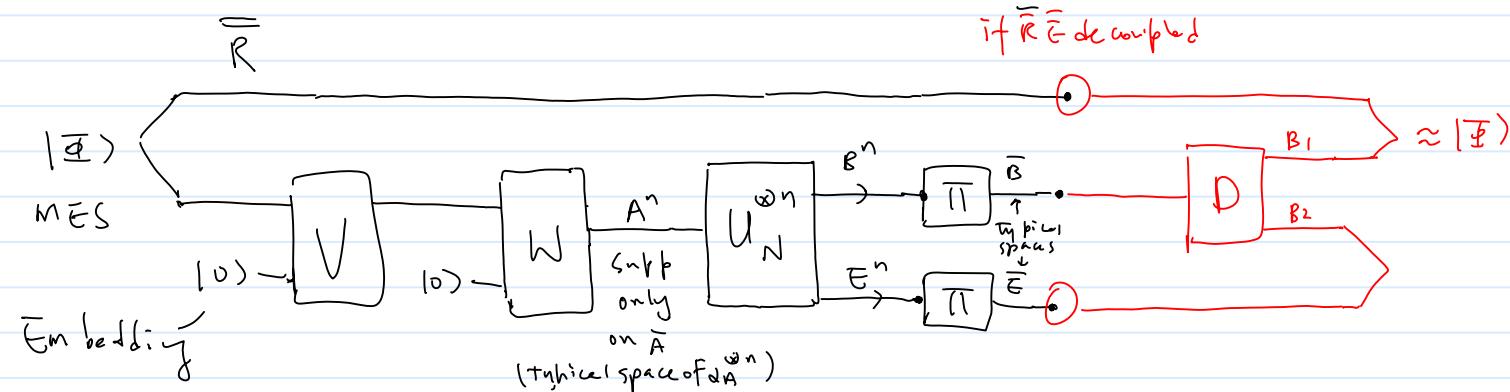
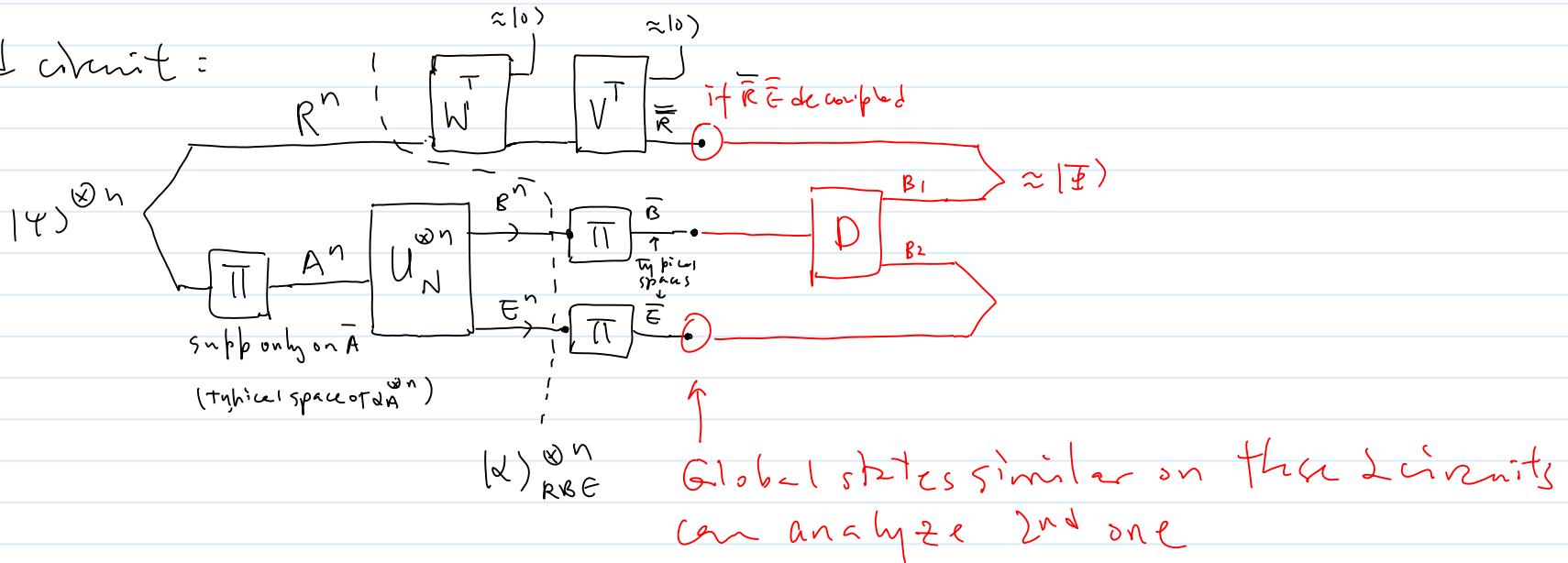
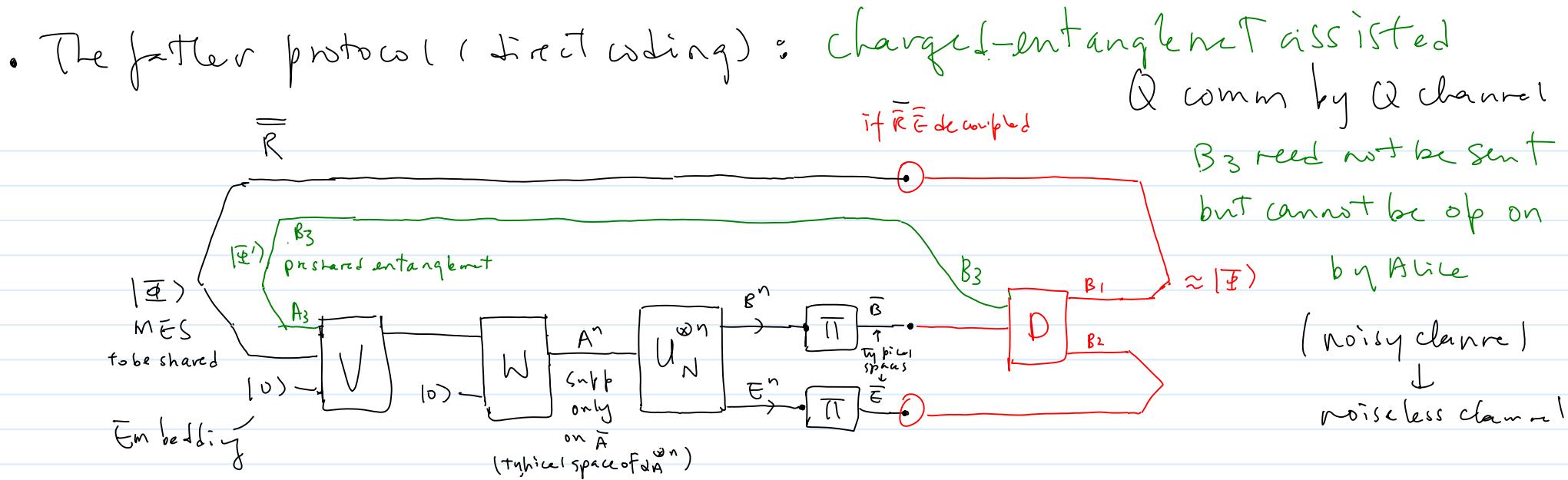


