mathbb{Z}_d}$ is an orthonormal basis for $L(X)$.

Ex: Check that $\Delta(A) = \frac{1}{d} \sum_{c \in \mathbb{Z}_d} W_{0,c} A W_{0,c}^*$ (not Hermitian but unitary).

$\Omega(A) = \frac{1}{d^2} \sum_{b,c \in \mathbb{Z}_d} W_{b,c} A W_{b,c}^*$
Depolarizing channel, encryption, and teleportation

We can obtain a method to encrypt quantum states using the Kraus form for the depolarizing channel.

\[\forall A \in L(H), \quad SL(A) = \frac{1}{d^2} \sum_{b,c} W_{b,c} A W_{b,c}^* = \frac{\mathbb{I}}{d} \]

If sender Alice and receiver Bob share secret keys \(c, d \), then: \(\forall \rho \in D(H) \)

\[\text{Alice's encryption} \quad W_{b,c} \quad \text{output for Bob} \]

\[\text{Bob's decryption} \quad W_{b,c}^* \]

Input to Alice

\[\text{maybe eavesdropped} \]

Without eavesdropping \(A_{b,c} \), the encryption & decryption ops cancel one another so Bob receives the input.

Without the key, an eavesdropper sees \(\frac{1}{d^2} \sum_{b,c} W_{b,c} \rho W_{b,c}^* = \frac{\mathbb{I}}{d} \)

as the transmitted q state which is independent of the input \(\rho \).

* This is one q. generalization of the one-time-pad to the quantum setting.

It requires \(2 \log d \) key-bits of secret.
Teleportation revisited:

Lemma: for the map $M: \Gamma \to \text{Pos}(X)$ applied to X_i, with X_iX_j in the maximally entangled state in $X \otimes X$, the post-measurement state is:

$$\frac{1}{d} \sum_a |a_X a_X \rangle \otimes M(a)^T$$

Proof: assignment 1.

Def: let $|\beta_d\rangle = \frac{1}{\sqrt{d}} \sum_{a,b} |a\rangle |a\rangle$ be the MES in $C^d \otimes C^d$,

$$|\beta_d\rangle = |\beta_d\rangle \langle \beta_d| = \frac{1}{d} \sum_{a,b} |a\rangle \langle b| \otimes |a\rangle \langle b|$$

Recall also the Transpose trick: $\forall A \in L(X)$

$$A \otimes I |\beta_d\rangle = I \otimes A^T |\beta_d\rangle$$

Teleportation in detail:

Define a measurement $M: \mathbb{Z}_d \times \mathbb{Z}_d \to \text{Pos}(C^d \otimes C^d)$, $1_{\mathbb{Z}_d^2} = I$.

$$M(b,c) = (W_{b,c} \otimes I) |\beta_d\rangle \langle \beta_d| (W_{b,c}^* \otimes I)$$

To see that $\sum b,c M(b,c) = 1 \otimes I$, either note that $\{ W_{b,c} \otimes I |\beta_d\rangle \} b,c$ is an orthonormal basis.

or note that $\mathbb{E} \otimes I (\rho) = \frac{1}{d} \sum_{x, y} \text{tr}_X \rho$ for $\rho \in \mathcal{D}(X \otimes X)$.
State on $x_1 x_2 x_3$ after meas:

$$
\sum_{b, c} \langle b, c | x_1 x_2 x_3 \rangle \langle x_1 x_2 x_3 | (M(b, c) \otimes \mathbb{1}) \otimes \mathbb{1} (\rho \otimes \beta_d) = \text{tr}_{x_1 x_2} \left(\left[(W_{b, c} \otimes \mathbb{1}) \beta_d (W_{b, c}^* \otimes \mathbb{1}) \right] \otimes \mathbb{1} \right) (\rho \otimes \beta_d).
$$

$$
\text{tr}_{x_1 x_2} \left(\beta_d (W_{b, c}^* \otimes \mathbb{1}) \otimes \mathbb{1} \right) (\mathbb{1} \otimes \beta_d)
$$

// Lemma, \text{tr}_{x_1} (\beta_d (\mathbb{1} \otimes 1)) = M_{x_2}^T

$$
\text{tr}_{x_2} \left[(W_{b, c}^* \otimes \mathbb{1}) \otimes \mathbb{1} \right]. (\beta_d)
$$

//

$$
(W_{b, c}^* \otimes \mathbb{1})^T = W_{b, c}^*. (W_{b, c}^* \otimes \mathbb{1})
$$

Ex: prove that $\forall M, K$:

$$
\text{tr}_x (M(M \otimes \mathbb{1}) K \mathbb{1}) = \text{tr}_x K (\mathbb{1} \otimes \text{tr}_x (M(M \otimes \mathbb{1}) K \mathbb{1})).
$$

Qn: is it true that

$$
\text{tr}_x K_1 K_2 = \text{tr}_x K_2 K_1 ?
$$

1. Bob can perform $W_{b, c}$ if outcome (b, c) sent do him to recover ρ.