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Recall: H(X) measures the ignorance on the rv X.

Let X,Y be two rv's, with distribution p(xy).
H(XY) = H(p) as before (treat XY as a composite rv).  

Def: Conditional entropy H(X|Y) = ∑y p(y) H(qy). 

Meaning: average (over unknown Y) uncertainty of X:

Define qy = p(X|Y=y) as the distribution of X given Y=y.
qy(x) = p(xy) / ∑x p(xy)

Fix a particular outcome for Y, say y, with X unknown. 

H(qy) is the uncertainty of X when Y=y.

Fact: H(X|Y) = H(XY)-H(Y)easy to 
remember 
consequence aka  "Chain rule."  Proof: def+algebra

Def [mutual information]: I(X:Y) = H(X) - H(X|Y)  

i.e. it equals to the information about X contained in Y  
= decrease in uncertainty of X due to conditioning on Y.

uncertainty of X    before 
conditioning on Y

after

By "fact": I(X:Y) = H(X) + H(Y) - H(XY) = I(Y:X)

I(X:Y) is MUTUAL (information) between X & Y.  

Fact: H(X|Y) = H(XY)-H(Y).

Average (over y) uncertainty of X given Y.

Properties of H(X), H(X|Y), I(X:Y):

1. 0 · H(X) · log |Ω| [obvious, but useful]
2. H(XY) · H(X) + H(Y) [called Subadditivity]

equivalent to I(X:Y) ≥ 0
equivalent to H(X|Y) · H(X) 
[meaning: conditioning reduces uncertainty

knowing Y cannot hurt]
"=" iff X, Y independent (MI=0, conditioning useless)

Proof of SA and equality condition: p505 Nielsen & Chuang.

Ideas: (i) define relative entropy H(p||q) = ∑x p(x) log [p(x)/q(x)],
(ii) show that it is nonnegative [since –(ln 2) (log z) ≥ 1-z, 
H(p||q) = −∑x p(x) log[q(x)/p(x)] ≥ ∑x p(x) [1-q(x)/p(x)]/(ln 2)=0, 
with equality hold only iff q(x)=p(x) ∀x].  (iii) rewritting I(X:Y) as 

H(p(x,y)||p(x)q(y)).   

Properties of H(X), H(X|Y), I(X:Y):

3. Let X1, X2, be (different) rv's with the same Ω
H(  ∑k p(k) Xk )  ≥ ∑k pk H(Xk)

X = rv obtained by          average entropy of Xk

(1) draw k, (2) draw from Xk

[entropy of the average ≥ average entropy]
[follows from (2): LHS = H(X), RHS = H(X|K)]    

Properties of H(X), H(X|Y), I(X:Y):

4. H(X|Y) ≥ 0 [follows from Def: average over

nonnegative entropies]

5. H(XY) = H(Y)+H(X|Y) [Chain Rule, extends to multiple rv's]

6. H(XY) ≥ H(Y) [follows from 4&5]

7. H(Z) + H(XYZ) · H(XZ) + H(YZ)
[called Strong Subadditivity SSA]

Note that Z special, XY symmetric.  

As if Z added to each term in SA.  (Thus the name)

equiv to H(Y|ZX) · H(Y|Z) or H(X|ZY) · H(X|Z)
Conditioning (on a new rv) decreases conditional entropy. 
Here: H(Y|Z) on X or H(Y|Z) on Y.

Quantum analogues:

Recall S(ρ) = H(spec(ρ))

Let A,B be two quantum systems
ρ density matrix representing state on AB

S(AB) = S(ρ), S(A) = S(trBρ), S(B) = S(trAρ).

Classical: H(X|Y) = H(XY)-H(Y)

Def: S(A|B) = S(AB)-S(B)

In quantum setting, no obvious meaning to condition
on one of the two systems.

Imitate classical expression
but not the meaning.
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Quantum analogues:

Classical: I(X:Y) = H(X) - H(X|Y)  

Def [quantum mutual information]:
S(A:B) = S(A) - S(A|B) = S(A) + S(B) - S(AB).

Imitate classical expression, due to S(A|B), meaning of S(A:B) 
not immediately clear.  (Investigate later.) 

Example 1:

Suppose we have a pure state |ψi on AB.