- Recall the coding protocol for the LSD theorem:

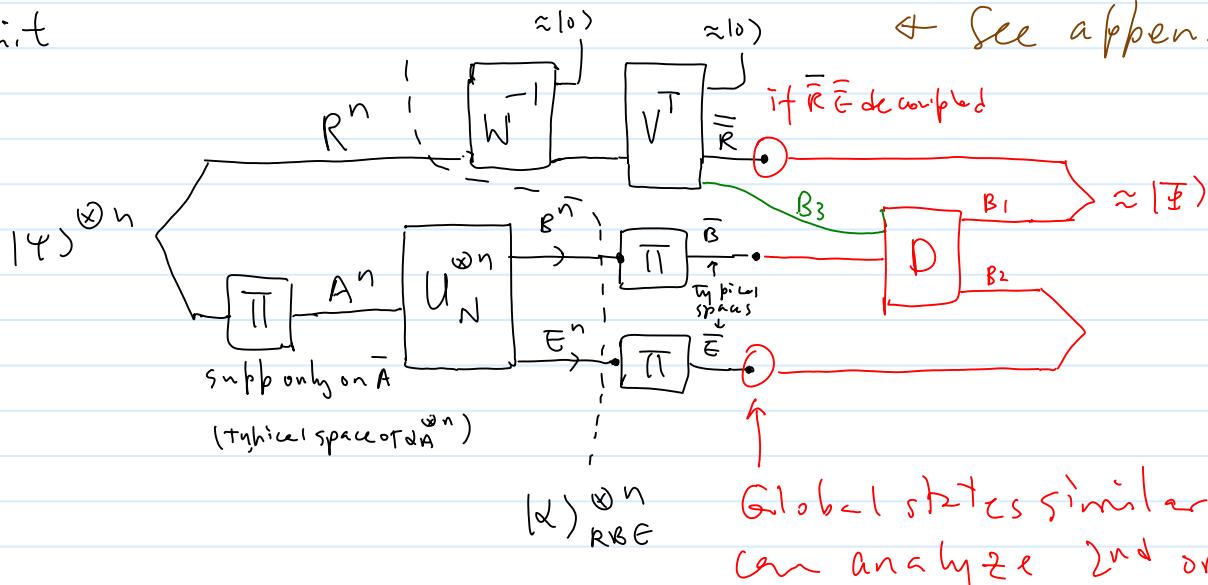


- A related circuit:



