

#### Lecture 4:

Recall: von Neumann entropy  $S$  is defined on a state (say  $\rho$ ) in a quantum system (say  $Q$ ).

Qn: How much can  $S$  change when part of  $Q$  is removed?

More precisely, let  $Q=Q_1Q_2$ . Removing  $Q_2$  results in a state  $\text{tr}_{Q_2}\rho$  in  $Q_1$ . How's its von Neumann entropy compared to  $S(Q)\rho$ ? Note it's equivalent to ask how much  $S$  can change when a system  $T$  is added to  $Q$  with  $TQ$  in any arbitrary joint state.

Likewise, how much can the quantum mutual information (QMI) change when a system is added/removed? What about  $I_{\text{acc}}$  and  $\chi$ ?

Starting from the ensemble  $\{\rho_x, p_x\}$  on  $Q$ , removing  $Q_2$  induces an ensemble  $\{\rho_x, \text{tr}_{Q_2}\rho_x\}$  on  $Q_1$ . Similarly for adding a system.

Intuitively, the change should be commensurate with the size of the system added/removed.

That's true for  $S$ , QMI, and  $\chi$ .

Application: forward communication bounds given ebits and back communication.

Intuition fails for  $I_{\text{acc}}$ , giving an effect called locking.

Theorem 1 [Araki-Lieb inequality]:  $S(AB) \geq S(A) - S(B)$

NB 1. The classical analogue is true but uninteresting:  
 $H(AB) \geq H(A) \geq H(A) - H(B)$ .

NB 2. Cf SA:  $S(AB) \leq S(A) + S(B)$ .

NB 3. Let size  $A \gg$  size  $B$ . The Araki-Lieb ineq + SA implies  $|S(AB) - S(A)| \leq S(B)$ . So adding or subtracting a system  $B$  changes  $S$  at most by  $S(B)$ .

NB4. The Araki-Lieb hold when  $A$  and  $B$  are interchanged. Thus, it's equivalent to  $S(AB) \geq |S(A) - S(B)|$ .

Theorem 1 [Araki-Lieb inequality]:  $S(AB) \geq S(A) - S(B)$

Proof:

(1) Go to the Church of larger Hilbert space

There is a system  $C$  and a pure state  $|\psi\rangle$  on  $ABC$  s.t.  $\text{tr}_C|\psi\rangle\langle\psi| = \rho_{AB}$ . We say that  $C$  "purifies"  $AB$ .

(2) By purity of  $ABC$ ,  $S(AB) = S(C)$ ,  $S(A) = S(BC)$ .

(3) Apply SA to  $BC$ :

$$S(B) + S(C) \geq S(BC)$$

$$\text{Same as } S(B) + S(AB) \geq S(A)$$

Same as what we want.

Theorem 2: Let  $\tau$  be a state on  $ABC$  and  $\rho = \text{tr}_C\tau$ .  
 $|S(A:BC)_\tau - S(A:B)_\rho| \leq 2S(C)$

NB. If Alice and Bob are to increase their QMI mutual by sending qubits back and for, the above says that  $n$  qubits of communication (total in both directions) can at most increase the QMI by  $2n$ . This is attained if they use every qubit of communication to share an ebit.

Theorem 2: Let  $\tau$  be a state on  $ABC$  and  $\rho = \text{tr}_C\tau$ .  
 $|S(A:BC)_\tau - S(A:B)_\rho| \leq 2S(C)$

Proof:

$$\begin{aligned} S(A:BC)_\tau &= S(A) + S(BC) - S(ABC) \\ S(A:B)_\rho &= S(A) + S(B) - S(AB) \end{aligned} \quad \left. \begin{array}{l} \text{evaluated on the} \\ \text{reduced states} \end{array} \right\}$$

evaluated on the same state

tracing  $C$  from the state on  $BC$  gives the state on  $B$

etc

$$\begin{aligned} \text{Thus } |S(A:BC) - S(A:B)| & \\ &\leq |S(BC) - S(B)| + |S(ABC) - S(AB)| \\ &\leq 2S(C) \text{ from previous slide} \end{aligned}$$

**Corollary 3:**

Let  $\mathcal{E} = \{p_x, \rho_x\}$  and  $\mathcal{F} = \{p_x, \tau_x\}$  be two ensembles where each  $\tau_x$  lives in systems BC, and  $\rho_x = \text{tr}_C \tau_x$ . Then,  $|\chi(\mathcal{F}) - \chi(\mathcal{E})| \leq 2 S(C)$ .

