

Recall: $H(X)$ measures the ignorance on the rv X .

Let X, Y be two rv's, with distribution $p(xy)$.
 $H(XY) = H(p)$ as before (treat XY as a composite rv).

Fix a particular outcome for Y , say y , with X unknown.

Define $q_y = p(X|Y=y)$ as the distribution of X given $Y=y$.
 $q_y(x) = p(xy) / \sum_x p(xy)$

$H(q_y)$ is the uncertainty of X when $Y=y$.

Def: Conditional entropy $H(X|Y) = \sum_y p(y) H(q_y)$.

Meaning: average (over unknown Y) uncertainty of X :

easy to remember consequence \longrightarrow Fact: $H(X|Y) = H(XY) - H(Y)$
 aka "Chain rule." Proof: def+algebra

Fact: $H(X|Y) = H(XY) - H(Y)$.

Average (over y) uncertainty of X given Y .

Def [mutual information]: $I(X:Y) = H(X) - H(X|Y)$

↑
 uncertainty of X before conditioning on Y
 ↑
 after

i.e. it equals to the information about X contained in Y
 = decrease in uncertainty of X due to conditioning on Y .

By "fact": $I(X:Y) = H(X) + H(Y) - H(XY) = I(Y:X)$

$I(X:Y)$ is MUTUAL (information) between X & Y .

Properties of $H(X)$, $H(X|Y)$, $I(X:Y)$:

1. $0 \leq H(X) \leq \log |\Omega|$ [obvious, but useful]
2. $H(XY) \leq H(X) + H(Y)$ [called Subadditivity]
 equivalent to $I(X:Y) \geq 0$
 equivalent to $H(X|Y) \leq H(X)$
 [meaning: conditioning reduces uncertainty knowing Y cannot hurt]
 "=" iff X, Y independent (MI=0, conditioning useless)

Proof of SA and equality condition: p505 Nielsen & Chuang.

Ideas: (i) define relative entropy $H(p||q) = \sum_x p(x) \log [p(x)/q(x)]$,
 (ii) show that it is nonnegative [since $-(\ln 2)(\log z) \geq 1-z$,
 $H(p||q) = -\sum_x p(x) \log[q(x)/p(x)] \geq \sum_x p(x) [1-q(x)/p(x)]/(\ln 2) = 0$, with equality hold only iff $q(x)=p(x) \forall x$]. (iii) rewriting $I(X:Y)$ as $H(p(x,y)||p(x)q(y))$.

Properties of $H(X)$, $H(X|Y)$, $I(X:Y)$:

3. Let X_1, X_2 , be (different) rv's with the same Ω
 $H(\sum_k p(k) X_k) \geq \sum_k p_k H(X_k)$
 $X = rv$ obtained by average entropy of X_k
 (1) draw k , (2) draw from X_k
 [entropy of the average \geq average entropy]
 [follows from (2): LHS = $H(X)$, RHS = $H(X|K)$]

Properties of $H(X)$, $H(X|Y)$, $I(X:Y)$:

4. $H(X|Y) \geq 0$ [follows from Def: average over nonnegative entropies]
5. $H(XY) = H(Y) + H(X|Y)$ [Chain Rule, extends to multiple rv's]
6. $H(XY) \geq H(Y)$ [follows from 4&5]
7. $H(Z) + H(XYZ) \leq H(XZ) + H(YZ)$ [called Strong Subadditivity SSA]
 Note that Z special, XY symmetric.
 As if Z added to each term in SA. (Thus the name)
 equiv to $H(Y|ZX) \leq H(Y|Z)$ or $H(X|ZY) \leq H(X|Z)$
 Conditioning (on a new rv) decreases conditional entropy.
 Here: $H(Y|Z)$ on X or $H(Y|Z)$ on Y .

Quantum analogues:

Recall $S(\rho) = H(\text{spec}(\rho))$

Let A, B be two quantum systems
 ρ density matrix representing state on AB

$S(AB) = S(\rho)$, $S(A) = S(\text{tr}_B \rho)$, $S(B) = S(\text{tr}_A \rho)$.

