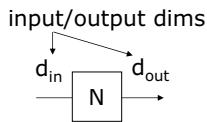


Continuity of channel capacities

0810.4931
L, Smith



A capacity of a channel (e.g. $C(N)$) is a function taking each N to a real number.

If two channels are close to one another under some distance measure, should their capacities be similar?

Continuity -- isn't it obvious ?

- Classical capacity of a classical channel
Yes, expression is convex and single-letterized (with compact domain) in the input distribution
- Capacities of a quantum channel
Many only have expression as an optimization over unbounded number of channel uses
Even if $N \approx M$, $N^{\otimes n}$ & $M^{\otimes n}$ are very different

Consider classical messages first ...

Shannon's noisy coding theorem

$$C(N) = \max_{p(x)} I(X:Y) = \max_{p(x)} I(X:N(X))$$

HSW Theorem:

$$C(N) = \lim_{n \rightarrow \infty} \max_{p_x, p_N} \frac{1}{n} S(X:B_1 B_2 \dots B_n)$$

eval on $\sum_x p_x \underbrace{|x\rangle\langle x|}_X \otimes \underbrace{N^{\otimes n}}_{B_1 B_2 \dots B_n}(p_x)$

Continuity of $C(N)$ for classical channels:

$$C(N) = \max_x [H(X) + H(N(X)) - H(XN(X))] = \max_x f(X, N)$$

For 2 channels N_1 and N_2 ,

the difference between $C(N_1)$ & $C(N_2)$ is caused by

- the difference between N_1 & N_2 ,
- also that between the optimal X_1 & X_2

We first remove this problem ...

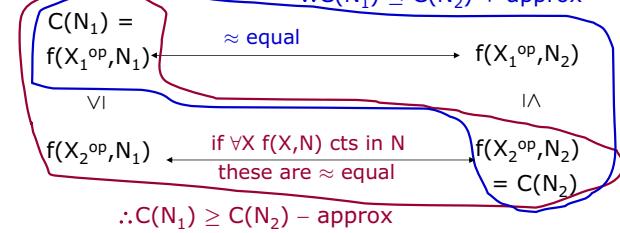
Continuity of $C(N)$ for classical channels:

$$C(N) = \max_x [H(X) + H(N(X)) - H(XN(X))] = \max_x f(X, N)$$

For 2 channels N_1 and N_2 ,

Let X_1^{op} be optimal input distribution for N_1 :

$$\therefore C(N_1) \leq C(N_2) + \text{approx}$$



$$\therefore |C(N_1) - C(N_2)| \leq \max_x |f(X, N_1) - f(X, N_2)|$$

Continuity of $C(N)$ for classical channels:

$$C(N) = \max_x [H(X) + H(N(X)) - H(XN(X))] = \max_x f(X, N)$$

$$|C(N_1) - C(N_2)| \leq \max_x |f(X, N_1) - f(X, N_2)|$$

When does $N_1 \approx N_2$ imply $\forall X |f(X, N_1) - f(X, N_2)|$ small?

(a) Want $N_1 \approx N_2$ implies $\forall X XN_1(X) \approx XN_2(X)$

Take $\|N_1 - N_2\| = \max_x \|XN_1(X) - XN_2(X)\|_{\text{tr}}$

(b) Want $f(X, N)$ is smooth in N :

$$\begin{aligned} \Delta f &\leq |H(N_1(X)) - H(N_2(X))| + |H(XN_1(X)) - H(XN_2(X))| \\ &\leq \|N_1(X) - N_2(X)\|_{\text{tr}} \log d_{\text{out}} + \|XN_1(X) - XN_2(X)\|_{\text{tr}} \log d_{\text{in}} d_{\text{out}} \\ &\quad + 2 \eta(\|N_1 - N_2\|) \text{ by Fannes inequality } (\eta(t) = -t \log t) \\ &\leq 3 \|N_1 - N_2\| \log d + 2 \eta(\|N_1 - N_2\|) \text{ where } d = \max(d_{\text{in,out}}) \end{aligned}$$

