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Lecture 4:

Recall: von Neumann entropy S is defined on a state (say ρ) in a 
quantum system (say Q).  

Qn: How much can S change when part of Q is removed?  

More precisely, let Q=Q1Q2 . Removing Q2 results in a state trQ2 ρ
in Q1.  How's its von Neumann entropy compared to S(Q)ρ? 
Note it's equivalent to ask how much S can change when a 
system T is added to Q with TQ in any arbitrary joint state.

Likewise, how much can the quantum mutual information 
(QMI) change when a system is added/removed?  What 
about Iacc and χ? 

Starting from the ensemble {px, ρx} on Q, removing Q2 induces 
an ensemble {px, trQ2 ρx} on Q1.  Similarly for adding a system.

Intuitively, the change should be commensurate with 
the size of the system added/removed.  

That's true for S, QMI, and χ.  
Application: forward communication bounds given 
ebits and back communication.  

Intuition fails for Iacc, giving an effect called locking.

NB 2.  Cf   SA:  S(AB) · S(A) + S(B).

Theorem 1 [Araki-Lieb inequality]:  S(AB) ≥ S(A) - S(B)

NB 1.  The classical analogue is true but uninteresting: 
H(AB) ≥ H(A) ≥ H(A) – H(B).  

NB4.  The Araki-Lieb hold when A and B are interchanged.
Thus, it's equivalent to S(AB) ≥ |S(A)-S(B)|.

NB 3.  Let size A >> size B.  The Araki-Lieb ineq + SA 
implies |S(AB) – S(A)| · S(B).  So adding or 
subtracting a system B changes S at most by S(B).

Theorem 1 [Araki-Lieb inequality]:  S(AB) ≥ S(A) - S(B)

Proof:  

(1) Go to the Church of larger Hilbert space

There is a system C and a pure state |ψi on ABC 
s.t. trC |ψihψ| = ρAB . We say that C "purifies" AB. 

(2) By purity of ABC, S(AB) = S(C), S(A) = S(BC).

(3) Apply SA to BC: 
S(B) + S(C) ≥ S(BC) 

Same as  S(B) + S(AB) ≥ S(A)

Same as what we want.

Theorem 2:  Let τ be a state on ABC and ρ = trC τ .

| S(A:BC)τ – S(A:B)ρ | · 2 S(C)   

NB.  If Alice and Bob are to increase their QMI mutual by 
sending qubits back and for, the above says that n qubits
of communication (total in both directions) can at most 
increase the QMI by 2n.  This is attained if they use every
qubit of communication to share an ebit.  

Theorem 2:  Let τ be a state on ABC and ρ = trC τ .

| S(A:BC)τ – S(A:B)ρ | · 2 S(C)   
Proof:  

Thus   | S(A:BC) – S(A:B) | 

· |S(BC) – S(B)| + |S(ABC) – S(AB)| 

· 2 S(C)  from previous slide

S(A:BC)τ = S(A) + S(BC) – S(ABC)  

S(A:B)ρ = S(A) + S(B) – S(AB)  

evaluated on the 
reduced states

evaluated on 
the same state 

tracing C from the state on BC
gives the state on B etc
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Corollary 3:  
Let E = {px, ρx} and F = {px, τx} be two ensembles 
where each τx lives in systems BC, and ρx = trC τx.  
Then, |χ(F ) – χ(E )| · 2 S(C).  

Proof: Define 

Then, applying Theorem 2,    

| S(A:BC)τ – S(A:B)ρ | · 2 S(C)  

τ = ∑x px |xihx|A ⊗ τx BC
ρ = ∑x px |xihx|A ⊗ ρx B

||
χ(F )

||
χ(E )

NB this says Holevo info can only increase by 2 S(C) 
when C is communicated, even in the presence of shared 
entanglement, giving an extension to Holevo's bdd.

Theorem 4:  

Suppose Alice and Bob share an arbitrary finite dim 
state of their choice, and Alice can send n qubits to 
Bob.  She can communicate at most 2n bits to Bob.  