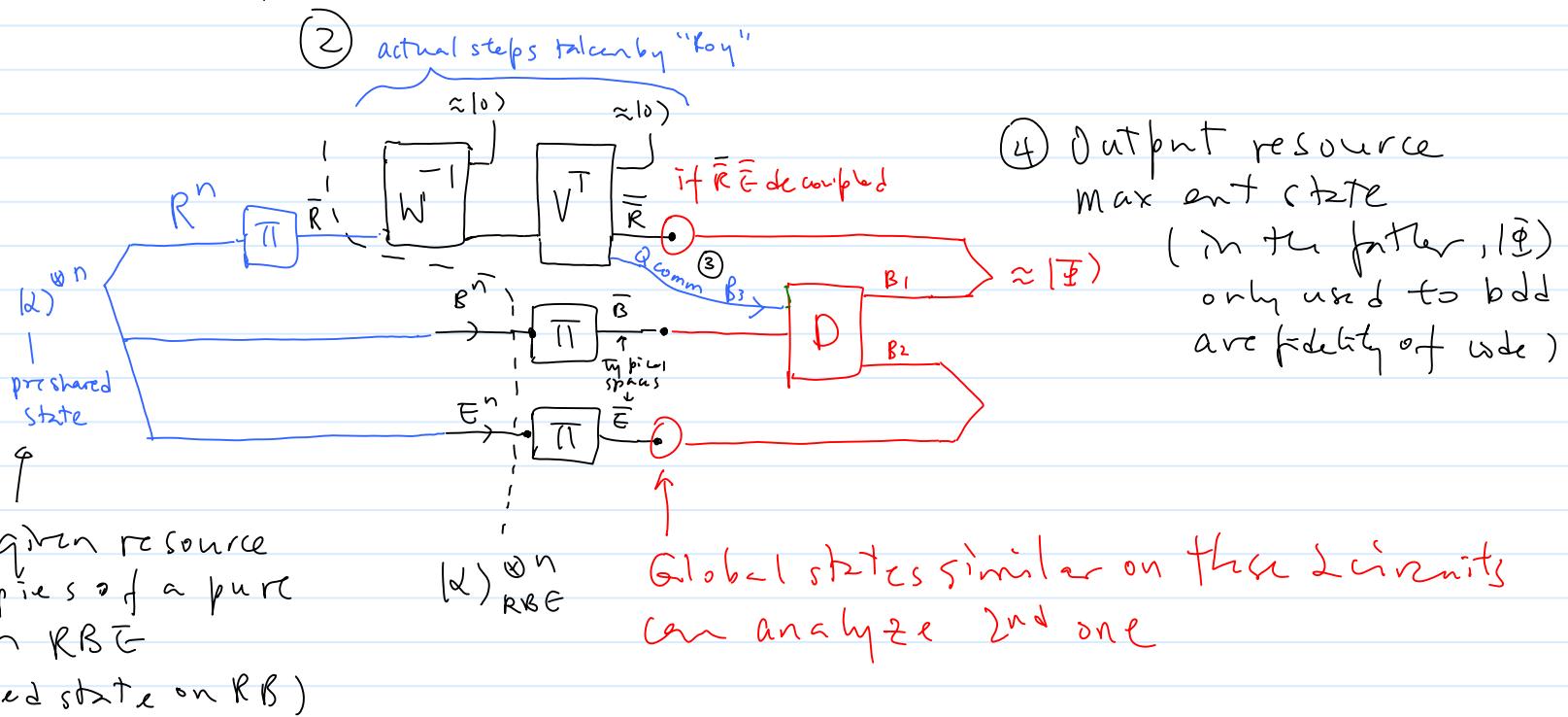


A related circuit



Choose basis for R
s.t. $W^T = W^{\dagger}$

- A protosol "mother" suggested by the related circuit:



Möller: Mixed state entanglement purification (noisy ent \rightarrow noiseless ent) using charged Q communication

Suffices to analyze mother (father follows with (2) = $I \otimes M_N(\Phi)$ same dim for \mathbb{K} & B_3).

Goal: $\max \text{dim}(\overline{\mathbb{R}})$ (Qcomm or
distillable entanglement obtained)

$\min \text{dim}(\mathbb{B}_3)$ (Noiseless ent or
Q communication ent)

while decoupling $\overline{\overline{\mathbb{R}}}\overline{\mathbb{E}}$ (to guarantee the job terminates)

Recall approx decoupling lemma: (lecture 10 p 11)

$$\text{If } \left\| f_{\bar{R}\bar{E}} - \left(\frac{I}{2^{nr}} \right)_{\bar{R}} \otimes f_{\bar{E}} \right\|_{\text{tr}} \leq \epsilon'$$

then $\exists |Y\rangle_{\bar{R}\bar{E}B_1B_2}$ purifying $f_{\bar{R}\bar{E}}$

$$\text{s.t. } \left\| \text{tr}_{\bar{E}B_2} (Y \times Y)_{\bar{R}\bar{E}B_1B_2} - |\bar{\Psi} \times \bar{\Psi}\rangle_{\bar{R}B_1} \right\|_{\text{tr}} \leq 2\sqrt{\epsilon'}$$

So we bound $\left\| f_{\bar{R}\bar{E}} - \left(\frac{I}{2^{nr}} \right)_{\bar{R}} \otimes f_{\bar{E}} \right\|_{\text{tr}}$

$\underbrace{\phantom{\left(\frac{I}{2^{nr}} \right)_{\bar{R}} \otimes f_{\bar{E}}}}_{M}$

Useful lemmas:

(L1) Cauchy-Schwarz inequality

$$\|M\|_{\text{tr}}^2 \leq \text{rank}(M) \text{tr}(M^T M) = \text{rank}(M) \|M\|_2^2$$

(L2) $\text{tr}(M^2) = \text{tr} \left(\underbrace{\text{SWAP}}_{\text{the operator taking } (ij) \rightarrow (ji)} M \otimes M \right)$

the operator taking $(ij) \rightarrow (ji)$ e.g $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Pf: $\text{tr}(M^2) = \sum_j \langle j | M | M | j \rangle$

Alternative
proof in
appendix 2

$$\begin{aligned} &= \sum_{i,j} \langle j | M | i \rangle \langle i | M | j \rangle \\ &= \sum_{i,j} \langle j | \langle i | M \otimes M | i \rangle | j \rangle \end{aligned}$$

$$= \text{tr} \left(\underbrace{\sum_{i,j} |i\rangle\langle j|} \otimes M \right)$$

SWAP

Q3 Let $S_1 = S_{11} S_{12} \dots S_{1s}$ be s 1-qubit systems

$$S_2 = S_{21} S_{22} \dots S_{2s} \quad - - - - -$$

Then $\text{SWAP}_{S_1 S_2} = \frac{1}{2^s} \sum_{P \in P_s} P \otimes P$
 $P \in P_s = 4^s$ Pauli matrices on s qubits

$$\text{Pf: } \text{SWAP}_{S_{11} S_{21}} = \frac{1}{2} (II + XX + YY + ZZ) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\text{SWAP}_{S_1 S_2} = \bigotimes_{i=1}^s \text{SWAP}_{S_{1i} S_{2i}} = \frac{1}{2^s} \sum_{P \in P_s} P \otimes P$$

state matrix extension of ρ_1 ie $\text{Tr}_2 \rho_{12} = \rho_1$

(L4) $\text{Tr}(\rho_1 \bar{Q}) = \text{Tr}(\rho_{12} Q \otimes I_2)$

(LS) $\mathbb{E} \left(V_{T_1 S_1}^+ \otimes V_{\bar{T}_2 S_2}^+ \right) \left(I_{T_1 \bar{T}_2} \otimes \text{SWAP}_{S_1 S_2} \right) \left(V_{T_1 S_1} \otimes V_{\bar{T}_2 S_2} \right)$

