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But First...

...An Apology.

My voice is weak today, so my slides are more verbose than they
probably should be in order to make up. Thanks for understanding.
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Classical Distinguishability

What is a State?

The way we think about what a quantum state is will give us some
hints as to how to think about distinguishing states.

Operationalist View

We can think of a quantum state as a calculational tool to
generate probability distributions for hypothetical measurements.
In particular, for a state ρ, if we wish to measure some property X
represented by a POVM {Mx}x∈X , we obtain that:

p(x) = Pr (X = x) = tr (Mxρ)
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Classical Distinguishability

Classical Distributions
The operationalist view suggests that we can think of state
distinguishability in terms of classical distributions.

Classical Problem
How distinguishable are two probability distributions p0(x) and
p1(x) over the same random variable X?

We will often put this problem in terms of a random variable
T = { 0, 1 } that picks one of the distributions.
We suppose that Pr(T = 0) = Pr(T = 1) = 1/2. Thus,
pt(x) = Pr(X = x |T = t) so that the distribution over X is given
by:

p(x) =
∑
t∈T

Pr(T = t,X = x) =
1

2

∑
t∈T

pt(x)
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Classical Distinguishability

Cryptographic Distinguishability Measures

Fuchs and de Graaf (1998) consider four particular measures of
distinguishability useful in cryptography:

I Probability of error.

I Kolmogorov distance.

I Bhattacharyya coefficient.

I Shannon distinguishability.

Each of these can then be generalized to a measure of state
distinguishability by optimizing over measurements.

Quantum Distinguishability
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Probability of Error

Definition

The probability of error PE(p0, p1) is the total probability of
incorrectly guessing which distribution was used to generate a
sample x . Here, the optimal strategy is to always pick the
distribution most likely to have produced x .

PE(p0, p1) =
∑

x∈X ,t∈T
Pr(X = x ,T = t) Pr(error|X = x ,T = t)

=
1

2

∑
x∈X

min(p0(x), p1(x))
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Probability of Error

Application to States
Let PE(ρ0, ρ1) be the minimum over all POVMs of the classical
probability of error. It is known that the optimal measurement
gives the explicit form:

PE(ρ0, ρ1) =
1

2
+

1

2

∑
λj≤0

λj

where λj are the eigenvalues of ρ0 − ρ1.
We can therefore relate the probability of error to the trace norm:

PE(ρ0, ρ1) =
1

2
+

1

4

∑
j

(λj − |λj |)

=
1

2
+

1

4�
���

��:0
tr(ρ0 − ρ1)− 1

4
tr |ρ0 − ρ1|
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Kolmogorov Distance

Definition
If we think of the probability distribution functions p0 and p1 as
vectors, then the Kolmogorov distance between them is half of the
L1 norm of their difference:

K(p0, p1) =
1

2

∑
x∈X
|p0(x)− p1(x)|

A little algebra yields that:

K(p0, p1) = 1− 2 PE(p0, p1)

K(ρ0, ρ1) = 1− 2

(
1

2
− 1

4
tr |ρ0 − ρ1|

)
=

1

2
tr |ρ0 − ρ1|
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Bhattacharyya Coefficient

Definition and Optimization

Whereas the Kolmogorov distance can be thought of as the L1
norm between two vectors, the Bhattacharyya coefficient is a
natural inner product on the space of probability distributions:

B(p0, p1) =
∑
x∈X

√
p0(x)p1(x)

By explicitly optimizing, Fuchs and Caves (1998) demonstrated
that:

B(ρ0, ρ1) = min
M

B(M(ρ0),M(ρ1)) = tr

(√√
ρ0ρ1
√
ρ0

)
where M is a POVM which induces a distribution M(ρ).
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Bhattacharyya Coefficient

Relation to Fidelity

Recall that the fidelity between two pure states is given by their
inner product:

F (|ψ〉 , |φ〉) = |〈ψ |φ〉|

By Uhlmann’s theorem,

B(ρ0, ρ1) = max
|ψ0〉,|ψ1〉

F (|ψ0〉 , |ψ1〉)

where the maximization is taken over purifications of ρ0, ρ1. Thus,
we see that the Bhattacharyya coefficient tells us how much two
states overlap. Fully overlapping states are completely
indistinguishable.

