

General assumptions:

- (1) Can use channel many (n) times
- (2) Each use identical & independent:

For inputs x_1, x_2, \dots, x_n

$$\text{outputs } y_1, y_2, \dots, y_n \text{ w.p. } \prod_{i=1}^n p(y_i|x_i)$$

"Called discrete memoryless channels DMCs"

Non DMCs:

eg 1 Time vary channel: the i th use is a BSC with prob error p_i

eg 2 Burst error: $x_1, x_2, \dots, x_n \rightarrow x_1, x_2, \dots, x_n$
missing a contiguous block in the output
"Dog ants a page from your book!"

eg 3 $x_1, x_2, \dots, x_i, x_j, \dots, x_n$

$x_1, x_2, \dots, x_j, x_i, \dots, x_n$

Symbols emerging in slightly wrong order

eg 4 x_1, x_2, \dots, x_n

$y_1, y_2, \dots, y_m \quad m < n$

"Missing messages" - don't know which ones.

Aside: quantum analogues and coding strategies?

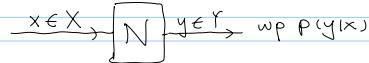
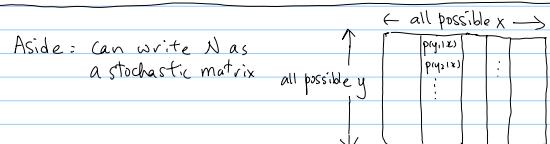
Lec 5 May 20, 2010

Note Title

19/05/2010

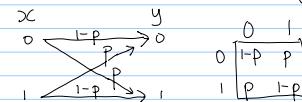
Def: A (classical) channel N is specified by:

- input alphabet X
- output Y
- a distribution $p(y|x)$ for each $x \in X$.



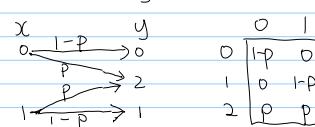
eg 1 Binary symmetric channel (BSC)

$X = Y = \{0, 1\}$, input {sent w.p. $1-p$ | flipped w.p. p }



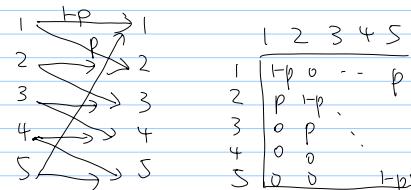
eg 2 Erasure channel (E_p)

$X = \{0, 1\}$, input {sent w.p. $1-p$ | replaced by 2 w.p. p }

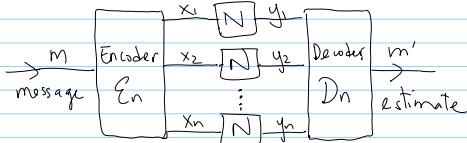


eg 3. Pentagon channel \diamond

$X = Y = \{1, 2, 3, 4, 5\}$, input {sent w.p. $1-p$ | shifted up mod 5 w.p. p }



Sending messages through n uses of a noisy channel:



An (M, n) code consists of

- (1) index set $M = \{1, \dots, M\}$
- (2) an encoding function $\mathcal{E}_n: M \rightarrow \mathcal{X}^{\otimes n}$
- (3) a decoding function $\mathcal{D}_n: \mathcal{Y}^{\otimes n} \rightarrow M$

The codewords are $\mathcal{E}_n(1), \mathcal{E}_n(2), \dots, \mathcal{E}_n(M)$ The code

eg 2. Hamming code (e.g. en code 4 bits in 7 corrects up to 1 error)

Each codeword x satisfies 3 parity constraints:

$$x_1 x_2 \dots x_7$$

$$P = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}, \quad Px = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \text{ie } x_1 \oplus x_3 \oplus x_5 \oplus x_7 = 0 \\ x_2 \oplus x_3 \oplus x_6 \oplus x_7 = 0 \\ \text{etc}$$

What's cool: if $y_i = x_i + e_i$ and only $e_i = 1$

then $Py = Pe = i$ th col of P ,

decoding / identifying the error is easy!