$V \in C_{s+t}$ = Clifford group on $s+t$ qubits

$$= \lambda I_{(T_1 S_1) (\bar{T}_2 S_2)} + \beta \text{SWAP}_{(T_1 S_1) (\bar{T}_2 S_2)}$$

$$\text{for } \lambda = 2^s \left[\frac{4^t - 1}{4^{s+t} - 1} \right] \leq \frac{1}{2^s} = \frac{1}{|S_1|}$$

$$\beta = 2^t \left[\frac{4^s - 1}{4^{s+t} - 1} \right] \leq \frac{1}{2^t} = \frac{1}{|T_1|}$$

pf: By (L3), LHS of (L5)

$$= \mathbb{E}_{V \in C_{s+t}} \left[V_{\tau_1 s_1}^+ \otimes V_{\tau_2 s_2}^+ \left[I_{\tau_1 \tau_2} \otimes \left(\sum_{P \in P_s} P_{s_1} \otimes P_{s_2} \right) \frac{1}{2^s} \right] V_{\tau_1 s_1} \otimes V_{\tau_2 s_2} \right]$$

• If $P = I$, $\mathbb{E}_{V \in C_{s+t}} \left[V_{\tau_1 s_1}^+ \otimes V_{\tau_2 s_2}^+ \left[I_{\tau_1 \tau_2} \otimes I_{s_1 s_2} \right] V_{\tau_1 s_1} \otimes V_{\tau_2 s_2} \right]$

$$= I_{\tau_1 s_1 \tau_2 s_2}$$

• If $P \neq I$, $\mathbb{E}_{V \in C_{s+t}} \left[V_{\tau_1 s_1}^+ \otimes V_{\tau_2 s_2}^+ \left[(I_{\tau_1} P_{s_1}) \otimes (I_{\tau_2} P_{s_2}) \right] V_{\tau_1 s_1} \otimes V_{\tau_2 s_2} \right]$

see Appendix 3

$$= \mathbb{E}_{V \in C_{s+t}} \left[V_{\tau_1 s_1}^+ (I_{\tau_1} P_{s_1}) V_{\tau_1 s_1} \otimes V_{\tau_2 s_2}^+ (I_{\tau_2} P_{s_2}) V_{\tau_2 s_2} \right]$$

The Clifford group permutes Pauli matrices by conjugation

Δ acts transitively on all the non-identity Paulis.

(for any $P_1 \neq I$, $P_2 \neq I$, $\exists V$ s.t. $VP_1V^+ = P_2$)

$$+ = \frac{1}{\begin{matrix} \text{---} \\ 4^{s+t} - 1 \end{matrix}} \sum_{Q \in P_{s+t}, Q \neq I} (Q \otimes Q)$$

of possible $Q = V^+ (I \otimes P) V \neq I$, $Q \in P_{s+t}$

$$\textcircled{13} = \left(\frac{1}{\begin{matrix} \text{---} \\ 4^{s+t} - 1 \end{matrix}} \right) \left(2^{s+t} \text{ SWAP}_{(\tau_1, s_1)(\tau_2, s_2)} - I \otimes I \right)$$

So this is (LS)

$$= \mathbb{E}_{V \in C_{s+t}} \left[V_{\bar{\tau}_1 S_1}^+ \otimes V_{\bar{\tau}_2 S_2}^+ \left[\mathbb{I}_{\bar{\tau}_1 \bar{\tau}_2} \otimes \left(\sum_{p \in P_s} P_{S_1} \otimes P_{S_2} \right) \frac{1}{2^s} \right] V_{\bar{\tau}_1 S_1} \otimes V_{\bar{\tau}_2 S_2} \right]$$

$$= \frac{1}{2^s} \left(P = I \text{ case} \right) + \frac{4^s - 1}{2^s} \left(P \neq I \text{ case} \right)$$

$$= \frac{1}{2^s} \mathbb{I}_{\bar{\tau}_1 S_1 \bar{\tau}_2 S_2} + \frac{4^s - 1}{2^s} \frac{1}{4^{s+t} - 1} \left(2^{s+t} \text{SWAP}_{(\bar{\tau}_1 S_1)(\bar{\tau}_2 S_2)} - \mathbb{I}_{\bar{\tau}_1 S_1 \bar{\tau}_2 S_2} \right)$$

$$= \frac{1}{2^s} \left(1 - \frac{4^s - 1}{4^{s+t} - 1} \right) \mathbb{I}_{\bar{\tau}_1 S_2} \mathbb{I}_{\bar{\tau}_2 S_2} + 2^t \frac{4^s - 1}{4^{s+t} - 1} \text{SWAP}_{(\bar{\tau}_1 S_1)(\bar{\tau}_2 S_2)}$$

$$\frac{1}{2^s} \left(\frac{4^{s+t} - 4^s}{4^{s+t} - 1} \right) = 2^s \left(\frac{4^t - 1}{4^{s+t} - 1} \right) = 2 \quad \beta$$

NB The average over Clifford group in \mathbb{L}_5 same as average over V drawn over the Haar meas.

The above allows stabilizer codes (not random codes) to be used.

A slightly modified proof (appendix 3) shows that the Clifford group is a "2-design".

$$\text{Back to } \left\| f_{\bar{R}\bar{E}} - \left(\frac{I}{2^{nr}}\right)_{\bar{R}} \otimes f_{\bar{E}} \right\|_2^2$$

$$= \text{tr} \left[\left(f_{\bar{R}\bar{E}} - \left(\frac{I}{2^{nr}}\right)_{\bar{R}} \otimes f_{\bar{E}} \right) \left(f_{\bar{R}\bar{E}} - \left(\frac{I}{2^{nr}}\right)_{\bar{R}} \otimes f_{\bar{E}} \right) \right]$$

$$= \text{tr} \left(f_{\bar{R}\bar{E}}^2 \right) - 2 \text{tr} \left(f_{\bar{R}\bar{E}} \left(\frac{I}{2^{nr}}\right)_{\bar{R}} \otimes f_{\bar{E}} \right) + \text{tr} \left(\left(\frac{I}{2^{nr}}\right)_{\bar{R}}^2 \otimes f_{\bar{E}}^2 \right)$$