Quantum Distinguishability



Introduction Deriving State Distinguishability Measures Relations Between Measures Concluding Remarks

Shannon Distinguishability

Motivation and Definition
The final measure that we consider is motivated by considering the
uncertainty involved in distinguishing two distributions. In
particular, when we sample the rv X , our uncertainty about
whether our sample was drawn from p0 or p1 may be reduced:

SD(p0, p1) = uncertainty before sampling− after sampling

= H(T )− H(T |X ) = I (T |X )

Since I (T |X ) = I (X |T ), we can directly calculate the Shannon
distinguishability:

SD(p0, p1) = H(p)− 1

2
(H(p0) + H(p1))

Note that SD(ρ0, ρ1) has no closed form, due to ln being
transcendental.
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Classical Measures

Bounding B and K

It is rather inconvenient to have four measures of the same thing.
Each of these measures has advantages and disadvantages, and so
we would like to know how they relate. We do so by deriving
inequalities which bound the various measures.
In the interests of time, we shall focus on the B and K measures,
and shall show that:

1− B(p0, p1) ≤ K(p0, p1) ≤
√

1− B2(p0, p1)

Quantum Distinguishability
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Classical Measures

Proof (1/2)

We start by showing 1− B(p0, p1) ≤ K(p0, p1). To do so, we
utilize that

∑
(p0(x) + p1(x)) = 2, so that we can factor B.

1− B(p0, p1) =
1

2

∑
x∈X

[
p0(x) + p1(x)− 2

√
p0(x)p1(x)

]
=

1

2

∑
x∈X

(
√
p0(x)−

√
p1(x))2

=
1

2

∑
x∈X

∣∣∣√p0(x)−
√

p1(x)
∣∣∣2

≤ 1

2

∑
x∈X
|p0(x)− p1(x)| = K(p0, p1)
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Classical Measures

Proof (2/2)

K2(p0, p1) =
1

4

(∑
x∈X

|p0(x)− p1(x)|

)2

=
1

4

(∑
x∈X

∣∣∣√p0(x)−
√

p1(x)
∣∣∣ ∣∣∣√p0(x) +

√
p1(x)

∣∣∣)2

(via Schwarz ineq)

≤ 1

4

[∑
x∈X

(
√

p0(x)−
√

p1(x))
2

][∑
x∈X

(
√

p0(x) +
√

p1(x))
2

]

=
1

4
(2− 2B(p0, p1))(2 + 2B(p0, p1)) = 1− B(p0, p1)

∑
x∈X

(
√

p0(x)±
√

p1(x))
2 =

∑
x∈X

(p0(x) + p1(x)±
√

p0(x)p1(x))

= 2± 2B(p0, p1)
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Quantum Case

Monotonicity of Optimization (1/2)

We next show that these inequalities continue to hold when we
consider the state distinguishability measures B and K.
Let EB be a POVM optimizing B. Define K similarly.
Then, for any POVM E ′, since EK maximizes K:

K(E ′(ρ0), E ′(ρ1)) ≤ K(EK(ρ0), EK(ρ1))

In particular:

1− B(ρ0, ρ1) ≤ K(EB(ρ0), EB(ρ1)) ≤ K(EK(ρ0), EK(ρ1))

Thus, 1− B(ρ0, ρ1) ≤ K(ρ0, ρ1).

Quantum Distinguishability



Introduction Deriving State Distinguishability Measures Relations Between Measures Concluding Remarks

Quantum Case

Monotonicity of Optimization (1/2)

Since B is minimized rather than maximized:

B(EB(ρ0), EB(ρ1)) ≤ B(E ′(ρ0), E ′(ρ1))

The rest of the derivation follows similarly:

K(ρ0, ρ1) = K(EK(ρ0), EK(ρ1))

≤
√

1− B2(EK(ρ0), EK(ρ1))

≤
√

1− B2(EB(ρ0), EB(ρ1))

=

√
1− B2(ρ0, ρ1)
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Quantum Case

Asymptotics

In security-related applications (such as QKD analysis), it is
common to speak of two sequences of density matrices which must
be indistinguishable in the asymptotic limit. We say that such
sequences are exponentially indistinguishable.
For instance, with respect to K , {ρn,0} and {ρn,1} are EI if there
exists ε such that:

∃n0 ∈ N ∀n ≥ n0 : K (ρn,0, ρn,1) ≤ εn

One of the key results of Fuchs and de Graaf is that EI with
respect to any of PE,K,B,SD implies EI with respect to all.

Quantum Distinguishability
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All four measures considered here have benefits and disadvantages.
Inequalities relate these measures and guarantee that for
exponential indistinguishablity, it doesn’t matter which you use.

Quantum Distinguishability
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