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But First...
...An Apology.

My voice is weak today, so my slides are more verbose than they

probably should be in order to make up. Thanks for understanding.
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What is a State?

The way we think about what a quantum state is will give us some
hints as to how to think about distinguishing states.
Operationalist View

We can think of a quantum state as a calculational tool to
generate probability distributions for hypothetical measurements.
In particular, for a state p, if we wish to measure some property X
represented by a POVM { M, }, .y, we obtain that:

p(x) = Pr(X = x) = tr (Myp)
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Classical Distributions

The operationalist view suggests that we can think of state
distinguishability in terms of classical distributions.

Classical Problem
How distinguishable are two probability distributions py(x) and
p1(x) over the same random variable X?

We will often put this problem in terms of a random variable

T ={0,1} that picks one of the distributions.

We suppose that Pr(T = 0) = Pr(T = 1) = 1/2. Thus,

pt(x) = Pr(X = x| T = t) so that the distribution over X is given
by:

1
p(x) =) Pr(T=1tX=x)= 5 > pe(x)
teT teT
o = - DA C
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Cryptographic Distinguishability Measures

Fuchs and de Graaf (1998) consider four particular measures of
distinguishability useful in cryptography:

v

Probability of error.

v

Kolmogorov distance.

v

Bhattacharyya coefficient.

v

Shannon distinguishability.

Each of these can then be generalized to a measure of state
distinguishability by optimizing over measurements.
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Definition

The probability of error PE(py, p1) is the total probability of
incorrectly guessing which distribution was used to generate a
sample x. Here, the optimal strategy is to always pick the
distribution most likely to have produced x.

PE(po, p1) = Z Pr(X = x, T =t)Pr(error|X = x, T = t)
xeX,teT
1 .
= 5 >_min(po(x), pr(x))
xeX
o = = = Q>
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Application to States

Let PE(po, p1) be the minimum over all POVMs of the classical
probability of error. It is known that the optimal measurement
gives the explicit form

PE(po, p1)

I\JII—l

+ZA

<0
where A; are the eigenvalues of pg — p1

We can therefore relate the probability of error to the trace norm

1 1
PE(po, p1) = sta PN CYEREYD)
J
1 N 1t 01 tr |
= —_ —1r — —1tr —
> a P1 2 Po — p1
o = = E E 9ace
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Kolmogorov Distance
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L1 norm of their difference:

If we think of the probability distribution functions py and p; as
vectors, then the Kolmogorov distance between them is half of the

K(po.p1) = 5 3 po(x) = 1)

xeX
A little algebra yields that:

K(pOa Pl)

1 - 2PE(po, p1)

1 1
— 1-2(=-=
(2 4

tr|po —Pll)
¢ | |
= —tr —
> Po — pP1
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Definition and Optimization

Whereas the Kolmogorov distance can be thought of as the L1
norm between two vectors, the Bhattacharyya coefficient is a

natural inner product on the space of probability distributions

(Po.p1) = Y v/Po(x)p1

xeX
that:

By explicitly optimizing, Fuchs and Caves (1998) demonstrated
B(p07 ,01)

min B(M
M

(po); M(p1))

tr(y/ Vi vim
where M is a POVM which induces a distribution M(p)
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Relation to Fidelity

Recall that the fidelity between two pure states is given by their
inner product:

F(ly),10)) = (¢ [ ¢)l

By Uhlmann's theorem,

B(po, p1) = max F(ltbo) » [¥1))

where the maximization is taken over purifications of pg, p1. Thus,
we see that the Bhattacharyya coefficient tells us how much two
states overlap. Fully overlapping states are completely
indistinguishable.
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Motivation and Definition
The final measure that we consider is motivated by considering the
uncertainty involved in distinguishing two distributions. In
particular, when we sample the rv X, our uncertainty about
whether our sample was drawn from pg or p; may be reduced:

SD(po, p1) = uncertainty before sampling — after sampling
= H(T) = H(T[X) = I(T|X)

Since I(T|X) = I(X|T), we can directly calculate the Shannon
distinguishability:

SD(po. p1) = H(p) — 5 (H(po) + H(p1))

Note that SD(po, p1) has no closed form, due to In being
transcendental.

: :
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Bounding B and K

It is rather inconvenient to have four measures of the same thing.
Each of these measures has advantages and disadvantages, and so
we would like to know how they relate. We do so by deriving
inequalities which bound the various measures.

In the interests of time, we shall focus on the B and K measures,
and shall show that:

1- B(PO;Pl) < K(POaPl) < \/ 1—- Bz(pOapl)

: :
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Relations Between Measures
Proof (1/2)

Concluding Remarks

We start by showing 1 — B(po, p1) < K(po, p1). To do so, we
utilize that > (po(x) + p1(x)) = 2, so that we can factor B

1-B(po,p1) = 5 ;( [po(x) + p1(x) = 2/po(x)Pr(¥)|
= ;(\/Po Vpi(x))?
- 32 Wpo(x) Nl
= Z |po(x

XGX

IN

— p1(x)| = K(po, p1)
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Proof (2/2)

K:(po,p1) = %(leo(X)—pl(xn)

xeX

= % <Z (\/po(X) - \/pl(x)) |\/P0(X) + \/PI(X)D

(via Schwarz ineq)

< ; [zwm - mr] [zwm + mf]

xeX xeX

= 12 2B(po,p))(2 + 2B{po, ) = 1~ Blpo.p1)
D (V) £ V() = D (po(x) + pi(x) £ Vpo(x)pr(x))

2+ 2B(po, p1) .
[=] = = = = o
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Quantum Case

Monotonicity of Optimization (1/2)

We next show that these inequalities continue to hold when we
consider the state distinguishability measures B and K.

Let &g be a POVM optimizing B. Define K similarly.

Then, for any POVM &’ since £k maximizes K:

K(E'(po), E'(p1)) < K(Ek(po), Ek(p1))
In particular:
1 —B(po, p1) < K(E.(po),Er(P1)) < K(Ek(po): Ex(p1))

Thus, 1 —B(po, p1) < K(po, p1)-

o = =
; ;
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Monotonicity of Optimization (1/2)

Since B is minimized rather than maximized:

B(Es(po), Ea(p1)) < B(E'(p0), €' (p1))

The rest of the derivation follows similarly:

K(po,p1) = K(Ek(po),Ek(p1))
< \/1 — B?(&k(po). €k (p1))
< \/1 — B?(&s(po), E6(p1))

\/1—B%(po, p1)
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Asymptotics

In security-related applications (such as QKD analysis), it is
common to speak of two sequences of density matrices which must
be indistinguishable in the asymptotic limit. We say that such
sequences are exponentially indistinguishable.

For instance, with respect to K, {pn0} and {pn1} are El if there
exists € such that:

dno € N Vn > no : K(pn0,pn1) <€

One of the key results of Fuchs and de Graaf is that El with
respect to any of PE, K, B, SD implies El with respect to all.
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All four measures considered here have benefits and disadvantages
Inequalities relate these measures and guarantee that for

exponential indistinguishablity, it doesn't matter which you

use.
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