Proof: Define  $\tau = \sum_x p_x |x\rangle\langle x|_A \otimes \tau_x|_B$   
 $\rho = \sum_x p_x |x\rangle\langle x|_A \otimes \rho_x|_B$

Then, applying Theorem 2,

$$|S(A:BC)_\tau - S(A:B)_\rho| \leq 2 S(C)$$

$$\chi(\mathcal{F}) \quad \chi(\mathcal{E})$$

NB this says Holevo info can only increase by  $2 S(C)$  when C is communicated, even in the presence of shared entanglement, giving an extension to Holevo's bdd.

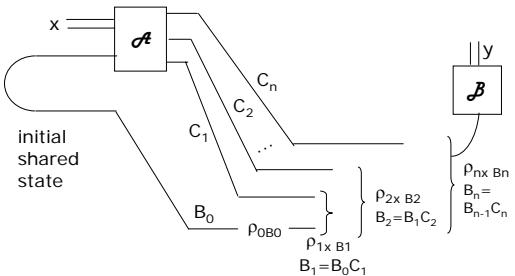
**Theorem 4:**

Suppose Alice and Bob share an arbitrary finite dim state of their choice, and Alice can send n qubits to Bob. She can communicate at most  $2n$  bits to Bob.

In particular,  $\infty \text{ ebits} + n \text{ qbit}_\rightarrow \geq \beta \text{ cbit}_\rightarrow$  only if  $\beta \leq 2$ .

The most general communication protocol :

Alice performs an encoding operation  $\mathcal{A}$  which acts on the intended message  $x$ , perhaps some ancillas, and her half of the stated with Bob.



So with probability  $p_x$  (that the message is  $x$ ) Bob is given the state  $\rho_{nx Bn}$  which he measures to get  $y$ . Denote his ensemble at the  $j$ th step by  $\mathcal{E}_j = \{p_x, \rho_{jx Bj}\}$ .

His information gained on  $X$ :

$$\begin{aligned} I(X:Y) &\leq \chi(\mathcal{E}_n) \\ &\leq \chi(\mathcal{E}_{n-1}) + 2 && \text{by corollary 3} \\ &\leq \chi(\mathcal{E}_{n-2}) + 4 && \text{by corollary 3} \\ &\dots \\ &\leq \chi(\mathcal{E}_0) + 2n && \text{by corollary 3} \end{aligned}$$

But  $\mathcal{E}_0$  only has 1 state  $\rho_{0BO}$  independent of  $x$ , so,  $\chi(\mathcal{E}_0)=0$

Hence at most  $2n$  bits can be communicated.

**Theorem 4:**

Suppose Alice and Bob share an arbitrary finite dim state of their choice, and Alice can send n qubits to Bob. She can communicate at most  $2n$  bits to Bob.

In particular,  $\infty \text{ ebits} + n \text{ qbit}_\rightarrow \geq \beta \text{ cbit}_\rightarrow$  only if  $\beta \leq 2$ .

In the presence of free ebits,  $2 \text{ cbits} = 1 \text{ qbit}$ , since the above is equiv to:

**Theorem 5:**

Suppose Alice and Bob share an arbitrary finite dim state of their choice, and Alice can send n qubits to Bob. She can communicate at most  $n$  qubits to Bob.

In particular,  $\infty \text{ ebits} + n \text{ qbit}_\rightarrow \geq \gamma \text{ qbit}_\rightarrow$  only if  $\gamma \leq 1$ .

How much can back communication help?

**Theorem 6:**

Suppose Alice is allowed to send  $n_A$  qubits to Bob and Bob  $n_B$  qubits back, in any order. Then, Alice can communicate at most  $n_A + n_B$  bits to Bob.

i.e.,  $n_A \text{ qbit}_\rightarrow + n_B \text{ qbit}_\leftarrow \geq \beta \text{ cbit}_\rightarrow$  only if  $\beta \leq n_A + n_B$ .

**Proof:**

Again, define Bob's state as  $\rho_{jx Bj}$  after the  $j$ th qubit of communication, and the ave state  $\rho_j = \sum_x p_x \rho_{jx Bj}$ .

$$I(X:Y) \leq \chi(\mathcal{E}_n) \leq S(\rho_n) \leq S(\rho_{n-1}) + 1 \leq \dots \leq n_A + n_B$$

How much can back communication help?

