Recall: H(X) measures the ignorance on the rv X.

Let X,Y be two rv's, with distribution p(xy).
H(XY) = H(p) as before (treat XY as a composite rv).

Fix a particular outcome for Y, say y, with X unknown.

Define g, = p(X|Y=y) as the distribution of X given Y=y.
a,(x) = p(xy) / Z, p(xy)

H(a,) is the uncertainty of X when Y=y.

Def: Conditional entropy H(X|Y) = X, p(y) H(a,)-

Meaning: average (over unknown Y) uncertainty of X:

easy to - = -
T mber Fact: H(X]Y) = H(XY)-H(Y)
consequence aka "Chain rule." Proof: def+algebra

Fact: H(X]Y) = H(XY)-H(Y).
Average (over y) uncertainty of X given Y.

Def [mutual information]: 1(X:Y) = H(X) - H(X]Y)

uncertainty of X before after
conditioning on Y

i.e. it equals to the information about X contained in Y
= decrease in uncertainty of X due to conditioning on Y.

By "fact”: 1(X:Y) = H(X) + H(Y) - H(XY) = I(Y:X)

1(X:Y) is MUTUAL (information) between X & Y.

Properties of H(X), H(X]Y). I(X:Y):

1. 0 < H(X) < log |Q] [obvious, but useful]
2. H(XY) < H(X) + H(Y) [called Subadditivity]
equivalent to I(X:Y) > 0
equivalent to H(X]Y) < H(X)
[meaning: conditioning reduces uncertainty
knowing Y cannot hurt]
"="iff X, Y independent (MI=0, conditioning useless)

Proof of SA and equality condition: p505 Nielsen & Chuang.
Ideas: (i) define relative entropy H(p|lq) = X, p(x) log [p(xX)/a(x)],
(ii) show that it is nonnegative [since —(In 2) (log z) > 1-z,

H(plla) = -2, p(x) log[a(x)/p(x)] > Z, p(x) [1-a(x)/p(x)1/(In 2)=0,
with equality hold only iff q(x)=p(x) vx]. (iii) rewritting 1(X:Y) as
Hp G pC)ay))-

Properties of H(X), H(X]Y), I(X:Y):

3. Let X, X,, be (different) rv's with the same Q
HC 2 p(K) X ) = X P HXD

X = rv obtained by average entropy of X
(1) draw k, (2) draw from X,

[entropy of the average > average entropy]
[follows from (2): LHS = H(X), RHS = H(X|K)]

Properties of H(X), H(X]Y), I(X:Y):

4. HX]Y) >0 [follows from Def: average over
nonnegative entropies]

5. H(XY) = H(Y)+H(X]Y) [Chain Rule, extends to multiple rv's]
6. H(XY) > H(Y) [follows from 4&5]

7. H(Z) + H(XYZ) < H(XZ) + H(YZ)
[called Strong Subadditivity SSA]
Note that Z special, XY symmetric.
As if Z added to each term in SA. (Thus the name)

equiv to H(Y|ZX) < H(Y|Z) or H(X]ZY) < H(X]|Z)
Conditioning (on a new rv) decreases conditional entropy.
Here: H(Y|Z) on X or H(Y|Z) on Y.

Quantum analogues:
Recall S(p) = H(spec(p))

Let A,B be two quantum systems
p density matrix representing state on AB

S(AB) = S(p), S(A) = S(trgp), S(B) = S(trp).
Classical: H(X|Y) = H(XY)-H(Y)

In quantum setting, no obvious meaning to condition
on one of the two systems.

Def: S(A|B) = S(AB)-S(B) Imitate classical expression
but not the meaning.




Quantum analogues:
Classical: 1(X:Y) = H(X) - H(X]Y)

Def [quantum mutual information]:
S(A:B) = S(A) - S(A|B) = S(A) + S(B) - S(AB).

Imitate classical expression, due to S(A|B), meaning of S(A:B)
not immediately clear. (Investigate later.)

Example 1:
Suppose we have a pure state |y) on AB.
There is always a Schmidt decomposition:
lv) = 2, p(X) ley)a If)s
where {|e,)} is orthonormal in CA, {|f,)} o.n. in CB.
Note that p, = X, p(X) |ei(e. , ps = Z, P(X) [T
S(AB) = 0.
S(A) = S(B) = H(p).

S(A:B) = 2 H(p), S(AIB) = -H(p)

Example 2: Consider a density matrix p = X, A, |e,)(e,|

Suppose we measure in some basis (WLOG the
computation basis) and the outcome is y.

Let |e,) = X, V,y ly)-
Make a matrix V where V,, = entry for the x-col & y-row
so V transforms the comp basis to the eigenbasis of p.

Note that p(y) = X, A, [V, |? and p(yIx) = [V, |?

The distributed given by p(y) (as a vector labeled by y) is
obtained from the distribution A, (as a vector labeled by x)
by applying the matrix D (where D,,=|V,|?).

In general, we say that D is a stochastic map taking X to Y.
if D has nonnegative entries with columns sum to 1.

