## CO 781 Assignment 2, Spring 2010, due June 29th in class.

## Question 1. On accessible information [20 marks]

## (a) Superadditivity:

Let the ensemble  $\mathcal{E}$  be:  $|v_1\rangle = |0\rangle$ ,  $|v_2\rangle = \frac{1}{2}|0\rangle + \frac{\sqrt{3}}{2}|1\rangle$ ,  $|v_3\rangle = \frac{1}{2}|0\rangle - \frac{\sqrt{3}}{2}|1\rangle$  and  $p_1 = p_2 = p_3 = \frac{1}{3}$ .

Recall from class that  $I_{acc}(\mathcal{E}) = 0.5850$ , attained by the optimal measurement with POVM elements  $M_i = \frac{2}{3}(I - |v_i\rangle\langle v_i|)$  for i = 1, 2, 3.

- (i) What is the pretty good measurement (PGM) for  $\mathcal{E}$ ?
- (ii) How much mutual information is given by the PGM?
- (iii) If 2 copies of the states are given, what is the new PGM? (i.e.,  $\forall_i, |v_i\rangle^{\otimes 2}$  is given with probability 1/3.)
- (iv) How much mutual information can be extracted, and how is it compared to  $2I_{acc}(\mathcal{E})$ ?
- (b) Additivity: For 2 ensembles  $\mathcal{E}_1 = \{p_i, \rho_i\}$  and  $\mathcal{E}_2 = \{q_j, \eta_j\}$ , let  $\mathcal{E}_1 \otimes \mathcal{E}_2 = \{p_i q_j, \rho_i \otimes \eta_j\}$ . Prove that  $I_{acc}(\mathcal{E}_1 \otimes \mathcal{E}_2) = I_{acc}(\mathcal{E}_1) + I_{acc}(\mathcal{E}_2)$ . (Try without hint first ... and read 0103098 VII as a first hint.)
- (c) Why (a),(b) are not contradicting one another?

## Question 2. The tetrahedron states [20 marks]

Let I, X, Y, Z, denote the Pauli matrices. Consider 4 states in  $\mathbb{C}^2$  given by:

$$|\psi_1\rangle\langle\psi_1|=\frac{1}{2}(I+\frac{1}{\sqrt{3}}(X+Y+Z))$$

$$|\psi_2\rangle\langle\psi_2|=\frac{1}{2}(I+\frac{1}{\sqrt{3}}(X-Y-Z))$$

$$|\psi_3\rangle\langle\psi_3|=\frac{1}{2}(I+\frac{1}{\sqrt{3}}(-X+Y-Z))$$

$$|\psi_4\rangle\langle\psi_4| = \frac{1}{2}(I + \frac{1}{\sqrt{3}}(-X - Y + Z))$$

Note that  $|\langle \psi_i | \psi_j \rangle|$  is constant for  $i \neq j$ , and the Bloch vectors of these states form the vertices of a tetrahedron.

- (a) What is the pretty good measurement (PGM) corresponding to these states?
- (b) For the ensemble  $\mathcal{E}$  in which each  $|\psi_i\rangle$  is drawn with probability 1/4, what is the probability of failure in the PGM?
- (c) Does the PGM minimize the probability of error? Does it attains  $I_{acc}(\mathcal{E})$ ?
- (d) What is the classical capacity of a Q-box capable of emitting  $|\psi_i\rangle$  (i=1,2,3,4)?
- (e) Let  $\mathcal{N}$  be the channel that measures the input  $\rho$  with the PGM in (b), and upon the outcome j, outputs the state  $|\psi_j\rangle$  to Bob. What are the optimal ensemble,  $\chi^{(1)}(\mathcal{N})$ , and  $C(\mathcal{N})$ ? (Hint:  $\mathcal{N}$  turns out a bit too special, so, a short cut to this question is to understand what  $\mathcal{N}$  does.)