Theorem 6:

Suppose Alice is allowed to send  $n_A$  qubits to Bob and Bob  $n_B$  qubits back, in any order. Then, Alice can communicate at most  $n_A + n_B$  bits to Bob.

i.e.,  $n_A \text{ qbit}_\rightarrow + n_B \text{ qbit}_\leftarrow \geq \beta \text{ cbit}_\rightarrow$  only if  $\beta \leq n_A + n_B$   
and if  $\beta \leq 2 n_A$

This theorem assumes no share state between Alice and Bob but Theorem 4 clearly applies.

What about  $I_{\text{acc}}$ ?

Last time, example 3:

Let  $\mathcal{E} = \{p_{xt}, \rho_{xt}\}$  ← use composite label XT.  
where  $p_{xt} = U^t |x\rangle\langle x| U^{\dagger t}$ ,  $t \in \{0,1\}$ ,  $x \in \{0, \dots, n-1\}$ ,  
 $\rho_{xt} = 1/2n$ ,  $U|x\rangle = \sum_y \omega^{xy} |y\rangle$  for  $\omega = n^{\text{th}}$  root of unity

It was asserted that  $\chi(\mathcal{E}) = \frac{1}{2} \log n$ .

Let  $\mathcal{F} = \{p_{xt}, \tau_{xt}\}$

where  $\tau_{xt} = U^t |x\rangle\langle x| U^{\dagger t} \otimes |t\rangle\langle t|$

One extra bit t  
increases  $I_{\text{acc}}$   
by  $1 + \frac{1}{2} \log n$  !

It is clear that  $\chi(\mathcal{F}) = 1 + \log n$ .

Intuitively, the extra bit  
can't carry  $1 + \frac{1}{2} \log n$  bits;  
rather it unlocks  $I_{\text{acc}}$  in the  
 $\log n$  existing qubits.

Unlike  $S(A)$ ,  $S(A:B)$ , and  $\chi$ ,  $I_{\text{acc}}$  can change much more than the size of the additional system.

Also note that this is nonclassical. In fact, classical mutual info cannot increase by more than  $H(C)$  when C is added.

The classical analogue of the ensemble is for Alice to send either  $x \in \{0, \dots, n-1\}$  or  $\pi(x)$  where  $\pi \in S_n$  is a permutation with a fixed point. If Bob gets y, then  $x = y$  or  $\pi^{-1}(y)$  so  $H(XT|Y) = 1$ , and  $I(XT:Y) = \log n$  (the missing bit concerning x is perfectly correlated with the bit t). It changes to  $I(XT:Y) = 1 + \log n$  if t is given.

How to prove  $I_{\text{acc}}(\mathcal{E}) = \frac{1}{2} \log n$  ?

Note there's no closed form expression for  $I_{\text{acc}}$ .

Qn: how hard is it to perform the optimization in expression for  $I_{\text{acc}}$ ?

Here, measuring along  $\{|x\rangle\}$  or  $\{U|x\rangle\}$  at random gives  $I_{\text{acc}} \geq \frac{1}{2} \log n$ . Turns out  $I_{\text{acc}} \leq \frac{1}{2} \log n$  also (thus =).

Observation:

WLOG the optimal measurement in the expression for  $I_{\text{acc}}$  has only rank-1 measurement operators.

Reason: for any measurement  $\mathcal{M}$  with a measurement operator  $M_y = \sum_{k=1}^r \lambda_k |\alpha_k\rangle\langle\alpha_k|$ , consider  $\mathcal{M}'$  which has  $M_y$  replaced by r measurement operators  $M_{yk} = \lambda_k |\alpha_k\rangle\langle\alpha_k|$

$\mathcal{M}$  can be implemented by first performing  $\mathcal{M}'$  and then coarse-graining the outcomes  $\{yk\}$  to y. Since mutual info is not increased by the coarse graining (local),  $\mathcal{M}'$  yields no less info than  $\mathcal{M}$ .

