On Degradable Quantum Channels

1 Complementary Channels

\[\Phi : M_{d_A} \rightarrow M_{d_B} \]
\[\Phi(\rho) = \sum_k A_k \rho A_k^\dagger, \sum_k A_k^\dagger A_k = I_{d_A}. \]

Now define
\[W = \sum_k |k\rangle \otimes A_k. \]

Then
\[W\rho W^\dagger = \sum_{j,k} |j\rangle \langle k| \otimes A_j \rho A_k^\dagger. \]
\[Tr_E(W\rho W^\dagger) = \Phi(\rho) \]

For convention, define
\[\Phi^C(\rho) = Tr_A(W\rho W^\dagger). \]

‘A’ labels the system, ‘E’ labels the environment. Choi rank
\[d_E := rk(J(\Phi)) = rk\left(\sum_{i,j=0}^{d_A-1} |i\rangle \langle j| \otimes \Phi(|i\rangle \langle j|) \right) \]
is the minimal number of Kraus operators needed to represent \(\Phi \).

One can check that
\[\Phi^C(\rho) = \sum_{\mu} R_{\mu} \rho R_{\mu}^\dagger \]
where
\[\langle j | R_\mu | k \rangle = \langle \mu | A_j | k \rangle, \]
\(\mu \in \{0, ..., d_B - 1\}, k \in \{0, ..., d_A - 1\}. \)

The \(j \)-th row of \(R_\mu \) is the \(\mu \)-th row of \(A_j \).

2 Degradable Channels

Definition: A channel is **degradable** if there exists a CPT \(\Psi \) such that
\[\Psi \circ \Phi = \Phi^C, \]
that is
\[\Psi(\Phi(\rho)) = \Phi^C(\rho) \quad \forall \rho \in M_{d_A} \]

Fact: \(\Phi \) degradable \(\implies \) ker \(\Phi \subseteq \ker \Phi^C. \)

Easy to show Facts:

- \(d_A = 1 \implies \Phi, \Phi^C \) degradable, anti-degradable
- \(d_B = 1 \implies \Phi = Tr \implies \Phi \) antidegradable
- \(d_E = 1 \implies \Phi(\rho) = U\rho U^\dagger, U^\dagger U = I_{d_A} \implies \Phi^C = Tr \implies \Phi \) degradable, \(\Phi = Tr \)

Thm 1: Suppose \(\Phi : M_{d_A} \rightarrow M_{d_B} \) maps every pure state to a pure state. Then either
1. $d_A \leq d_B$ and $\Phi(\rho) = U\rho U^\dagger$, $U^\dagger U = I_{d_A}$, Φ degradable, $d_E = 1$.

2. $\Phi(\rho) = Tr(\rho)|\phi\rangle\langle \phi|$, Φ antidegradable.

holds

Thm3 Let Φ be CPT such that there exists $|\psi\rangle \in \mathbb{C}^{d_A}$ with $\text{rank}(\Phi(|\psi\rangle\langle \psi|)) = d_B$. Then if Φ is degradable, then $d_E = d_B$.

Thm4: Let $\Phi : M_{d_A} \to M_2$ be a CPT map with **qubit output**. If Φ is degradable, then (i) $d_E \leq 2$, (ii) and $d_A \leq 3$.

Proof of Thm4:

(i) If $\text{maxrank}_\rho(\Phi(\rho)) = 1$, then by **Thm1**, $d_E = 1$.

If $\text{maxrank}_\rho(\Phi(\rho)) = 2$, then by **Thm3**, $d_E = d_B = 2$.

(ii) $d_E \leq 2 \implies \Phi(\rho) = A\rho A^\dagger + B\rho B^\dagger$. For $a_1, a_2 \in [0, 1]$,

$$A = \begin{pmatrix} \sqrt{a_1} & 0 & 0 & \ldots & 0 \\ 0 & \sqrt{a_2} & 0 & \ldots & 0 \end{pmatrix}$$

and

$$B^\dagger B = I_{d_A} - A^\dagger A = \text{diag}(1 - a_1, 1 - a_2, 1, \ldots, 1)$$

But B is $2 \times d_A$ matrix $\implies \text{rk}(B) \leq 2 \implies \text{rk}(B^\dagger B) \leq 2 \implies d_A \leq 4$.

If $d_A = 4$, then $a_1 = a_2 = 1$. But $\ker \Phi$ is not contained in $\ker \Phi^C$ which is a contradiction. Hence $d_A \leq 3$. **end of Thm4**

Thm by Wolf, Perez-Garcia Let $\Phi : M_2 \to M_2$ have Choi rank 2. If Φ is degradable or antidegradable, its Kraus operators
are
\[A_0 = \begin{pmatrix} \cos \alpha & 0 \\ 0 & \cos \beta \end{pmatrix}, \quad A_1 = \begin{pmatrix} 0 & \sin \alpha \\ \sin \beta & 0 \end{pmatrix}. \] (2.1)

Significance of Thm4

Thm10: Let \(\Phi \) have qutrit output. If \(\Phi \) degradable, \(d_E \leq 3 \)

Question: What about results with \(d_B = 4, 5, 6, \ldots \)? \(d_E \leq d_B \)?
Answer: No. If $d_B = 2d_A$ then we can have $d_E > d_B$ (Construction in reference). CRS also construct channels with $d_A = d_B = 6d$, and $d_E = 3(d^2 + 1) > 6d = d_B$. But what about $d_B = 4, 5$.

