Lecture 4:

Recall: von Neumann entropy S is defined on a state (say p) in a
quantum system (say Q).

Qn: How much can S change when part of Q is removed?
More precisely, let Q=Q,Q, . Removing Q, results in a state trg, p
in Q;. How's its von Neumann entropy compared to S(Q),?

Note it's equivalent to ask how much S can change when a
system T is added to Q with TQ in any arbitrary joint state.
Likewise, how much can the quantum mutual information
(QMI) change when a system is added/removed? What
about I, and y?

Starting from the ensemble {p,, p,} on Q, removing Q, induces
an ensemble {p,, try, p,} on Q;. Similarly for adding a system.

Intuitively, the change should be commensurate with
the size of the system added/removed.

That's true for S, QMI, and .
Application: forward communication bounds given

ebits and back communication.

Intuition fails for 1., giving an effect called locking.

Theorem 1 [Araki-Lieb inequality]: S(AB) > S(A) - S(B)

NB 1. The classical analogue is true but uninteresting:
H(AB) > H(A) > H(A) — H(B).

NB 2. Cf SA: S(AB) < S(A) + S(B).

NB 3. Let size A >> size B. The Araki-Lieb ineq + SA
implies |S(AB) — S(A)| < S(B). So adding or
subtracting a system B changes S at most by S(B).

NB4. The Araki-Lieb hold when A and B are interchanged.
Thus, it's equivalent to S(AB) > |S(A)-S(B)].

Theorem 1 [Araki-Lieb inequality]: S(AB) > S(A) - S(B)
Proof:

(1) Go to the Church of larger Hilbert space

There is a system C and a pure state |y) on ABC
s.t. tre |y)(y] = pag . We say that C "purifies” AB.

(2) By purity of ABC, S(AB) = S(C), S(A) = S(BC).

(3) Apply SA to BC:
S(B) + S(C) > S(BC)

Same as S(B) + S(AB) > S(A)

Same as what we want.

Theorem 2: Let t be a state on ABC and p = tr. 7.
| S(A:BC), — S(A:B), | <2 S(C)

NB. If Alice and Bob are to increase their QMI mutual by
sending qubits back and for, the above says that n qubits
of communication (total in both directions) can at most
increase the QMI by 2n. This is attained if they use every
qubit of communication to share an ebit.

Theorem 2: Let t be a state on ABC and p = tre t.
| S(A:BC), — S(A:B), | <2 S(C)
Proof:

evaluated on the

S(A:BC), = S(A) + S(BC) — S(ABC)
reduced states

S(A:B), = é\(fA) + S(B)|— S(AB)

evaluated on
the same state
tracing C from the state on BC
gives the state on B etc

Thus | S(A:BC) — S(A:B) |
< IS(BC) — S(B)| + |S(ABC) — S(AB)|
2 S(C) from previous slide

A




Corollary 3:

Let &= {p,, p,+ and 7= {p,, 1, be two ensembles
where each t, lives in systems BC, and p, = tr .
Then, [x(#) — x(£)] <2 S(C).

Proof: Define ©= X, px IX)(X|a ® T 5c
P =2 Px IX){X]a ® pyg

Then, applying Theorem 2,
| S(A:BC), — S(A:B), | < 2 S(C)
1 I
(7 1)

NB this says Holevo info can only increase by 2 S(C)
when C is communicated, even in the presence of shared
entanglement, giving an extension to Holevo's bdd.

Theorem 4:

Suppose Alice and Bob share an arbitrary finite dim
state of their choice, and Alice can send n qubits to
Bob. She can communicate at most 2n bits to Bob.

In particular, « ebits + n gbit_, > B cbit_, only if p < 2.

The most general communication protocol :

Alice performs an encoding operation ¢ which acts on
the intended message x, perhaps some ancillas, and
her half of the stated with Bob.

So with probability p, (that the message is x) Bob

is given the state p,, g, Which he measures to get y.
Denote his ensemble at the jth step by & = {p,, pj«gj}-
His information gained on X:

1(X2Y) < x(&n)

<au(En)) +2 by corollary 3
<u(En) + 4 by corollary 3
< (&) +2n by corollary 3

But &, only has 1 state pg, independent of x, so, y(<,)=0

Hence at most 2n bits can be communicated.
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Theorem 4:

Suppose Alice and Bob share an arbitrary finite dim
state of their choice, and Alice can send n qubits to
Bob. She can communicate at most 2n bits to Bob.

In particular, « ebits + n gbit_, > B cbit_, only if p < 2.
In the presence of free ebits, 2 cbits = 1 gbit,
since the above is equiv to:

Theorem 5:

Suppose Alice and Bob share an arbitrary finite dim
state of their choice, and Alice can send n qubits to
Bob. She can communicate at most n qubits to Bob.

In particular, o« ebits + n gbit_, >y gbit_, only ify < 1.

How much can back communication help?

Theorem 6:

Suppose Alice is allowed to send n, qubits to Bob and
Bob ng qubits back, in any order. Then, Alice can
communicate at most n,+ng bits to Bob.

i.e., n,qgbit, + nggbit_ > pcbit_ only if B < n, + ng.