$$= \text{tr} \left(f_{\bar{R}\bar{E}}^2 \right) - 2 \left(\frac{1}{2^{nr}} \right) \underbrace{\text{tr} \left(f_{\bar{R}\bar{E}} (I_{\bar{R}} \otimes f_{\bar{E}}) \right)}_{\text{L4}} + \frac{1}{2^{nr}} \text{tr} f_{\bar{E}}^2$$

$$\text{tr} \left(\text{tr}_{\bar{R}} (f_{\bar{R}\bar{E}}) \cdot f_{\bar{E}} \right) = \text{tr} (f_{\bar{E}} \cdot f_{\bar{E}})$$

$$= \text{tr} \left(f_{\bar{R}\bar{E}}^2 \right) - \frac{1}{2^{nr}} \text{tr} f_{\bar{E}}^2$$

Now bounding $\mathbb{E}_{\sqrt{}} \text{tr} (f_{\bar{R}, \bar{E}})^2$

(12)

$$= \mathbb{E}_{\sqrt{}} \text{tr} \left[(P_{\bar{R}, \bar{E}_1} \otimes P_{\bar{R}_2, \bar{E}_2}) \text{SWAP}_{(\bar{R}, \bar{E}_1) (\bar{R}_2, \bar{E}_2)} \right]$$

(14)

$$= \mathbb{E}_{\sqrt{}} \text{tr} \left[(P_{B_3, \bar{R}, \bar{E}_1} \otimes f_{B_3, \bar{R}_2, \bar{E}_2}) (I_{B_3, B_3} \otimes \text{SWAP}_{\bar{R}, \bar{R}_2} \otimes \text{SWAP}_{\bar{E}, \bar{E}_2}) \right]$$

$\underbrace{V_{B_3, \bar{R}, \bar{E}_1} \otimes I_{\bar{E}_1} (\lambda_{\bar{R}, \bar{E}_1}) V_{B_3, \bar{R}, \bar{E}_1}^+ \otimes I_{\bar{E}_1}}$ \downarrow $\boxed{\bar{R}_1 = \bar{R}_1 B_3}$
 \downarrow similarly

cyclic tr

$$= \mathbb{E}_{\sqrt{}} \text{tr} \left[(\lambda_{\bar{R}, \bar{E}_1} \otimes \lambda_{\bar{R}_2, \bar{E}_2}) \times \right. \\
\left. (V_{B_3, \bar{R}, \bar{E}_1}^+ \otimes V_{B_3, \bar{R}_2, \bar{E}_2}^+ \otimes I_{\bar{E}_1, \bar{E}_2} (I_{B_3, B_3} \otimes \text{SWAP}_{\bar{R}, \bar{R}_2} \otimes \text{SWAP}_{\bar{E}, \bar{E}_2}) V_{B_3, \bar{R}, \bar{E}_1} \otimes V_{B_3, \bar{R}_2, \bar{E}_2} \otimes I_{\bar{E}_1, \bar{E}_2}) \right]$$

$$= \text{Tr} \left[(\mathcal{L}_{\bar{R}, \bar{E}_1} \otimes \mathcal{L}_{\bar{R}_2, \bar{E}_2}) \times \left(\bigvee \mathcal{V}_{B_3 \bar{R}_1}^+ \otimes \mathcal{V}_{B_3 \bar{R}_2}^+ \otimes \mathcal{I}_{\bar{E}_1 \bar{E}_2} \left(\mathcal{I}_{B_3 1} \otimes \text{SWAP}_{\bar{R}_1 \bar{R}_2} \otimes \text{SWAP}_{\bar{E}_1 \bar{E}_2} \right) \mathcal{V}_{B_3, \bar{R}_1} \otimes \mathcal{V}_{B_3, \bar{R}_2} \otimes \mathcal{I}_{\bar{E}_1 \bar{E}_2} \right) \right]$$

$$= \text{Tr} \left[(\mathcal{L}_{\bar{R}, \bar{E}_1} \otimes \mathcal{L}_{\bar{R}_2, \bar{E}_2}) \times \left(\bigvee \mathcal{V}_{B_3 \bar{R}_1}^+ \otimes \mathcal{V}_{B_3 \bar{R}_2}^+ \left(\mathcal{I}_{B_3 1} \otimes \text{SWAP}_{\bar{R}_1 \bar{R}_2} \right) \mathcal{V}_{B_3, \bar{R}_1} \otimes \mathcal{V}_{B_3, \bar{R}_2} \otimes \text{SWAP}_{\bar{E}_1 \bar{E}_2} \right) \right]$$

(L3)

$$\leq \text{Tr} \left[(\mathcal{L}_{\bar{R}, \bar{E}_1} \otimes \mathcal{L}_{\bar{R}_2, \bar{E}_2}) \times \left(\left(\frac{1}{|\bar{R}|} \mathcal{I}_{B_3, \bar{R}_1} \mathcal{V}_{B_3, \bar{R}_2} + \frac{1}{|B_3|} \text{SWAP}_{(B_3, \bar{R}_1)(B_3, \bar{R}_2)} \right) \otimes \text{SWAP}_{\bar{E}_1 \bar{E}_2} \right) \right]$$

$$= \frac{1}{|\bar{R}|} \text{Tr} \left(\mathcal{L}_{\bar{E}_1} \otimes \mathcal{L}_{\bar{E}_2} \text{SWAP}_{\bar{E}_1 \bar{E}_2} \right) + \frac{1}{|B_3|} \text{Tr} \left(\mathcal{L}_{\bar{R}, \bar{E}_1} \otimes \mathcal{L}_{\bar{R}_2, \bar{E}_2} \text{SWAP}_{\bar{R}, \bar{E}_1 \bar{R}_2 \bar{E}_2} \right)$$