Classical: $H(X|Y) = H(XY) - H(Y)$

In quantum setting, no obvious meaning to condition on one of the two systems.

Def: $S(A|B) = S(AB) - S(B)$ Imitate classical expression but not the meaning.

How much info can we learn about a quantum state by measuring it?

Given an ensemble $\mathcal{E} = \{p_x, \rho_x\}$, consider a game:

$x \rightarrow A \xrightarrow{p_x} B \rightarrow y$

Alice draws x wp $p(x)$, prepares ρ_x and sends to Bob. Bob performs meas \mathcal{M} on ρ_x with operators $\{M_y\}$ ($\sum M_y = I$). Probability to obtain outcome y if state is ρ_x : $p(y|x) = \text{tr}(M_y \rho_x)$

Joint distribution $p(xy) = p(y|x) p(x)$

Classical mutual info $I(X:Y)$ quantifies the information on which state X given by the measurement outcome Y

Def: $I_{\text{acc}}(\mathcal{E}) = \max_{\mathcal{M}} I(X:Y)$ [accessible info of \mathcal{E}]

I_{acc} is a natural quantity to define but difficult to compute.

Examples (proof of optimality of meas left as Ex/HW):

e.g.1 $\rho_1 = |\psi_1\rangle\langle\psi_1|$ for $|\psi_1\rangle = |\psi\rangle = \cos\theta|0\rangle + \sin\theta|1\rangle$
 $\rho_2 = |\psi_2\rangle\langle\psi_2|$ for $|\psi_2\rangle = \cos\theta|0\rangle - \sin\theta|1\rangle$

drawn with $p_1 = p_2 = \frac{1}{2}$ $x \ y$

$|\psi_2\rangle \quad |\psi_1\rangle$
 opt meas $\xrightarrow{\quad \quad \quad}$
 $M_2 = |-\rangle\langle-| \quad M_1 = |+\rangle\langle+| \quad p(1|1) = \frac{1}{2}(\cos\theta + \sin\theta)^2 = \alpha$
 $|-\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}} \quad |+\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}} \quad p(2|1) = \frac{1}{2}(\cos\theta - \sin\theta)^2 = 1 - \alpha$
 $p(1|2) = \frac{1}{2}(\cos\theta - \sin\theta)^2 = 1 - \alpha \quad p(2|2) = \frac{1}{2}(\cos\theta + \sin\theta)^2 = \alpha$
 $H(Y|X) = H(\alpha), H(Y) = 1$
 $I_{\text{acc}} = I(X:Y) = H(Y) - H(Y|X) = 1 - H(\alpha) = H(Y) - H(Y|X) = 1 - H(\alpha) = H(X) = 1$

Work for any ensemble with 2 pure states $\leq H(X) = 1$.

e.g.2 $\rho_1 = |\psi_1\rangle\langle\psi_1|$ for $|\psi_1\rangle = |0\rangle$
 $\rho_2 = |\psi_2\rangle\langle\psi_2|$ for $|\psi_2\rangle = \cos\pi/3|0\rangle + \sin\pi/3|1\rangle$
 $\rho_3 = |\psi_3\rangle\langle\psi_3|$ for $|\psi_3\rangle = \cos\pi/3|0\rangle - \sin\pi/3|1\rangle$

drawn with $p_1 = p_2 = p_3 = 1/3$

opt meas

$|\psi_1\rangle \quad H(X|Y) = 1$
 $M_{-2} \quad$ (each measurement outcome rules out 1-out-of-3 states)
 M_{-3}
 $|\psi_3\rangle \quad H(X) = \log 3$
 M_{-1}
 $|\psi_2\rangle \quad I_{\text{acc}} = I(X:Y) = \underbrace{H(X) - H(X|Y)}_{\text{do it however way is easier}} = (\log 3) - 1 \approx 0.5850$
 $M_{-k} = 2(I - |\psi_k\rangle\langle\psi_k|)/3$

e.g.3 $\rho_x = |x\rangle\langle x|$ for $x = 0, 1, \dots, n-1$ and $\rho_{x+n} = U|x\rangle\langle x|U^\dagger$ $U = \text{fourier transform}$ When $n=2$, these are the 4 BB84 states