Here, the rows of D also sum to 1, and we call it doubly
stochastic. It is known to be entropy nondecreasing.

Therefore S(p) = H(X) < H(Y) (meas outcomes are more
random than the prep)

Properties of S(A), S(A|B), S(A:B): Like classical?
0. S(p) = S(UpUh), S(A:B), = S(A:B)yav p ut o vt

1. 0 < S(A) < log(dim A) Y

2. S(AB) < S(A) + S(B) [subadditivity] Y

equiv to S(A:B) > 0 Proof: NC511. Def S(p|[c)
equiv to S(A|B) < S(A) = tr(plog p) — tr(p log o).
- Show S(p||c) > 0 and

"="iff pag = pa ® pg Product state | s(a:B), = S(puallps ® pe)

3. Let 1y, 1,, ... be states on the same system
and {p,} a distribution. Then,
SC 2k P ) = X Py S(rd) Y
[entropy of the average > average entropy]
Why: consider p = X, py 7, @ |K)(K].
S(AB) = H(p) + X, px S(n)
S(A) = S( 2k Pk ), S(B) = H(p) . Follows from 2.

Like classical

Properties in the quantum setting: analogue?
4. S(A|B) > 0or S(AIB) <0 N
5. S(AB) = S(B)+S(A|B) [by def] Y

6. S(AB) > S(B) or S(AB) < S(B)

7. Strong subadditivity (for any tripartitie state on ABC)
S(C) + S(ABC) < S(AC) + S(BC) Y
. conditioning reduces
equiv to S(AIBC) < S(AIB)  yngitional entropy
equiv to S(A:B|C)>0 nonnegativity of conditional QMI
equiv to S(A:B) < S(A:BC) !ocal discarding cannot t QMI
equiv to S(A:B) . < S(A:B) VTCP E local processing
q ( )(ME)(p) = S( )p cannot + QMI
Proof of SSA is very involved, see N&C 11.4.1.

7. Strong subadditivity
S(C) + S(ABC) < S(AC) + S(BC)
(i) equiv to S(A|BC) < S(A|B)
(so, S(A:C|B):=S(A|B)-S(A|BC) > 0)
(ii) equiv to S(A:B) < S(A:BC)
(iv) equiv to S(A:B)(ge),y < S(A:B),
Proof of equivalences:
(i) S(A|IBC) = S(ABC)-S(BC), S(A|B) = S(AB)-S(B)
(ii) S(A:B) = S(A)+S(B)-S(AB), S(A:BC) = S(A)+S(BC)— S(ABC)

(iii) recall any TCP map E can be realized by an isometry B —
B'E where E is a suitable environment initially in a pure state,
followed by discarding the environment.

The von Neumann entropy is invariant under a unitary change
of basis. Thus S(A:B) = S(A:B'E). By (ii), S(A:B'E) > S(A:B').
Conversely, discarding is a TCP map.




How much info can we learn about a quantum state by
measuring it?

Given an ensemble &= {p,, p,}, consider a game:

o fal o fa) >y

Alice draws x wp p(x), prepares p, and sends to Bob.

Bob performs meas #7on p, with operators {M,} (Z,M,=I).

Probability to obtain outcome y if state is p, :
p(ylx) = tr(M, p,)
Joint distribution p(xy) = p(YIx) p(x)
Classical mutual info 1(X:Y) quantities the information
on which state X given by the measurement outcome Y

Def: 1,..(&) = max,, I(X:Y) [accessible info of £7]

I is @ natural quantity to define but difficult to compute.

Examples (proof of optimality of meas left as Ex/HW):

e.g.1  py = lw)(y,l for |y;) = cos 6 |0)+si'n 011)
p2 = lwz){y.l for |y,) = cos 6 |0) —sin 6 |1)

drawn with p, = p, =% Xy
p(1]1) = % (cosb+sinB)? = o
lvz)  lyy) p(2]1) = ¥ (cosb-sin®)2 =1-a
opt P(L]2) = %2 (cosO-sin6)? =1-q
meas p(2]12) = %2 (cosb+sing)? = a
M=1-)-1  My=|+)(+|  PL)=p(2)="2
1-)=10)-11) |+)=]0)+|1) H(YIX) = H(o), H(Y) = 1
V2 V2 lee = 1(X2Y)

H(Y)-H(Y[X)=1-H(a)
Work for any ensemble with 2 pure states < H(X) = 1.

10)
cos n/3 |0) +sin n/3 |1)
cos n/3 |0) —sin ©/3 |1)

e.g.2 Py = lwi){yy for |y,) =
p2 = lwa) (w2l for |y;) =
Pz = lwa)(wsl for ly,) =

drawn with p, = p, = p; = 1/3

opt meas

lvy) HX]Y) =1

(each measurement outcomes

rules out 1-out-of-3 states)

H(X) = log 3

lws)

I‘V2> Iacc = I(X:Y)
M_; = H(X)-H(X]Y) = (log 3) — 1

-

M =2(1- 1w (wi )73 4o it however ~ 0-5850
way is easier

_ _ A When n=2,
e.g.3 px= IX)XI forx=0,1,--,n-1and {7en e

Pyin = UX)(x]UT U = fourier transform 4 ggga states

Each state drawn with uniform probability 1/2n.