Proof:
Again, define Bob's state as pj, g; after the jth qubit of
communication, and the ave state p; = X, Py pjx gj-

IXY) < (&) S S() € S(ppa) +1 < oo < gty




How much can back communication help?

Theorem 6:

Suppose Alice is allowed to send n, qubits to Bob and
Bob ng qubits back, in any order. Then, Alice can
communicate at most n,+ng bits to Bob.

i.e., n,gbit, + nggbit_ > B cbit, only if p < n, + ng
and if p <2 n,

This theorem assumes no share state between Alice
and Bob but Theorem 4 clearly applies.

What about I,..?

acc’

Last time, example 3:

Let &= {Py Pt
where p,, = Ut [x)(x] UTt, t € {0,1}, x € {0,---,n-1},
Py = 1/2n, Ulx) = X, o¥]y) for o=n'™ root of unity

use composite label XT.

It was asserted that (&) = Y2log n. | one extra bit t

increases |
Let 7= {Py» Tt by 1+¥ log n !

where 1, = Ut [X)(x] Ut @ |t)(t]

Intuitively, the extra bit
can't carry 1+%2 log n bits;
rather it unlocks I, in the
log n existing qubits.

It is clear that (7 ) = 1+log n.

Unlike S(A), S(A:B), and y, I, can change much more
than the size of the additional system.

Also note that this is nonclassical. In fact, classical
mutual info cannot increase by more than H(C) when
C is added.

The classical analogue of the ensemble is for Alice to send
either x € {0,---,n-13} or n(x) where n € S, is a permutation
with a fixed point. If Bob gets y, then x =y or n1(y) so
H(XT]Y) = 1, and I(XT:Y) = log n (the missing bit
concerning x is perfectly correlated with the bit t). It
changes to I(XT:Y) = 1+log n if t is given.

How to prove I, (&) = Y2 logn ?

Note there's no closed form expression for I,.

Qn: how hard is it to perform the optimization in
expression for 1,..?

Here, measuring along {|x)} or {U|x)} at random gives
lec = ¥2log n. Turns out I, < ¥ log n also (thus =).

Observation:

WLOG the optimal measurement in the expression for
l.c has only rank-1 measurement operators.

Reason: for any measurement ¢/ with a measurement
operator My = X, ;" &y |oy)(ayl, consider ' which has
M, replaced by r measurement operators M, = i, Joy) (ol

¢/t can be implemented by first performing ¢/’ and then
coarse-graining the outcomes {yk} to y. Since mutual
info is not increased by the coarse graining (local), 7'
yields no less info than .

Proof ideas behind 1,..(&) = %2 log n :
Let the optimal measurement operators be M, = 2 |a,)(a,|.

I(XT:Y) = H(XT) — H(XT]Y)
It
2, p(Y) HIXTIY=y)

I(XT:Y) < H(XT) — min, H(XT|Y=y)




Proof ideas behind I,..(&) = % logn :
I(XT:Y) < H(XT) — min, H(XT|Y=y) and M, = oy ){a|

(@) PE) = tr Oyloy)ay| 1/) = h/n
(2 p(xtly) = p(xtandy) / p(y)average state
= tr Oy loy) oyl Ut IX)(x] UTt 1/2n) 7 (1, /1)
=% o, JU'Ix)]2
HXTIY=y) = - ¢ Y2 Koy JUX)|2 log Y2 [ (o, |UY]X)]?
= - T ¥ loy IUX)]2 log % =1
+ Y2 %, (-1) 2, Koy [UYX)]2 log [{ay [U]X)]?

H, (o)) : entropy of outcome when measuring |c1y> along
Y the basis U!|x). Note Meas op and state swapped.

Proof ideas behind 1,..(&) = %2 log n :
I(XT:Y) < H(XT) — min, H(XT|Y=y)

<logn + &'~ ¥—min, % T H, (la)) <% logn

A
where H(Ja)): entropy of outcome when measuring |o) \

along the basis Ut|x). \

In general, for k bases (t=0,1,---,k-1), a lower bound to
min|c¢> o H(le))

is called an entropic uncertainly inequality. This quantifies
how incompatible the basese are.

Maassen & Uffink (PRL 60 1103, 1988) proved that for 2
conjugate bases in n-dims, V o) Ho(Jo)) + H;(Ja)) > log n.

Can we further amplify the effect?

Are there k bases s.t.
= without knowing the basis, 1, < (1/k) log n ?
= knowing the basis, I,,. = log k + log n ?

Unfortunately, the natural guess of taking k MUBs
doesn't work — can find measurement giving more 1.

PS MUBs = mutually unbiased bases. Each state in a basis has
overlap-squared = 1/n with all other state in all other bases.

Can we further amplify the effect?
We can show that choosing
k=(log n)3, log n > (16/c ¢) log (20/¢), n > 7, e < 1/5

we can find k bases such that V |o)
1/k T K He (o)) > (1-¢) log n - 3

Essentially, n has to be large, the above entropic ineq
is more loose than the (k-1)/k log n previously seek.

Still, 1., () <3 + ¢logn where £ is the uniform
ensemble of states in the k bases

1,.(7) =log n +log k =log n + 3 log log n.

So, l. (£) 7 1 (7)) is vanishing,
so is "size of the extra system (key)" / 1,..(¥) .