$$= \frac{1}{|\mathbb{E}|} \operatorname{tr} \left(\mathcal{Q}_{\mathbb{E}}^2 \right) + \frac{1}{|\mathcal{B}_3|} \operatorname{tr} \left(\mathcal{Q}_{\mathbb{R}\mathbb{E}}^2 \right)$$

$$\left\| \mathcal{P}_{\mathbb{R}\mathbb{E}} - \left(\frac{\mathbb{I}_{2^{nr}}}{2^{nr}} \right)_{\mathbb{R}}^{\otimes} \mathcal{P}_{\mathbb{E}} \right\|_2^2 \leq \left(\frac{1}{|\mathbb{E}|} \operatorname{tr} \left(\mathcal{Q}_{\mathbb{E}}^2 \right) + \frac{1}{|\mathcal{B}_3|} \operatorname{tr} \left(\mathcal{Q}_{\mathbb{R}\mathbb{E}}^2 \right) \right) - \underbrace{\sum_{i=1}^{nr} \operatorname{tr} \frac{p_i^2}{|\mathbb{E}|}}_{\text{gap}}$$

$$= \frac{1}{|\mathcal{B}_3|} \operatorname{tr} \left(\mathcal{Q}_{\mathbb{R}\mathbb{E}}^2 \right)$$

$$\text{By (1)}, \quad \left\| \mathcal{P}_{\mathbb{R}\mathbb{E}} - \left(\frac{\mathbb{I}_{2^{nr}}}{2^{nr}} \right)_{\mathbb{R}}^{\otimes} \mathcal{P}_{\mathbb{E}} \right\|_{\operatorname{tr}}^2 \leq \frac{|\mathbb{E}|}{|\mathcal{B}_3|} \operatorname{tr} \left(\mathcal{Q}_{\mathbb{R}\mathbb{E}}^2 \right)$$

$\mathcal{Q}_{\mathbb{R}\mathbb{E}} = (\mathcal{Q}_{\mathbb{R}\mathbb{E}})^{\otimes n}$ projected onto
 typical space of \mathbb{E} . Each eigenvalue
 $\approx \frac{1}{2^{nS(\mathbb{R}\mathbb{E})}}$ $\therefore \operatorname{tr} \left(\mathcal{Q}_{\mathbb{R}\mathbb{E}}^2 \right) \approx \frac{1}{2^{nS(\mathbb{R}\mathbb{E})}}$

$$\text{If we choose } |\bar{r}| = 2^{\frac{n}{2}} [S(R=B)_2 - \delta]$$

$$|B_3| = 2^{\frac{n}{2}} [S(R=E)_2 + \delta]$$

$$\text{then } \| \cdot \|_{Tr}^2 \leq \frac{2^{\frac{n}{2}} [S(R=B)_2 - \delta]}{2^{\frac{n}{2}} [S(R=E)_2 + \delta]} \times \frac{2^{\frac{n}{2}} [S(E)_2 + \varepsilon]}{2^{\frac{n}{2}} [S(R=E)_2 - \varepsilon]}$$

$$= 2^{\frac{n}{2}} \left[\left(\cancel{S(R)} + S(B) - S(R=E) \right)_2 - \left(\cancel{S(R)} + S(E) - S(R=E) \right)_2 - 2\delta \right] \frac{n(S(E)_2 - S(R=E)_2 + 2\varepsilon)}{2^{\frac{n}{2}}}$$

$$= 2^{\frac{n}{2}} \left[S(B)_2 - S(R=E)_2 - \delta \right] \frac{n(S(E)_2 - S(R=E)_2 + 2\varepsilon)}{2^{\frac{n}{2}}}$$

$$= 2^{-n} (\delta - 2\varepsilon)$$

$$\text{choose } \delta = 3\varepsilon$$

$$= 2^{-n\varepsilon} \rightarrow 0 \text{ as } n \rightarrow \infty$$

fixed by how good
the typical spaces are

NB the unassisted case (the LSP then) has $|B_3| = 1$

$$\begin{aligned} \text{We choose } |\bar{R}| &= \sqrt{\frac{n}{2} \left(S(R:B) - S(R:E) \right) - 2\delta} \\ &= \sqrt{n \left[I_c(R:B) - \delta \right]} \end{aligned}$$

and the same decoupling condition for $\bar{R} \bar{E}$ holds.

The mapping from the direct coding scheme to the decoupling condition based on $\alpha^{\otimes n}$ has a glitch:

$$\begin{array}{c} \text{---} \\ (S) \end{array} \xrightarrow{\text{---}} \begin{array}{c} \text{---} \\ (S) \end{array} \boxed{V} = \begin{array}{c} \text{---} \\ (S) \end{array} \boxed{U} \xrightarrow{\text{---}} \begin{array}{c} \text{---} \\ (S) \end{array} \boxed{D}$$

for other ways out comes, decoupling still works but the proof is involved (see 0702005 pg 9-10 pf of Thm IV), & omitted

Alt: just use the father to get LSP.

① mother:

$$n \{ \text{gfg} \} + \frac{n}{2} (S(R:E) + \delta) [g \rightarrow f] \geq \frac{n}{2} (S(R:B) - \delta) [g \rightarrow f]$$

noisy static 2-party quantum resource (\mathcal{R}_{RB} here) evaluated on α qbit noiseless dynamical

the more Eric has the more assistance it takes to decompile

Bob's full potential

bits

② father:

$$n \{ f \rightarrow g \} + \frac{n}{2} (S(R:E) + \delta) [g \rightarrow f] \geq \frac{n}{2} (S(R:B) - \delta) [g \rightarrow f]$$

noisy dynamical resource (N here) eval on $I \otimes U_N | \phi \rangle = | 12 \rangle$ qbit

Note that we have asymptotic approximate resource inequalities here. Say, $XXX \geq YYY$. We demand the output resource YYY (lesser side) to be close to the ideal resource in trace distance or diamond norm. This ensures the protocol underlying the resource inequality can be used as a subroutine in any other protocol to produce YYY (using XXX) and when YYY is consumed, it is basically as good as ideal.