(x is encoded in the computational or conjugate basis wp %% each)

Optimal measurement turns out to be M, = %2 p,
i.e. randomly measure in one of the two possible bases

Let TY denote Bob's entire data set, where T is the
coin toss specifying his measurement basis, and Y is
the outcome of that measurement.

With prob %%, Bob's random basis equals the actual one,
giving Y=X, so, I(X:Y]t correct) = log n. With prob %z, he
measures in the "conjugate basis" so Y is random and
independent of his quantum state (elaborate). So,
I(X:Y|t wrong) = 0. So, I(X:Y) = % log n.

e.9.3 P = IX)(x| forx =0,1,--,n-1and whenn=z |
Prin = U|X)<X|U1' U = fourier transform 4 pgaa states

Each state drawn with uniform probability 1/2n.

(x is encoded in the computational or conjugate basis wp %2 each)

Optimal measurement turns out to be M, = %z p,
i.e. randomly measure in one of the two possible bases

We happen to find an upper bound of ¥z log n for I .

Note: if 1 more bit (which basis) is given to Bob, he can
always make the correct measurement, and I,.=1+log n.
So, I, can increase by 1 + % log n bits when the system
size increases by 1 bit. Since the increment >> the extra
bit, it does not “"carry" the increment, but rather "unlocks"
it from the other log n qubits. (More on locking later.)

A lower bound to accessible information
Jozsa, Robb, Wootters 94

For a density matrix p in d dimensions with eigenvalues
{\J, define the "subentropy":

Q) = = Xpemt® [ M /(M= 1)1 1y log Ay

For the ensemble &= {p,, p,}. achieved by
- meas in
lace (£) 2 QE, Py ) - Zi P QP random basis
If p, are pure and I/d = ¥, p, p, (an ensemble of pure
state that averages to the maximally mixed state),

I, > log(d) — (log €)(1/2 + 1/3 + ... + 1/d) (in bits)

Ford = 2, I > 0.2787, for d — oo, I, > ~0.60995 .

acc




An upper bound to accessible information

For the ensemble &= {p,, p,}, define
Holevo information (&) = S(X, Py Py) - Zx Px S(py)

Theorem: 1,..(&) < x(S)
Proof:

The ensemble can be represented by the "CQ" state
Txq = 2x Px IX)(X] ® py

We interpret Alice as using the info x in system X to
prepare the state p, in system Q which is then
transmitted to Bob.

Bob makes a measurement with POVM {M } and
outcome y stores in Y, and discards the system Q. The
joint system is

Tyy = 2y Py X)X ® 2y tr(My p,) Y)Y

Proof (etd): Ty, = Xy PlX) (] @ py © 10)(0]
Txar = Zx PIX)(XI ® 2, MM2p M 12 @y)(y|

For any measurement by Bob:
S(X:Y), < S(X:Q),

by monotonicity of QMI (since the state change is a TCP
map on Bob's side).

For the optimal measurement, S(X:Y). = I,..(£),

whereas S(X:Q), = S(X) + S(Q) — S(XQ)

H(p) + S, Py ) — [H(P)+Z, P, S(p,)]
()

Therefore 1. (&) < x(&) -

Note a useful fact -- the Holevo information is the QMI of
the "XQ" system defining the ensemble.

e.g.1  py = lyy)(yy| for |y;) = cos 6 |O>+5i_" 011)
p2 = ly){y,| for |y,) = cos 6 |0) —sin 6 |1)

drawn with p, = p, = %
p = cos?0 |0)(0] + sin?0 |1)(1] 1(E)= S(p)

bits

e.g.2 Py = lv)(wl for |y;) = |0)
P2 = lwa)(wol for |y,) = cos n/3 |0) +sin n/3 |1)
Pz = lws) (sl for |y;) = cos n/3 |0) —sin n/3 |1)

drawn with p, = p, = p; = 1/3

p=1/2,7=5S() =1, I, ~ 0.5850, Q(p) = 0.2787

A beautiful result is that, given 2 iid draws of this ensemble,
the best joint measurement on the 4-dim system gives more
than 2*0.5850 bits of information, so I, is not additive!

Will learn later that I, on many copies is nearly ny .

e.g.3 px = IX)(x| for x = 0,1,---,n-1 and
Pran = Ux)(x]ut U = fourier transform

Each state drawn with uniform probability 1/2n.

p=1/n,x =S(p) =logn, I . =% log n, Q(p) ~ 0.6 for large n

Note that in general, there are many many 1-qubit states,
and to specify one such state takes many bits.

Preparing the quantum state (and not knowing the classical
label) less than S(1/2) = 1 bit of info can be extracted.

It is highly irrreversible.

Holevo's bound also says that we cannot use 1 gbit cannot
transmit more one 1 bit of data.