Continuity of $C(N)$ for quantum channels: $f(.,N)$

$$C(N) = \lim_{n \rightarrow \infty} \max_{p_x, \rho_x} \left(\frac{1}{n} [S(X) + S(B_1 \cdots B_n) - S(XB_1 \cdots B_n)] \right)$$

evaluated on $\sum_x p_x |x\rangle\langle x| \otimes N^{\otimes n}(\rho_x)$

Mimic continuity argument for classical channels:

(1) Use the diamond norm (cb trace norm):

$$\|N_1 - N_2\|_{\diamond} := \max_{\rho} \|I \otimes N_1(\rho) - I \otimes N_2(\rho)\|_{\text{tr}}$$

(2a) $\sum_x p_x |x\rangle\langle x| \otimes N_1^{\otimes n}(\rho_x)$ and $\sum_x p_x |x\rangle\langle x| \otimes N_2^{\otimes n}(\rho_x)$ can be " $n\|N_1 - N_2\|_{\diamond}$ " apart.

(2b) evaluating $S(B_1 \cdots B_n)$ on the two states above

Fannes ineq bounds the difference as

"log dim" * distance of the two states + $\eta()$

$$\log d_{\text{out}}^n = n \log d - n\|N_1 - N_2\|_{\diamond}$$

Solution: tighter bound on entropy difference between two n -use output states.

Main lemma [continuity of output entropy]:

Let $N, M: A \rightarrow B$ be quantum channels, $d = \dim(B)$.

R reference system. If $\|N - M\|_{\diamond} \leq \varepsilon$, $\forall \rho_{RA^{\otimes n}}$,

$$|S(I \otimes N^{\otimes n}(\rho)) - S(I \otimes M^{\otimes n}(\rho))| \leq n [4\varepsilon \log d + 2H(\varepsilon)]$$

same state only 1 factor of n

The proof only requires:

- the telescopic sum,

- the triangular inequality, and

* the Fannes-Alicki inequality (quant-ph/0312081)

$$|S(K|L)_{\rho} - S(K|L)_{\sigma}| \leq \log[\dim(K)] \|\rho - \sigma\|_{\text{tr}} + \dots$$

no L

Main lemma [continuity of output entropy]:

Let $N, M: A \rightarrow B$ be quantum channels, $d = \dim(B)$.

R reference system. If $\|N - M\|_{\diamond} \leq \varepsilon$, $\forall \rho_{RA^{\otimes n}}$,

$$|S(I \otimes N^{\otimes n}(\rho)) - S(I \otimes M^{\otimes n}(\rho))| \leq n [4\varepsilon \log d + 2H(\varepsilon)]$$

Proof: Let $\sigma_k = I \otimes N^{\otimes k} \otimes M^{\otimes n-k}(\rho)$

now

If $|S(\sigma_k) - S(\sigma_{k-1})| \leq 4\varepsilon \log d + 2H(\varepsilon)$ prove this

$$\begin{aligned} \text{then } |S(I \otimes N^{\otimes n}(\rho)) - S(I \otimes M^{\otimes n}(\rho))| &= |S(\sigma_n) - S(\sigma_0)| \\ &= |\sum_{k=1}^n S(\sigma_k) - S(\sigma_{k-1})| \quad \text{telescopic sum} \\ &= \sum_{k=1}^n |S(\sigma_k) - S(\sigma_{k-1})| \quad \text{triangular ineq} \\ &\leq n [4\varepsilon \log d + 2H(\varepsilon)] \end{aligned}$$

Main lemma [continuity of output entropy]:

Let $N, M: A \rightarrow B$ be quantum channels, $d = \dim(B)$.