For message m , there's an error if

$$m' = \mathcal{D}_n \circ N^{\otimes n} \circ \mathcal{E}_n(m) \neq m$$

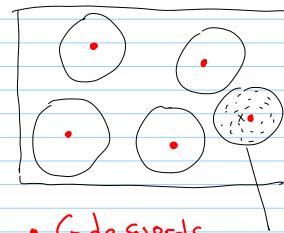
Say, happens w.p. $P_e(m)$

Define $P_e^n = \text{worse case prob of error} = \max_{m \in M} P_e(m)$

$$E P_e^n = \text{average} \dots = \frac{1}{M} \sum_{m=1}^M P_e(m)$$

$$\text{Rate of an } (M, n) \text{ code} = \frac{1}{n} \log M$$

Geometrically: (say $X=Y$)



$$X^{\otimes n} = Y^{\otimes n} \rightarrow n \text{ copies}$$

every output strings up to k errors from x

Can recover message if code words are sparse enough so that these spheres don't overlap.

Def: For a channel N , a rate R is achievable if \exists sequence of $(M = 2^{nR}, n)$ codes s.t. $P_e^n \rightarrow 0$ as $n \rightarrow \infty$

Def: Capacity of N , $C(N) = \sup$ over achievable rates

NB If $C > 0$, the entire message, longer & longer ($\propto n$) comes out correctly almost surely!

Qn: For a fixed message size, to have smaller & smaller error prob, need bigger & bigger codes ..

(1) that brings more and more errors too

(2) will the rate $\rightarrow 0$?

(3) for growing message size, will prob(every part correct) $\rightarrow 0$?

Usually (1) not a problem if prob error small enough to start with, but (2), (3) can happen, say, with the repetition code.

Will see, we can do much much better
-- magic: iid channel use + large n

Back to $C(N) = \max_{p(x)} I(X:Y)$

Thm (Shannon's noisy coding theorem)

$$C(N) = \max_{p(x)} I(X:Y)$$

NB1. $p(xy) = \underbrace{p(x)}_{\text{max over } p(x)} \underbrace{p(y|x)}_{\text{specified by } N}$

NB2. Expression involves only 1 copy of $p(xy)$ but $C(N)$ has an asymptotic definition.

NB3. Works in worse case, no distribution of message "p(x)" in the max has meaning TBC.

NB4. Every channel (but one) has $C > 0$!

eg1. BSC

$$I(X:Y) = H(Y) - \underbrace{H(Y|X)}_{H(p) \text{ info of } p(x)}$$

max this by making y random possible when $p(0) = p(1) = \frac{1}{2}$.

\therefore Capacity of BSC = $1 - H(p)$

eg2 Erasure channel

$$I(X:Y) = H(X) - \underbrace{H(Y|X)}_{p H(X)}$$

Again optimal $p(x) = p(0) = p(1) = \frac{1}{2}$.

Same rate as if where the erasures are known up front!

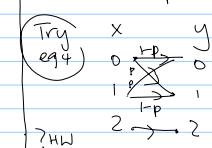
eg3. Pentagon channel (with $p = \frac{1}{2}$)

$$I(X:Y) = H(Y) - \underbrace{H(Y|X)}_{\text{always } 1}$$

Again optimal $p(x)$ uniform,

$$C(\Delta) = \log 5 - 1 = \log\left(\frac{5}{2}\right)$$

eg1-3 very symmetric thus optimal $p(x)$ uniform



NB If we demand $p_e = 0$, but allowing many uses, we're studying the "zero-error-capacity" (lower bold for $C(N)$)

eg. The BSC & erasure channel has 0 zero-error capacity

The Δ of Δ is $\log 5$, that of eg4 is 1.

Comparing Δ with $E_{10^{-10}}^5$ (erasure channel with $|X|=5$, $p = 10^{-10}$)
 $C(E_{10^{-10}}^5) \approx \log 5 > C(\Delta)$ But zero error capacity of $E_{10^{-10}}^5$ is that of Δ