In particular,  ∞ ebits + n qbit→ ≥ β cbit→ only if β · 2.

The most general communication protocol :

initial
shared
state

Alice performs an encoding operation A which acts on 
the intended message x, perhaps some ancillas, and 
her half of the stated with Bob.  

x
A

C1

ρ0B0
B0

ρ1x B1

B1=B0C1

C2

ρ2x B2
B2=B1C2

...

Cn

ρnx Bn
Bn=
Bn-1Cn

B

y

So with probability px (that the message is x) Bob  
is given the state ρnx Bn which he measures to get y.  
Denote his ensemble at the jth step by E j = {px, ρjx Bj}.

His information gained on X: 

I(X:Y) · χ(E n) 

· χ(E n-1) + 2 by corollary 3

· χ(E n-2) + 4 by corollary 3

...

· χ(E 0) + 2n by corollary 3

But E 0 only has 1 state ρ0B0 independent of x, so, χ(E 0)=0 

Hence at most 2n bits can be communicated. 

Theorem 4:  

Suppose Alice and Bob share an arbitrary finite dim 
state of their choice, and Alice can send n qubits to 
Bob.  She can communicate at most 2n bits to Bob.  

In particular,  ∞ ebits + n qbit→ ≥ β cbit→ only if β · 2.

In the presence of free ebits, 2 cbits = 1 qbit, 
since the above is equiv to:

Theorem 5:  

Suppose Alice and Bob share an arbitrary finite dim 
state of their choice, and Alice can send n qubits to 
Bob.  She can communicate at most n qubits to Bob.  

In particular,  ∞ ebits + n qbit→ ≥ γ qbit→ only if γ · 1.

How much can back communication help?

Theorem 6:

Suppose Alice is allowed to send nA qubits to Bob and 
Bob nB qubits back, in any order.  Then, Alice can 
communicate at most nA+nB bits to Bob.

i.e.,  nA qbit→ + nB qbit← ≥ β cbit→ only if β · nA + nB.

Proof:

Again, define Bob's state as ρjx Bj after the jth qubit of
communication, and the ave state ρj = ∑x px ρjx Bj.  

I(X:Y) · χ(E n) · S(ρn)   · S(ρn-1) + 1  · ... · nA+nB
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How much can back communication help?

Theorem 6:

Suppose Alice is allowed to send nA qubits to Bob and 
Bob nB qubits back, in any order.  Then, Alice can 
communicate at most nA+nB bits to Bob.

i.e.,  nA qbit→ + nB qbit← ≥ β cbit→ only if β · nA + nB

and if β · 2 nA

This theorem assumes no share state between Alice 
and Bob but Theorem 4 clearly applies. 

What about Iacc?

Last time, example 3:

Let E = {pxt, ρxt} 

where ρxt = Ut |xihx| U† t , t ∈ {0,1}, x ∈ {0,L,n-1}, 

pxt = 1/2n,  U|xi = ∑y ωxy|yi  for ω=nth root of unity

It was asserted that χ(E ) = ½ log n.

Let F = {pxt, τxt} 

where τxt = Ut |xihx| U† t ⊗ |tiht| 

It is clear that χ(F ) = 1+log n.

One extra bit t
increases Iacc
by 1+½ log n !

use composite label XT.

Intuitively, the extra bit
can't carry 1+½ log n bits;
rather it unlocks Iacc in the 
log n existing qubits.

Unlike S(A), S(A:B), and χ, Iacc can change much more 
than the size of the additional system.  

Also note that this is nonclassical.  In fact, classical 
mutual info cannot increase by more than H(C) when 
C is added. 

The classical analogue of the ensemble is for Alice to send 

either x ∈ {0,L,n-1} or π(x) where π ∈ Sn is a permutation

with a fixed point.  If Bob gets y, then x = y or π-1(y) so 

H(XT|Y) = 1, and I(XT:Y) = log n (the missing bit 

concerning x is perfectly correlated with the bit t).  It 

changes to I(XT:Y) = 1+log n if t is given.       

