

Last time:

Theorem [Shannon's noisy coding theorem]

$$C(N) = \max_{p(x)} I(X:Y)$$

How to prove this?

1. Direct coding – consider high-rate codes

Not easy -- instead, consider "random" (M,n) codes with rate $= I(X:Y)$ and show $\text{Prob}(EP_e \rightarrow 0) > 0$.

Thus \exists code with small EP_e (our 2nd encounter with "existential proofs"). Extract a subcode with similar rate but $P_e \rightarrow 0$.

2. Converse – show that at higher rates, $EP_e \not\rightarrow 0$.

Plan: 2, then heuristic 1, then 1.

1. Direct coding: $c_1 = x_{11}, x_{12}, \dots, x_{1n}$
 $c_2 = x_{21}, x_{22}, \dots, x_{2n}$ x_{ij} chosen iid $\sim p(x)$

.

.

$c_M = x_{M1}, x_{M2}, \dots, x_{Mn}$

Better proof why $P_e \rightarrow 0$.

Long version (18 pages) available in homepage,
here, a 6-page version skipping ε , δ & some details.

Recall:

Def[typical sequence]:

x^n ε -typical if $|-1/n \log(p(x^n)) - H(X)| \leq \varepsilon$

It means $2^{-n(H(X)+\varepsilon)} \leq p(x^n) \leq 2^{-n(H(X)-\varepsilon)}$.

\begin{General technical tool}

Def[Jointly typical sequence]:

$x^n y^n$ ε -jointly-typical if

$|-1/n \log(p(x^n y^n)) - H(XY)| \leq \varepsilon$

where $p(x^n y^n) = \prod_{i=1}^n p(x_i y_i)$.

Need also: (a) $|-1/n \log(p(x^n)) - H(X)| \leq \varepsilon$

[The strong typicality has (c) \Rightarrow (a,b),

(b) $|-1/n \log(p(y^n)) - H(Y)| \leq \varepsilon$

but not for entropic typicality.]

Def[Jointly-typical set]: $A_{n,\varepsilon} = \{x^n y^n \text{ } \varepsilon\text{-jointly typical}\}$

Joint asymptotic equipartition (Joint AEP) theorem:

Let (X^n, Y^n) be sequences of length n

drawn iid according to $p(x^n y^n) = \prod_{i=1}^n p(x_i y_i)$.

Then:

$$1. \Pr(X^n Y^n \in A_{n,\varepsilon}) \rightarrow 1$$

$$2. |A_{n,\varepsilon}| \approx 2^{nH(XY)}$$

$$3. \text{if we draw } X^n \text{ & } Y^n \text{ according to } q(x^n y^n) = p(x^n) p(y^n).$$

$$\Pr_q(\text{outcome} \in A_{n,\varepsilon}) \approx 2^{-nI(X:Y)}$$

Proved in the 18 page notes, similar to the proof for the asymptotic equipartition thm.

More observations:

Given $y^n \in T_{n,\varepsilon}^Y$, collect in a set $S(y^n)$
all those $x^n \in T_{n,\varepsilon}^X$ s.t. $x^n y^n \in A_{n,\varepsilon}$.

$$(1) p(x^n|y^n) = p(x^n y^n) / p(y^n) \approx 2^{-n[H(XY)-H(Y)]} = 2^{-n[H(X|Y)]}$$

↑ since $x^n y^n \in A_{n,\varepsilon}$!!

$$(2) 1 = \sum_{x^n \in S} p(x^n|y^n) \approx |S(y^n)| 2^{-n[H(X|Y)]}$$

Hence, $|S(y^n)| \approx 2^{nH(X|Y)}$. Fraction of such $x^n \approx 2^{-nI(X:Y)}$.

Similarly, given $x^n \in T_{n,\varepsilon}^X$, $\approx 2^{nH(Y|X)}$ y^n 's are jointly typical with it, and the fraction of such $y^n \approx 2^{-nI(X:Y)}$.