Say, $XXX + ZZZ \geq YYY + ZZZ \geq KKK$

The first inequality only holds if $XXX \geq YYY$ is given by a protocol producing sufficiently

Appendix 1 :

Let $\begin{cases} d \\ d \end{cases}$ denote $\sum_{i=1}^d r_i |i\rangle$ = $\sqrt{d} \times \text{max ent state}$

The well-known transpose trick says the following:

$\forall d \times d$ matrices M

$$\begin{cases} d \\ d \end{cases} \xrightarrow{M} \begin{cases} d \\ d \end{cases} = \begin{cases} d \\ d \end{cases} \xrightarrow{M^T} \begin{cases} d \\ d \end{cases} \quad (\text{This holds also for MES})$$

This can be generalized:

$\forall d' \times d' d$ M

$$\begin{cases} d \\ d \\ d' \\ d' \end{cases} \xrightarrow{M} \begin{cases} d \\ d \\ d' \\ d' \end{cases} = \begin{cases} d \\ d \\ d' \\ d' \end{cases} \xrightarrow{M^T} \begin{cases} d \\ d \\ d' \\ d' \end{cases} \quad \text{Dimensions (projection onto } d' \text{)} \quad (\text{Remember to re-insert the normalization when applying this to max ent states})$$

Pf The output of the LHS

$$= I \otimes V \left(\sum_i |i\rangle \langle i| \right) |0\rangle \quad \left[\text{Let } V |i\rangle = \sum_{rs} V_{ij} |rs\rangle \right]$$

$$= \sum_i |i\rangle \sum_{rs} V_{i0} |rs\rangle$$

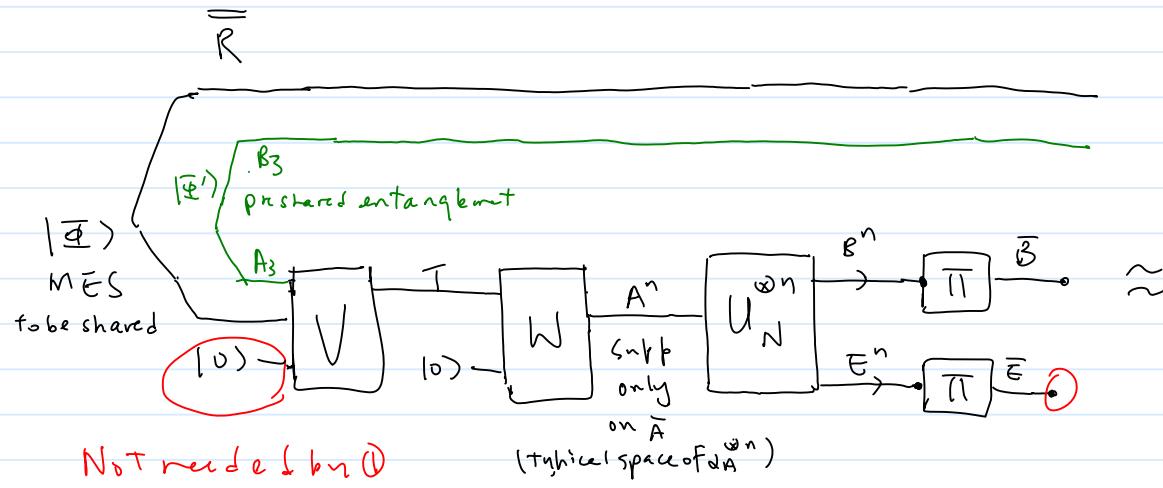
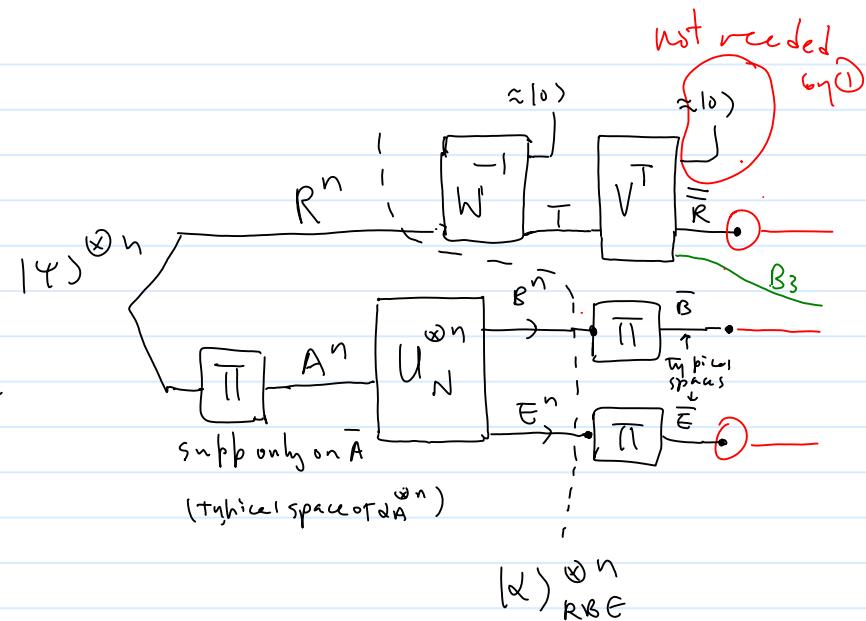
$$= \sum_{rs} \left(\sum_i V_{i0} |rs\rangle \right) |rs\rangle$$

$$\left[|V^\top|rs\rangle = \sum_i V_{ij} |rs\rangle \right]$$

$$= \sum_{rs} \left(I \otimes |0\rangle \langle 0| \right) (V^\top |rs\rangle) \otimes |rs\rangle$$

$$= (I \otimes |0\rangle \langle 0| \otimes I) (V^\top \otimes I) \sum_{rs} |rs\rangle \langle rs| = \text{output of RHS}$$

for our purpose, ie to show



We don't need the above generalization of the transpose trick.

$$\textcircled{1} \text{ In the end, } \dim(\bar{R}) = 2^{\frac{n}{2} [S(R-B)_2 - \delta]} \\ \dim(B_3) = 2^{\frac{n}{2} [S(R-E)_2 + \delta]}$$

$$\text{So } \dim(\mathbb{R} B_3) = \dim(\tau) = 2^n (S(R) + \varepsilon) \\ (\text{if necessary add } \varepsilon \text{ terms to } \dim(B_3))$$

(For the unassisted case (the LSD thm with $(B_3) = 0$))

Moving V to the upper register requires an actual proj in the upper register. We can have a meas affecting one out of many possible projections.