How to prove Iacc(E ) = ½ log n ?

Note there's no closed form expression for Iacc.  

Qn: how hard is it to perform the optimization in 
expression for Iacc? 

Here, measuring along {|xi} or {U|xi} at random gives 
Iacc ≥ ½ log n.  Turns out Iacc · ½ log n also (thus =).  

Observation: 

WLOG the optimal measurement in the expression for  
Iacc has only rank-1 measurement operators.  

Reason: for any measurement M with a measurement 
operator My = ∑k=1

r λk |αkihαk|, consider M' which has 
My replaced by r measurement operators Myk = λk |αkihαk|

M can be implemented by first performing M' and then 
coarse-graining the outcomes {yk} to y.  Since mutual 
info is not increased by the coarse graining (local), M' 
yields no less info than M. 

Proof ideas behind Iacc(E ) = ½ log n : 

Let the optimal measurement operators be My = λy|αyihαy|.

I(XT:Y) = H(XT) – H(XT|Y) 
||

∑y p(y) H(XT|Y=y)

I(XT:Y) · H(XT) – miny H(XT|Y=y)
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(2) p(xt|y) = p(xt and y) / p(y) 

= tr (λy|αyihαy| Ut |xihx| U† t 1/2n) / (λy /n)

= ½ |hαy|Ut|xi|2

Proof ideas behind Iacc(E ) = ½ log n : 

I(XT:Y) · H(XT) – miny H(XT|Y=y)

(1) p(y) = tr (λy|αyihαy| I/n) = λy/n

average state

H(XT|Y=y) = - ∑xt ½ |hαy|Ut|xi|2 log ½ |hαy|Ut|xi|2

= - ∑xt ½ |hαy|Ut|xi|2 log ½

+ ½ ∑t (-1) ∑x |hαy|Ut|xi|2 log |hαy|Ut|xi|2

= 1

entropy of outcome when measuring |αyi along 
the basis Ut|xi.  Note Meas op and state swapped. 

Ht(|αyi) : 

and My = λy|αyihαy|

Proof ideas behind Iacc(E ) = ½ log n : 

I(XT:Y) · H(XT) – miny H(XT|Y=y)

· log n + 1 – 1 – min|αi ½ ∑t Ht (|αi)

where Ht(|αi): entropy of outcome when measuring |αi
along the basis Ut|xi.

In general, for k bases (t=0,1,L,k-1), a lower bound to

min|αi ∑t=0
k-1 Ht(|αi)  

is called an entropic uncertainly inequality.  This quantifies
how incompatible the basese are. 

Maassen & Uffink (PRL 60 1103, 1988) proved that for 2
conjugate bases in n-dims, ∀ |αi H0(|αi) + H1(|αi) ≥ log n.  

· ½ log n

Can we further amplify the effect?

Are there k bases s.t. 

• without knowing the basis, Iacc · (1/k) log n ? 

• knowing the basis, Iacc = log k + log n ?

Unfortunately, the natural guess of taking k MUBs 
doesn't work – can find measurement giving more Iacc.

PS MUBs = mutually unbiased bases.  Each state in a basis has 
overlap-squared = 1/n with all other state in all other bases. 

Can we further amplify the effect?

We can show that choosing 

k=(log n)3, log n ≥ (16/c ε) log (20/ε), n ≥ 7, ε < 1/5

we can find k bases such that ∀ |αi

1/k ∑t=1
k Ht (|αi) ≥ (1-ε) log n - 3

Still, Iacc (E ) · 3 + ε log n  where E is the uniform 
ensemble of states in the k bases

Iacc(F ) = log n + log k = log n + 3 log log n. 

So, Iacc (E ) / Iacc (F ) is vanishing, 
so is "size of the extra system (key)" / Iacc(F ) .   

Essentially, n has to be large, the above entropic ineq
is more loose than the (k-1)/k log n previously seek. 