Each state drawn with uniform probability $1/2n$. (x is encoded in the computational or conjugate basis wp $\frac{1}{2}$ each)

Optimal measurement turns out to be $M_y = \frac{1}{2} p_y$ i.e. randomly measure in one of the two possible bases

Let TY denote Bob's entire data set, where T is the coin toss specifying his measurement basis, and Y is the outcome of that measurement.

With prob $\frac{1}{2}$, Bob's random basis equals the actual one, giving $Y=X$, so, $I(X:Y|t \text{ correct}) = \log n$. With prob $\frac{1}{2}$, he measures in the "conjugate basis" so Y is random and independent of his quantum state (elaborate). So, $I(X:Y|t \text{ wrong}) = 0$. So, $I(X:Y) = \frac{1}{2} \log n$.

e.g.3 $\rho_x = |x\rangle\langle x|$ for $x = 0, 1, \dots, n-1$ and $\rho_{x+n} = U|x\rangle\langle x|U^\dagger$ $U = \text{fourier transform}$ When $n=2$, these are the 4 BB84 states

Each state drawn with uniform probability $1/2n$. (x is encoded in the computational or conjugate basis wp $\frac{1}{2}$ each)

Optimal measurement turns out to be $M_y = \frac{1}{2} p_y$ i.e. randomly measure in one of the two possible bases

We happen to find an upper bound of $\frac{1}{2} \log n$ for I_{acc} .

Note: if 1 more bit (which basis) is given to Bob, he can always make the correct measurement, and $I_{\text{acc}} = 1 + \log n$.

So, I_{acc} can increase by $1 + \frac{1}{2} \log n$ bits when the system size increases by 1 bit. Since the increment \gg the extra bit, it does not "carry" the increment, but rather "unlocks" it from the other $\log n$ qubits. (More on locking later.)

A lower bound to accessible information Jozsa, Robb, Wootters 94

For a density matrix ρ in d dimensions with eigenvalues $\{\lambda_k\}$, define the "subentropy":

$$Q(\rho) = -\sum_{k=1}^d [\Pi_{l \neq k} \lambda_k / (\lambda_k - \lambda_l)] \lambda_k \log \lambda_k$$

For the ensemble $\mathcal{E} = \{\rho_x, p_x\}$, $I_{\text{acc}}(\mathcal{E}) \geq Q(\sum_x p_x \rho_x) - \sum_x p_x Q(\rho_x)$ achieved by meas in random basis

If ρ_x are pure and $I/d = \sum_x p_x \rho_x$ (an ensemble of pure state that averages to the maximally mixed state),

$$I_{\text{acc}} \geq \log(d) - (\log e)(1/2 + 1/3 + \dots + 1/d) \text{ (in bits)}$$

For $d = 2$, $I_{\text{acc}} \geq 0.2787$, for $d \rightarrow \infty$, $I_{\text{acc}} \geq \approx 0.60995$.

An upper bound to accessible information

For the ensemble $\mathcal{E} = \{p_x, \rho_x\}$, define

$$\text{Holevo information } \chi(\mathcal{E}) = S(\sum_x p_x \rho_x) - \sum_x p_x S(\rho_x)$$

Theorem: $I_{\text{acc}}(\mathcal{E}) \leq \chi(\mathcal{E})$

Proof:

The ensemble can be represented by the "CQ" state
 $\tau_{XQ} = \sum_x p_x |x\rangle\langle x| \otimes \rho_x$

We interpret Alice as using the info x in system X to prepare the state ρ_x in system Q which is then transmitted to Bob.