Proof ideas behind  $I_{\text{acc}}(\mathcal{E}) = \frac{1}{2} \log n$  :

Let the optimal measurement operators be  $M_y = \lambda_y |\alpha_y\rangle\langle\alpha_y|$ .

$$I(XT:Y) = H(XT) - H(XT|Y) \\ || \\ \sum_y p(y) H(XT|Y=y)$$

$$I(XT:Y) \leq H(XT) - \min_y H(XT|Y=y)$$

Proof ideas behind  $I_{\text{acc}}(\mathcal{E}) = \frac{1}{2} \log n$  :

$$I(XT:Y) \leq H(XT) - \min_y H(XT|Y=y) \quad \text{and } M_y = \lambda_y |\alpha_y\rangle\langle\alpha_y|$$

$$(1) p(y) = \text{tr} (\lambda_y |\alpha_y\rangle\langle\alpha_y|) / n = \lambda_y / n$$

$$(2) p(xt|y) = p(xt \text{ and } y) / p(y) \text{ average state}$$

$$= \text{tr} (\lambda_y |\alpha_y\rangle\langle\alpha_y| U^\dagger |x\rangle\langle x| U^\dagger 1/2n) / (\lambda_y / n)$$

$$= \frac{1}{2} |\langle\alpha_y| U^\dagger |x\rangle|^2$$

$$H(XT|Y=y) = - \sum_{xt} \frac{1}{2} |\langle\alpha_y| U^\dagger |x\rangle|^2 \log \frac{1}{2} |\langle\alpha_y| U^\dagger |x\rangle|^2$$

$$= - \sum_{xt} \frac{1}{2} |\langle\alpha_y| U^\dagger |x\rangle|^2 \log \frac{1}{2} \leftarrow = 1$$

$$+ \frac{1}{2} \sum_t (-1) \underbrace{\sum_x |\langle\alpha_y| U^\dagger |x\rangle|^2 \log |\langle\alpha_y| U^\dagger |x\rangle|^2}_{H_t(|\alpha_y\rangle)}$$

$H_t(|\alpha_y\rangle)$  : entropy of outcome when measuring  $|\alpha_y\rangle$  along the basis  $U^\dagger |x\rangle$ . Note Meas op and state swapped.

Proof ideas behind  $I_{\text{acc}}(\mathcal{E}) = \frac{1}{2} \log n$  :

$$I(XT:Y) \leq H(XT) - \min_y H(XT|Y=y)$$

$$\leq \log n + \cancel{1} - \cancel{1} - \min_{|\alpha\rangle} \frac{1}{2} \sum_t H_t(|\alpha\rangle) \leq \frac{1}{2} \log n$$

where  $H_t(|\alpha\rangle)$ : entropy of outcome when measuring  $|\alpha\rangle$  along the basis  $U^\dagger |x\rangle$ .

In general, for  $k$  bases ( $t=0, 1, \dots, k-1$ ), a lower bound to

$$\min_{|\alpha\rangle} \sum_{t=0}^{k-1} H_t(|\alpha\rangle)$$

is called an entropic uncertainty inequality. This quantifies how incompatible the bases are.

Maassen & Uffink (PRL 60 1103, 1988) proved that for 2 conjugate bases in  $n$ -dims,  $\forall |\alpha\rangle H_0(|\alpha\rangle) + H_1(|\alpha\rangle) \geq \log n$ .

Can we further amplify the effect?

Are there  $k$  bases s.t.

- without knowing the basis,  $I_{\text{acc}} \leq (1/k) \log n$  ?
- knowing the basis,  $I_{\text{acc}} = \log k + \log n$  ?

Unfortunately, the natural guess of taking  $k$  MUBs doesn't work – can find measurement giving more  $I_{\text{acc}}$ .

PS MUBs = mutually unbiased bases. Each state in a basis has overlap-squared =  $1/n$  with all other state in all other bases.

Can we further amplify the effect?

We can show that choosing

$$k = (\log n)^3, \log n \geq (16/c \varepsilon) \log (20/\varepsilon), n \geq 7, \varepsilon < 1/5$$

we can find  $k$  bases such that  $\forall |\alpha\rangle$

$$1/k \sum_{t=1}^k H_t(|\alpha\rangle) \geq (1-\varepsilon) \log n - 3$$

Essentially,  $n$  has to be large, the above entropic ineq is more loose than the  $(k-1)/k \log n$  previously seek.

Still,  $I_{\text{acc}}(\mathcal{E}) \leq 3 + \varepsilon \log n$  where  $\mathcal{E}$  is the uniform ensemble of states in the  $k$  bases

$$I_{\text{acc}}(\mathcal{F}) = \log n + \log k = \log n + 3 \log \log n.$$

So,  $I_{\text{acc}}(\mathcal{E}) / I_{\text{acc}}(\mathcal{F})$  is vanishing, so is "size of the extra system (key)" /  $I_{\text{acc}}(\mathcal{F})$ .