R reference system. If $\|N - M\|_{\diamond} \leq \varepsilon$, $\forall \rho_{RA^{\otimes n}}$,

$$|S(I \otimes N^{\otimes n}(\rho)) - S(I \otimes M^{\otimes n}(\rho))| \leq n [4\varepsilon \log d + 2H(\varepsilon)]$$

Proof: Let $\sigma_k = I \otimes N^{\otimes k} \otimes M^{\otimes n-k}(\rho)$

$$\begin{aligned} |S(\sigma_k) - S(\sigma_{k-1})| &= |S(CB_1 \cdots B_n)_{\sigma_k} - S(CB_1 \cdots B_n)_{\sigma_{k-1}}| \quad \text{inserting 0} \\ &= |S(CB_1 \cdots B_n)_{\sigma_k} - S(CB_1 \cdots B_{k-1} B_{k+1} \cdots B_n)_{\sigma_k}| \\ &\quad + |S(CB_1 \cdots B_{k-1} B_{k+1} \cdots B_n)_{\sigma_k} - S(CB_1 \cdots B_n)_{\sigma_{k-1}}| \\ &= |S(CB_1 \cdots B_n)_{\sigma_k} - S(CB_1 \cdots B_{k-1} B_{k+1} \cdots B_n)_{\sigma_k}| \\ &\quad + |S(CB_1 \cdots B_{k-1} B_{k+1} \cdots B_n)_{\sigma_{k-1}} - S(CB_1 \cdots B_n)_{\sigma_{k-1}}| \\ &\quad \boxed{\sigma_k \& \sigma_{k-1} \text{ differ only in } B_k} \end{aligned}$$

Main lemma [continuity of output entropy]:

Let $N, M: A \rightarrow B$ be quantum channels, $d = \dim(B)$.

R reference system. If $\|N - M\|_{\diamond} \leq \varepsilon$, $\forall \rho_{RA^{\otimes n}}$,

$$|S(I \otimes N^{\otimes n}(\rho)) - S(I \otimes M^{\otimes n}(\rho))| \leq n [4\varepsilon \log d + 2H(\varepsilon)]$$

Plug in the following:

$$C(N) = \lim_{n \rightarrow \infty} \max_{p_x, \rho_x} \left(\frac{1}{n} [S(X) + S(B_1 \cdots B_n) - S(XB_1 \cdots B_n)] \right)$$

evaluated on $\sum_x p_x |x\rangle\langle x| \otimes N^{\otimes n}(\rho_x)$

$$|C(N_1) - C(N_2)| \leq \max_x |f(X, N_1) - f(X, N_2)|$$

Get corollary 1: If $\|N_1 - N_2\|_{\diamond} \leq \varepsilon$, then

$$|C(N_1) - C(N_2)| \leq 8\varepsilon \log d + 4H(\varepsilon).$$

Proof: Let $\sigma_k = I \otimes N^{\otimes k} \otimes M^{\otimes n-k}(\rho)$

$$\begin{aligned} |S(\sigma_k) - S(\sigma_{k-1})| &= |S(CB_1 \cdots B_n)_{\sigma_k} - S(CB_1 \cdots B_n)_{\sigma_{k-1}}| \\ &= |S(CB_1 \cdots B_n)_{\sigma_k} - S(CB_1 \cdots B_{k-1} B_{k+1} \cdots B_n)_{\sigma_k}| \\ &\quad + |S(CB_1 \cdots B_{k-1} B_{k+1} \cdots B_n)_{\sigma_k} - S(CB_1 \cdots B_n)_{\sigma_{k-1}}| \\ &= |S(CB_1 \cdots B_n)_{\sigma_k} - S(CB_1 \cdots B_{k-1} B_{k+1} \cdots B_n)_{\sigma_k}| \\ &\quad + |S(CB_1 \cdots B_{k-1} B_{k+1} \cdots B_n)_{\sigma_{k-1}} - S(CB_1 \cdots B_n)_{\sigma_{k-1}}| \\ &\leq 4\|\sigma_k - \sigma_{k-1}\|_{\text{tr}} \log d + \dots \text{ thanks to Alicki-Fannes!} \\ &\leq 4\|N - M\|_{\diamond} \log d + \dots \text{ independent of dim of system being conditioned on!!} \\ &\leq 4\varepsilon \log d + 2H(\varepsilon) \end{aligned}$$