Bob makes a measurement with POVM $\{M_y\}$ and outcome y stores in Y, and discards the system Q. The joint system is

$$\tau'_{XY} = \sum_x p_x |x\rangle\langle x| \otimes \sum_y \text{tr}(M_y \rho_x) |y\rangle\langle y|$$

$$\begin{aligned} \text{Proof (ctd): } \tau_{XQY} &= \sum_x p_x |x\rangle\langle x| \otimes \rho_x \otimes |0\rangle\langle 0| \\ \tau'_{XQY} &= \sum_x p_x |x\rangle\langle x| \otimes \sum_y M_y^{1/2} \rho_x M_y^{1/2} \otimes |y\rangle\langle y| \end{aligned}$$

For any measurement by Bob:

$$S(X:Y)_{\tau'} \leq S(X:Q),$$

by monotonicity of QMI (since the state change is a TCP map on Bob's side).

For the optimal measurement, $S(X:Y)_{\tau'} = I_{\text{acc}}(\mathcal{E})$,

$$\begin{aligned} \text{whereas } S(X:Q)_{\tau} &= S(X) + S(Q) - S(XQ) \\ &= H(p) + S(\sum_x p_x \rho_x) - [H(p) + \sum_x p_x S(\rho_x)] \\ &= \chi(\mathcal{E}) \end{aligned}$$

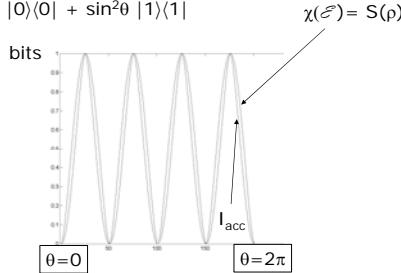
Therefore $I_{\text{acc}}(\mathcal{E}) \leq \chi(\mathcal{E})$.

Note a useful fact -- the Holevo information is the QMI of the "XQ" system defining the ensemble.

e.g.1 $\rho_1 = |\psi_1\rangle\langle\psi_1|$ for $|\psi_1\rangle = \cos \theta |0\rangle + \sin \theta |1\rangle$
 $\rho_2 = |\psi_2\rangle\langle\psi_2|$ for $|\psi_2\rangle = \cos \theta |0\rangle - \sin \theta |1\rangle$

drawn with $p_1 = p_2 = 1/2$

$$\rho = \cos^2 \theta |0\rangle\langle 0| + \sin^2 \theta |1\rangle\langle 1|$$



e.g.2 $\rho_1 = |\psi_1\rangle\langle\psi_1|$ for $|\psi_1\rangle = |0\rangle$
 $\rho_2 = |\psi_2\rangle\langle\psi_2|$ for $|\psi_2\rangle = \cos \pi/3 |0\rangle + \sin \pi/3 |1\rangle$
 $\rho_3 = |\psi_3\rangle\langle\psi_3|$ for $|\psi_3\rangle = \cos \pi/3 |0\rangle - \sin \pi/3 |1\rangle$

drawn with $p_1 = p_2 = p_3 = 1/3$

$$\rho = 1/3, \chi = S(\rho) = 1, I_{\text{acc}} \approx 0.5850, Q(\rho) = 0.2787$$

A beautiful result is that, given 2 iid draws of this ensemble, the best joint measurement on the 4-dim system gives more than 2×0.5850 bits of information, so I_{acc} is not additive! Will learn later that I_{acc} on many copies is nearly $n\chi$.

e.g.3 $\rho_x = |x\rangle\langle x|$ for $x = 0, 1, \dots, n-1$ and
 $\rho_{x+n} = U|x\rangle\langle x|U^\dagger$ $U = \text{fourier transform}$

Each state drawn with uniform probability $1/2n$.

$$\rho = 1/n, \chi = S(\rho) = \log n, I_{\text{acc}} = 1/2 \log n, Q(\rho) \approx 0.6 \text{ for large } n$$

Note that in general, there are many many 1-qubit states, and to specify one such state takes many bits.

Preparing the quantum state (and not knowing the classical label) less than $S(1/2) = 1$ bit of info can be extracted.

It is highly irreversible.

Holevo's bound also says that we cannot use 1 qbit to transmit more than 1 bit of data.