There is always a Schmidt decomposition: 
|ψi = ∑x √p(x) |exiA |fxiB

where {|exi} is orthonormal in CA, {|fxi} o.n. in CB.

Note that ρA = ∑x p(x) |exihex| ,  ρB = ∑x p(x) |fxihfx|

S(AB) = 0.

S(A) = S(B) = H(p). 

S(A:B) = 2 H(p),  S(A|B) = -H(p)

Example 2: Consider a density matrix ρ = ∑x λx |exihex|

Suppose we measure in some basis (WLOG the 
computation basis) and the outcome is y.

Note that p(y) = ∑x λx |Vxy|2  and p(y|x) = |Vxy|2

Let |exi = ∑y Vxy |yi.   
Make a matrix V where Vxy = entry for the x-col & y-row 
so V transforms the comp basis to the eigenbasis of ρ.   

The distributed given by p(y) (as a vector labeled by y) is 
obtained from the distribution λx (as a vector labeled by x) 
by applying the matrix D (where Dxy=|Vxy|2).    

In general, we say that D is a stochastic map taking X to Y.
if D has nonnegative entries with columns sum to 1. 

Here, the rows of D also sum to 1, and we call it doubly 
stochastic.  It is known to be entropy nondecreasing.  

Therefore S(ρ) = H(X) · H(Y)  (meas outcomes are more 
random than the prep)

Properties of S(A), S(A|B), S(A:B):

0. S(ρ) = S(UρU†), S(A:B)ρ = S(A:B)U⊗V ρ U† ⊗ V†

1. 0 · S(A) · log(dim A) Y

2. S(AB) · S(A) + S(B)  [subadditivity] Y
equiv to S(A:B) ≥ 0
equiv to S(A|B) · S(A)  

"=" iff ρAB = ρA ⊗ ρB product state

3. Let τ1, τ2, ... be states on the same system
and {pk} a distribution.  Then, 

S(  ∑k pk τk )  ≥ ∑k pk S(τk) Y

Like classical?

[entropy of the average ≥ average entropy]
Why: consider ρ = ∑k pk τk ⊗ |kihk|.
S(AB) = H(p) + ∑k pk S(τk)
S(A) = S( ∑k pk τk ), S(B) = H(p) .  Follows from 2. 

Proof: NC511. Def S(ρ||σ) 
:= tr(ρ log ρ) – tr(ρ log σ).
Show S(ρ||σ) ≥ 0 and 
S(A:B)ρ = S(ρAB||ρA ⊗ ρB)

Properties in the quantum setting:

4. S(A|B) ≥ 0 or S(A|B) · 0 N

5. S(AB) = S(B)+S(A|B) [by def] Y

6. S(AB) ≥ S(B) or S(AB) · S(B) 

7. Strong subadditivity (for any tripartitie state on ABC)

S(C) + S(ABC) · S(AC) + S(BC) Y

equiv to S(A|BC) · S(A|B)

equiv to S(A:B) · S(A:BC) 

equiv to S(A:B)(I⊗E)(ρ) · S(A:B)ρ ∀TCP E

Like classical 
analogue?

conditioning reduces 
conditional entropy

local discarding cannot ↑ QMI

local processing 
cannot ↑ QMI

equiv to S(A:B|C)≥0 nonnegativity of conditional QMI

Proof of SSA is very involved, see N&C 11.4.1.

(iii) recall any TCP map E can be realized by an isometry B →
B'E where E is a suitable environment initially in a pure state,
followed by discarding the environment.  
The von Neumann entropy is invariant under a unitary change 
of basis.  Thus S(A:B) = S(A:B'E).  By (ii), S(A:B'E) ≥ S(A:B').  
Conversely, discarding is a TCP map.

7. Strong subadditivity

S(C) + S(ABC) · S(AC) + S(BC)

(i) equiv to S(A|BC) · S(A|B)  

(so, S(A:C|B):=S(A|B)-S(A|BC) ≥ 0)

(ii) equiv to S(A:B) · S(A:BC) 

(iv) equiv to S(A:B)(I⊗E)(ρ) · S(A:B)ρ

Proof of equivalences:

(i) S(A|BC) = S(ABC)-S(BC), S(A|B) = S(AB)-S(B)

(ii) S(A:B) = S(A)+S(B)-S(AB), S(A:BC) = S(A)+S(BC)– S(ABC)
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How much info can we learn about a quantum state by 
measuring it? 