Buy 1 get 2 free:

- Quantum capacity (Lloyd-Shor-Devetak)

$$Q(N) = \lim_{n \rightarrow \infty} \max_{\psi} \frac{1}{n} I^{\text{coh}}(R > B_1 B_2 \dots B_n)$$

evaluated on $I \otimes N^{\otimes n}(\Psi_{RA_1 A_2 \dots A_n})$

Corollary 2: If $\|N_1 - N_2\|_1 \leq \varepsilon$, then $|Q(N_1) - Q(N_2)| \leq 8\varepsilon \log d + 4H(\varepsilon)$.

- Private classical capacity (Smith-Smolin-Winter)

$$C_p(N) = \lim_{n \rightarrow \infty} \max_{p_x, p_{x'}} \frac{1}{n} [I(X: B_1 B_2 \dots B_n) - I(X: E_1 E_2 \dots E_n)]$$

eval on $\sum_x p_x |x\rangle\langle x| \otimes U^{\otimes n}(\rho_x R A_1 A_2 \dots A_n)$

Corollary 3: If $\|N_1 - N_2\|_1 \leq \varepsilon$, then $|C_p(N_1) - C_p(N_2)| \leq 16\varepsilon \log d + 8H(\varepsilon)$.

Now what about Q_2 [quantum capacity assisted by free 2-way classical communication]?

There's no capacity expression, though $Q_2(N) = E(N)$ (entanglement capacity of the channel)

Guifre Vidal proved distillable entanglement is continuous. That doesn't imply anything for the entanglement capacity of a channel itself.

The result is not applicable, but the idea is.

If two distillable states ρ_1, ρ_2 are similar, n copies of ρ_1 can be converted into $\approx n$ copies ρ_2 with LOCC. So, distillable entanglement of ρ_1 cannot be much less than that of ρ_2 . Same with ρ_1 and ρ_2 interchanged.

Such conversion works for channels too!

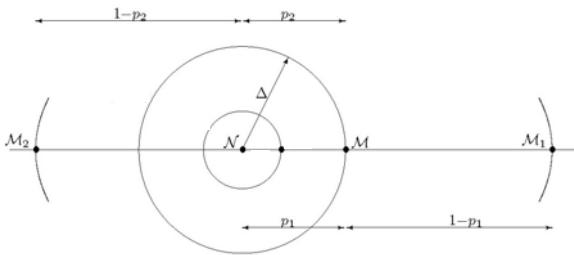
Continuity of Q_2 in the interior of $\{Q_2(N) > 0\}$

Given channels M, N with $Q_2 > 0$, $\exists M_1, M_2$ such that:

$$M = p_1 M_1 + (1-p_1) N$$

$$N = p_2 M_2 + (1-p_2) M$$

$$d = \min(d_{\text{in}}, d_{\text{out}})$$



Continuity of Q_2 in the interior of $\{Q_2(N) > 0\}$

Given channels M, N with $Q_2 > 0$, $\exists M_1, M_2$ such that:

$$M = p_1 M_1 + (1-p_1) N$$

$$N = p_2 M_2 + (1-p_2) M$$

$$d = \min(d_{\text{in}}, d_{\text{out}})$$

I. Simulate M using N:

(1) Simulate M using M_1, N , & free CC

Receiver tosses n coins with bias p_1 , tells sender with free CC, the i th coin toss decides whether M_1 or N is used for the i th simulation of M