3 What other channels are degradable?

Thm11 Every channel with rank 1 Kraus operators is anti-degradable.

Proof is constructive.

Many more examples of antidegradable channels given. LOTS of such channels. (although it is remarked that most channels are neither degradable/ antidegradable)

4 Applications

The qubit amplitude damping channel (degradable) has been used by SSW to improve the upper-bound for the depolarization channel. If \mathcal{N}, \mathcal{M} are degradable, then

$$Q(\lambda \mathcal{N} + (1 - \lambda)\mathcal{M}) \leq \lambda Q(\mathcal{N}) + (1 - \lambda)Q(\mathcal{M}).$$

Quantum capacity of **degradable** channels can be efficiently evaluated because of several results.

- I_{coh} is additive for Φ degradable.
- $I_{coh}(\Phi, \rho)$ is concave function of ρ for Φ degradable, implies that we only need to consider diagonal ρ.

5
\[I_{coh}(\Phi, \rho) = S(\Phi(\rho)) - S(\Phi^C(\rho)) \]
\[
\frac{1}{2} A_\gamma(\rho) + \frac{1}{2} X A_\gamma(\rho) X = N_{\gamma}(\rho)
\]
where \(N_{\gamma} \) has Kraus operators
\[
\sqrt{p_x} X, \sqrt{p_y} Y, \sqrt{p_z} Z, \sqrt{1 - p_x - p_y - p_z} I
\]
and
\[
p_x = p_y = \frac{\gamma}{4}, p_z = \frac{1 - \frac{\gamma}{2} - \sqrt{1 - \gamma}}{2}
\]
Now define \(H = \frac{X+Z}{2}, H_{yz} = \frac{Y+Z}{2}, H_{xy} = \frac{X+Y}{2} \). Conjugation of a nontrivial Pauli by \(H \) takes \(X \rightarrow Z, Y \rightarrow Y, Z \rightarrow X \). Conjugation of a nontrivial Pauli by \(H_{yz} \) takes \(X \rightarrow X, Y \rightarrow Z, Z \rightarrow Y \). Conjugation of a nontrivial Pauli by \(H_{xy} \) takes \(X \rightarrow Y, Y \rightarrow X, Z \rightarrow Z \). Now let \(\Phi_p \) be a quantum channel such that
\[
\Phi_p(\rho) = \frac{N_{\gamma}(\rho) + H N_{\gamma}(H^{\dagger} \rho H) H^{\dagger} + H_{yz} N_{\gamma}(H^{\dagger}_{yz} \rho H_{yz}) H_{yz}^{\dagger}}{3}.
\]
Then \(\Phi_p \) is a depolarization channel of noise parameter \(p = (p_x + p_y + p_z)/3 \).

5 Further questions

Can we use a dimension \(2^m \) dimension amplitude damping channel to also obtain an upper bound for the quantum capacity of the depolarization channel? Tensor product of \(m \) qubit amplitude damping channels is not equal to a \(2^m \) dimension amplitude damping channel in general.
Let $\vec{\gamma} = (\gamma_1, ..., \gamma_{d-1})$. It turns out that the following channel $A_{\vec{\gamma}}^{(d)} : M_d \rightarrow M_d$, with Kraus operators

\begin{align}
A_0 &= |0\rangle\langle 0| + \sum_{i=1}^{d-1} \sqrt{1 - \gamma_i} |i\rangle\langle i| \\
A_i &= \sqrt{\gamma_i} |0\rangle\langle i|, \quad i \in [d - 1]
\end{align}

(5.1) (5.2)

for real $\gamma_i \in [0, 1]$. It follows that the complementary channel for $A^{(d)}$ have the Kraus operators

\begin{align}
R_0 &= |0\rangle\langle 0| + \sum_{i=1}^{d-1} \sqrt{\gamma_i} |i\rangle\langle i| \\
R_i &= \sqrt{1 - \gamma_i} |0\rangle\langle i|, \quad i \in [d - 1]
\end{align}

(5.3) (5.4)

Now let $\vec{\lambda} = (\lambda_1, ..., \lambda_{d-1})$ such that $\lambda_i = \frac{1 - 2\gamma_i}{1 - \gamma_i}$. If $0 \leq \gamma_i \leq \frac{1}{2}$ for all $i \in [d - 1]$, then $A_{\vec{\lambda}}^{(d)}$ is a well defined CPT channel and $A_{\vec{\gamma}}^{(d)} \circ A_{\vec{\lambda}}^{(d)} = A_{1 - \vec{\gamma}}^{(d)}$. Thus $A_{\vec{\gamma}}^{(d)}$ is degradable if $0 \leq \gamma_i \leq \frac{1}{2}$ for all $i \in [d - 1]$.

References