Given an ensemble E = {px, ρx}, consider a game: 

x ρxA B y

Alice draws x wp p(x), prepares ρx and sends to Bob.

Bob performs meas M on ρx with operators {My} (∑yMy=I). 

Probability to obtain outcome y if state is ρx : 
p(y|x) = tr(My ρx)

Joint distribution p(xy) = p(y|x) p(x)

Classical mutual info I(X:Y) quantities the information 
on which state X given by the measurement outcome Y  

Def: Iacc(E ) = maxM I(X:Y) [accessible info of E  ]

Iacc is a natural quantity to define but difficult to compute.

Examples (proof of optimality of meas left as Ex/HW):

|ψ1i|ψ2i

|+i=|0i+|1i
√2

|−i=|0i-|1i
√2

M1=|+ih+|M2=|−ih−|

ρ1 = |ψ1ihψ1| for |ψ1i = cos θ |0i+sin θ |1i
ρ2 = |ψ2ihψ2| for |ψ2i = cos θ |0i − sin θ |1i

e.g.1

drawn with p1 = p2 = ½

H(Y|X) = H(α), H(Y) = 1
Iacc = I(X:Y) 

= H(Y)-H(Y|X)=1-H(α)
· H(X) = 1.

p(1|1) = ½ (cosθ+sinθ)2 = α
p(2|1) = ½ (cosθ−sinθ)2 =1-α

p(1|2) = ½ (cosθ−sinθ)2 =1-α
p(2|2) = ½ (cosθ+sinθ)2 = α

p(1)=p(2)=½

yx

Work for any ensemble with 2 pure states

opt
meas

ρ1 = |ψ1ihψ1| for |ψ1i = |0i
ρ2 = |ψ2ihψ2| for |ψ2i = cos π/3 |0i + sin π/3 |1i
ρ3 = |ψ3ihψ3| for |ψ3i = cos π/3 |0i − sin π/3 |1i

e.g.2

drawn with p1 = p2 = p3 = 1/3

H(X|Y) = 1  
(each measurement outcomes
rules out 1-out-of-3 states)

H(X) = log 3

Iacc = I(X:Y) 
= H(X)-H(X|Y) = (log 3) – 1

≈ 0.5850
do it however
way is easier

|ψ1i

|ψ2i

M¬k=2(I-|ψkihψk|)/3

|ψ3i
M¬1

M¬3
M¬2

opt meas

ρx = |xihx| 
ρx+n = U|xihx|U†

e.g.3

Each state drawn with uniform probability 1/2n.

Optimal measurement turns out to be My = ½ ρy
i.e. randomly measure in one of the two possible bases

When n=2, 
these are the 
4 BB84 states

for x = 0,1,L,n-1 and
U = fourier transform

(x is encoded in the computational or conjugate basis wp ½ each)

Let TY denote Bob's entire data set, where T is the 
coin toss specifying his measurement basis, and Y is
the outcome of that measurement.

With prob ½, Bob's random basis equals the actual one, 
giving Y=X, so, I(X:Y|t correct) = log n.  With prob ½, he 
measures in the "conjugate basis" so Y is random and 
independent of his quantum state (elaborate).  So, 
I(X:Y|t wrong) = 0.  So, I(X:Y) = ½ log n.  

ρx = |xihx| 
ρx+n = U|xihx|U†

e.g.3

Each state drawn with uniform probability 1/2n.

Optimal measurement turns out to be My = ½ ρy
i.e. randomly measure in one of the two possible bases

We happen to find an upper bound of ½ log n for Iacc .

When n=2, 
these are the 
4 BB84 states

for x = 0,1,L,n-1 and
U = fourier transform

Note: if 1 more bit (which basis) is given to Bob, he can 
always make the correct measurement, and Iacc=1+log n. 

So, Iacc can increase by 1 + ½ log n bits when the system 
size increases by 1 bit.  Since the increment >> the extra 
bit, it does not "carry" the increment, but rather "unlocks" 
it from the other log n qubits.  (More on locking later.) 