Thm IV of 0702005 is needed to ensure any outcome gives the same decoupling condition.)

② To move W : note initial state on RHS \approx MES on $2^{n_{S(R)}^L}$ dims not $2^{n_R^L}$ dims. So moving W to W^\top only requires the original transpose trick.

Appendix 2:

Alt proof for L2: $\text{tr}(M^2) = \text{tr}(\text{SWAP } M \otimes M)$

Pf: $\text{tr}(\text{SWAP } M \otimes M)$

$$= \text{tr}(\text{SWAP } M \otimes I \cdot I \otimes M)$$

$$= \text{tr}(\underbrace{\text{SWAP } M \otimes I \quad \text{SWAP } I \otimes M}_{\text{SWAP } I \otimes M})$$

$$= \text{tr}(I \otimes M \quad \text{SWAP } I \otimes M)$$

$$= \text{tr}(\text{SWAP } I \otimes M^2) \stackrel{(L4)}{=} \text{tr}\underbrace{\left[\text{tr}, \text{SWAP}\right]}_{I} M^2$$

$$= \text{tr}(M^2)$$

$\stackrel{!}{=}$ (see next page)

$$\text{NB } \text{Tr}_1(\text{SWAP}) = \mathbb{I}$$

↙ kronecker δ-fcn.

$$\text{Pf: } \text{SWAP} = \sum_{i,j} |i\rangle\langle j| \otimes |j\rangle\langle i|, \text{ Tr}(|i\rangle\langle j|) = \delta_{ij}$$

$$\therefore \text{Tr}_1(\text{SWAP}) = \sum_{i,j} \delta_{ij} |i\rangle\langle j| = \mathbb{I} \text{ (on 2nd sys)}$$

Appendix 3:

Let $\Upsilon(M) = \sum_{V \in C_{S+T}} V \otimes V M V^+ \otimes V^+$
 $V \in C_{S+T}$ (Upper group on $S+T$ qubits)

① If $P \neq I$, $P \in P_{S+T}$ (Pauli group on $S+T$ qubits)

then $\Upsilon(P \otimes P) = \frac{1}{4^{S+T} - 1} \sum_{\substack{Q \in P_{S+T} \\ Q \neq I}} Q \otimes Q$

Pf: Note that C_{S+T} is transitive on $P_{S+T} - \{I\}$

i.e. for any $Q_1, Q_2 \in P_{S+T} - \{I\}$

$$\exists W \in C_{S+T} \text{ s.t. } W Q_1 W^+ = Q_2$$

Also, $\forall V \in C_{S+t}$, $V(P_{S+t} - \{I\}) V^*$ only permutes elements of $P_{S+t} - \{I\}$.

$$\text{So } T(P \otimes P) = \sum_{Q \in P_{S+t} - \{I\}} \mu(Q) Q \otimes Q \text{ for some distribution } \mu(Q)$$

If $\mu(Q)$ not uniform, then $\exists Q_1, Q_2$ s.t. $\mu(Q_1) \neq \mu(Q_2)$

$$\text{let } w' Q, w'^+ = Q_2$$

$$\text{then } T(P \otimes P) = w' T(P \otimes P) w'^+ \quad \left(\begin{array}{l} \text{this merely changes} \\ \mathbb{E}_{V \in C_{S+t}} \text{ to } \mathbb{E}_{W V \in C_{S+t}} \end{array} \right)$$

$$\begin{aligned} Q_2 \otimes Q_2 \text{ has weight } \mu(Q_2) \text{ on LHS} \\ Q_2 \otimes Q_2 - \dots \text{ has weight } \mu(Q_1) \text{ on RHS} \end{aligned} \quad \bigg\} \otimes$$

($\because w'$ is a permutation on $P_{S+t} - \{I\}$, the $Q_2 \otimes Q_2$ term in the

2nd line can only come from the $Q \otimes Q$, term before conjugation by W .)

But $\{Q \otimes Q\}$ is true orthonormal.

∴ $\textcircled{*}$ is a contradiction ∵ $\mu(Q)$ has to be uniform

$$\textcircled{2} \quad \mathcal{T}(P \otimes Q) = 0 \quad \forall P \neq Q, P, Q \in \mathcal{P}_{st}$$

Pf. WLOG $P \neq I$ (at least one of $P, Q \notin \mathcal{I}$)

Then are 4^{st-2} Pauli's anti-commuting with P
& commuting with Q

Let R be one of them

$$T(P \otimes Q) = \overline{\mathbb{E}}_{V \otimes V} P \otimes Q V^* V^T$$

$$V \in C_{S+T}$$

$$= \sum_{V \in C_{S+T}} \left[\overline{\mathbb{E}}_{V \otimes V} P \otimes Q V^* V^T + \overline{\mathbb{E}}_{V \in C_{S+T}} V R \otimes V R^* P \otimes Q (V R)^* \otimes (V R)^T \right]$$

$$= 0.$$

So $\forall M$, $T(M)$ = linear combination of II & $SWAP$.

It easy to show that the wiffs are same as that of

$$\int_{\mathcal{D}^M} U \otimes U^* M U^* \otimes U^* \quad (\text{averaging } U \text{ over Haar measure}).$$

(See Q. 4. Entangling for Divincenzo, L. Terhal for detail.)