Make a table of typical x^n 's and y^n 's, and for jointly typical x^ny^n , put a 1, else, put a 0.

	$y^{n(1)}$	\dots	$y^{n()}$	$\leftarrow \approx 2^{nH(Y)}$ entries
$x^{n(1)}$				
$x^{n(2)}$				
.				
.				
$x^{n()}$				

$\approx 2^{nH(X)}$ entries

each row has $\approx 2^{nH(Y|X)}$ 1's
each column $\approx 2^{nH(X|Y)}$ 1's
total: $\approx 2^{nH(XY)}$ 1's

$\backslash \text{end}\{ \text{General technical tool} \}$

Our random code corresponds to M randomly chosen rows.

Back to the direct coding proof:

D_n : typical set decoding

Given y^n :

If there is a unique $x^n \in S(y^n)$ output m' s.t. $c_{m'} = x^n$.
Else, output $W=M+1$ (error symbol).

How will this fail for input message m ?

Either - no such m'

Err_0 unlikely-only when $x^n y^n$ not jointly typical

- or $\exists m'' \neq m$ with $c_{m''} y^n \in A_{\varepsilon, n}$

$\text{Err}_{m''}$

For the random code C_n , let $\text{EP}_e(C_n)$ be the average error (over all messages), by symmetry, same as error for $m=1$.

Averaging over the choice of C_n :

$$\Pr_{C_n} \text{EP}_e(C_n) = \Pr_{C_n} (W \neq 1 | m=1) = \Pr_{C_n} (\text{Err}_0 \cup \underbrace{\text{Err}_2 \dots \cup \text{Err}_M}_{\text{equiprobable}} | m=1)$$

union bdd

$$\leq M \Pr_{C_n} (\text{Err}_2 | m=1)$$

unlikely ↑

Bounding $\Pr_{C_n}(\text{Err}_2 | m=1) = \Pr_{C_n}(c_2 y^n \in A_{n, \varepsilon_n})$:

But c_2 and $y^n = N^{\otimes n}(x_1)$ independent.

By joint AEP (3), $\Pr_{C_n}(c_2 y^n \in A_{n, \varepsilon_n}) \approx 2^{-nI(X:Y)}$

If $M = 2^{n(I(X:Y) - \delta_n)}$ and $n\delta_n$ grows with n but $\delta_n \rightarrow 0$

$\Pr_{C_n} EP_e(C_n) \leq M \Pr_{C_n}(\text{Err}_2 | m=1) \rightarrow 0$

Some code C_n (in fact most codes) has vanishing $EP_e(C_n)$.

Fix a code C_n that has vanishing $EP_e(C_n)$.

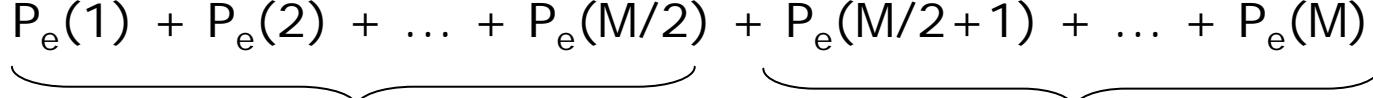
Claim:

Expunging the worse half of the codewords from C_n , we get a new code C'_n with $P_e(C'_n) \leq 2 EP_e(C_n)$.

Proof:

Reorder m 's so that $P_e(m)$ is increasing.

$$P_e(1) + P_e(2) + \dots + P_e(M/2) + P_e(M/2+1) + \dots + P_e(M) = M EP_e(C_n)$$



replace each by zero replace each by $P_e(M/2)$

So, $M/2 P_e(M/2) \leq M EP_e(C_n)$, $P_e(M/2) \leq 2 EP_e(C_n)$.

Keeping only codewords for $m=1, \dots, M/2$, worse case prob error = $P_e(M/2) \leq 2 EP_e(C_n)$. Rate decreases only by $1/n$.