$$np_1 M_1 + n(1-p_1) N \geq n M$$

(2) Simulate M_1 using I using N

$$np_1 (\log d / Q_2(N)) N \geq np_1 I \geq np_1 M_1$$

Compose (1) & (2): $n [p_1 \log d / Q_2(N) + (1-p_1)] N \geq n M$

$$\therefore [p_1 \log d / Q_2(N) + (1-p_1)] Q_2(N) \geq Q_2(M)$$

Rearranging: $p_1 (\log d - Q_2(N)) \geq Q_2(M) - Q_2(N)$

Continuity of Q_2 in the interior of $\{Q_2(N) > 0\}$

Given channels M, N with $Q_2 > 0$, $\exists M_1, M_2$ such that:

$$M = p_1 M_1 + (1-p_1) N$$

$$N = p_2 M_2 + (1-p_2) M$$

$$d = \min(d_{\text{in}}, d_{\text{out}})$$

I. Simulate M using N:

$$p_1 (\log d - Q_2(N)) \geq Q_2(M) - Q_2(N)$$

II. Simulate N using M:

Applying the same argument to the blue equation:

$$p_2 (\log d - Q_2(M)) \geq Q_2(N) - Q_2(M)$$

Thus, $|Q_2(N) - Q_2(M)| \leq \max(p_1, p_2) * \log d$

Continuity of Q_2 in the interior of $\{Q_2(N) > 0\}$

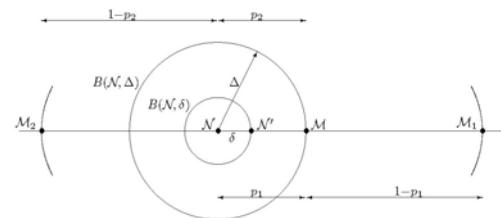
Given channels M, N with $Q_2 > 0$, $\exists M_1, M_2$ such that:

$$M = p_1 M_1 + (1-p_1) N$$

$$N = p_2 M_2 + (1-p_2) M$$

$$d = \min(d_{\text{in}}, d_{\text{out}})$$

$$|Q_2(N) - Q_2(M)| \leq \max(p_1, p_2) * \log d$$



Replace M by N' , then $p_1, p_2 \rightarrow 0$ & $|Q_2(N') - Q_2(N)| \rightarrow 0$

Same argument holds for $Q_B(N)$ (assisted by free back classical communication).

Q_B of the erasure channel is continuous in the erasure probability p for all p .

So, is continuity "obvious" ?

1. There are pairs of channels (N_1^n, N_2^n) s.t. as $n \rightarrow \infty$,
 $\|N_1^n - N_2^n\|_1 \rightarrow 0$, but $|C(N_1^n) - C(N_2^n)| = 1$

All the channels take a space spanned by $\{|1\rangle, |2\rangle, \dots\}$ to $\{|0\rangle, |1\rangle, |2\rangle, \dots\}$

$$\forall n, \quad N_1^n = N, \quad N(\rho) = \text{tr}(\rho) |0\rangle\langle 0|. \quad C(N) = 0.$$

$$N_2^n = \left(1 - \frac{1}{\log n}\right)N + \frac{1}{\log n} \text{id}_n. \quad C(N_2^n) \geq 1.$$

↑
identity on $|1\rangle, \dots, |n\rangle$, acts like N elsewhere

$$\|N_1^n - N_2^n\|_1 = \|N - \text{id}_n\|_1 / \log n \leq 2 / \log n$$

A slightly different type of channels exhibit the same phenomena for $Q(N)$

So, is continuity "obvious" ?

2. For classical arbitrary varying channels with const input/output dimensions, the capacity (allowing LOCAL randomness) is not continuous when the capacity drops to zero.

3. Unresolved cases:

is $Q_{2 \text{ or } B}(N)$ continuous where $Q_{2 \text{ or } B}(N) = 0$?
is $D_{1 \text{ or } 2}(\rho)$ continuous where $D_{1 \text{ or } 2}(\rho) = 0$?