(x is encoded in the computational or conjugate basis wp ½ each)

A lower bound to accessible information

For the ensemble E = {px, ρx}, 
Iacc (E ) ≥ Q(∑x px ρx) - ∑x px Q(ρx) 

For a density matrix ρ in d dimensions with eigenvalues 
{λk}, define the "subentropy": 

Q(ρ) = − ∑k=1
d [Πl≠k λk /( λk- λl)] λk log λk

If ρx are pure and I/d = ∑x px ρx (an ensemble of pure 
state that averages to the maximally mixed state), 

Iacc ≥ log(d) – (log e)(1/2 + 1/3 + ... + 1/d) (in bits)

For d = 2, Iacc ≥ 0.2787, for d → ∞, Iacc ≥ ≈0.60995 .

Jozsa, Robb, Wootters 94

achieved by 
meas in 
random basis
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An upper bound to accessible information

For the ensemble E = {px, ρx}, define
Holevo information χ(E ) = S(∑x px ρx) - ∑x px S(ρx) 

Theorem: Iacc(E )  · χ(E )  
Proof:

The ensemble can be represented by the "CQ" state 
τXQ = ∑x px |xihx| ⊗ ρx

We interpret Alice as using the info x in system X to 
prepare the state ρx in system Q which is then 
transmitted to Bob.  

Bob makes a measurement with POVM {M
y
} and 

outcome y stores in Y, and discards the system Q.  The 
joint system is 

τ'XY = ∑x px |xihx| ⊗ ∑y tr(My ρx) |yihy|

Proof (ctd): τXQY = ∑x px|xihx| ⊗ ρx ⊗ |0ih0|

τ'XQY = ∑x px|xihx| ⊗ ∑y My
1/2ρxMy

1/2 ⊗|yihy|

S(X:Y)τ' · S(X:Q)τ

by monotonicity of QMI (since the state change is a TCP 
map on Bob's side). 

For any measurement by Bob:

For the optimal measurement, S(X:Y)τ' = Iacc(E ), 

whereas S(X:Q)τ = S(X) + S(Q) – S(XQ)
= H(p) + S(∑x px ρx) – [H(p)+∑x pxS(ρx)]
= χ(E ) 

Therefore Iacc(E )  · χ(E ) . 

Note a useful fact -- the Holevo information is the QMI of 
the "XQ" system defining the ensemble.

ρ1 = |ψ1ihψ1| for |ψ1i = cos θ |0i+sin θ |1i
ρ2 = |ψ2ihψ2| for |ψ2i = cos θ |0i − sin θ |1i

e.g.1

drawn with p1 = p2 = ½

ρ = cos2θ |0ih0| + sin2θ |1ih1| χ(E )= S(ρ)

Iacc

θ=2πθ=0

bits
ρ = I/2, χ = S(ρ) = 1, Iacc ≈ 0.5850, Q(ρ) = 0.2787

ρ1 = |ψ1ihψ1| for |ψ1i = |0i
ρ2 = |ψ2ihψ2| for |ψ2i = cos π/3 |0i + sin π/3 |1i
ρ3 = |ψ3ihψ3| for |ψ3i = cos π/3 |0i − sin π/3 |1i

e.g.2

drawn with p1 = p2 = p3 = 1/3

ρx = |xihx| 
ρx+n = U|xihx|U†

e.g.3

Each state drawn with uniform probability 1/2n.

for x = 0,1,L,n-1 and
U = fourier transform

ρ = I/n, χ = S(ρ) = log n, Iacc = ½ log n, Q(ρ) ≈ 0.6 for large n

A beautiful result is that, given 2 iid draws of this ensemble,
the best joint measurement on the 4-dim system gives more
than 2*0.5850 bits of information, so Iacc is not additive!
Will learn later that Iacc on many copies is nearly nχ .

Note that in general, there are many many 1-qubit states, 
and to specify one such state takes many bits.

Preparing the quantum state (and not knowing the classical
label) less than S(I/2) = 1 bit of info can be extracted.

It is highly irrreversible.

Holevo's bound also says that we cannot use 1 qbit cannot 
transmit more one 1 bit of data.  


