
Superdense coding: 1 ebit + 1 qbit ≥ 2 cbits
Teleportation: 1 ebit + 2 cbits ≥ 1 qbit

Resource inequality:

≥

Resources on the LHS can be used to produce resource 
on the RHS.  

Usually it means we known a protocol P for doing so. 

Will see "concatenating protocols" correspond to 
algebraic operations of these resource inequalities.  



Superdense coding: 1 ebit + 1 qbit ≥ 2 cbits
Teleportation: 1 ebit + 2 cbits ≥ 1 qbit

Can we use less in superdense coding or teleportation?

To show optimality of superdense coding, suppose 

α ebit + β qbit ≥ 2 cbits

α, β need not be integers if we have an asymptotic 
(but exact) protocol and we look at the average cost.

i.e. there is a (hypothesized) protocol to send 2 bits using 
α ebit and by sending β qubits (however complicated)

Then, we can use superdense coding to "supply" the 
2 cbits needed in the teleportation protocol we already 
know to be working. 



Using the hypothesized superdense coding protocol to 
"supply" the 2 cbits needed in known teleportation: 

A

B

ebit

meas
|ψi

A1

σj |ψi

j

j

Our known teleportation protocol

2 cbits



Using the hypothesized superdense coding protocol to 
"supply" the 2 cbits needed in known teleportation: 

β qbits
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Our known teleportation protocol

substitute the 2 cbits by 
hypothesized SDcoding

Alice

Bob

Net: send 1 qubit using β qbit & (1+α) ebits. Contradiction 
if β < 1 (for any α) (by recursive argument).  So, β ≥ 1.  

Intriguingly, teleportation is the reason why SDcoding is optimal.



Known to work:

Teleportation: 1 ebit + 2 cbits ≥ 1 qbit

For any superdense coding protocol:

α ebit + β qbit  ≥ 2 cbits

1 ebit + (α ebit + β qbit) ≥
1 ebit + 2 cbits ≥ 1 qbit

(1+α) ebits + β qbit ≥ 1 qbit  .    So, β ≥ 1  

Algebraically: 

math: substitute the 2nd
inequality into the 1st
operationally: we use 
the protocol (SD) giving
the 2nd inequality as a 
BB in the protocol giving
the 1st inequality.  The 
math is valid if the 
composition is.



Superdense coding: 1 ebit + 1 qbit ≥ 2 cbits
Teleportation: 1 ebit + 2 cbits ≥ 1 qbit

For superdense coding, suppose α ebit + β qbit ≥ 2 cbits

What about the entanglement cost, or α?  

To analyze this, we use the fact stated last time (to be 
proved next class) that a quantum state in d dimensions 
cannot transmit more than d classical messages.   

Then α + β ≥ 2 because the LHS is the total number of 
qubits in Bob's hands in the end.  

So, missing ebits have to be made up for by qbits. 

Since qbit ≥ ebit, α = β = 1 optimal  



Superdense coding: 1 ebit + 1 qbit ≥ 2 cbits
Teleportation: 1 ebit + 2 cbits ≥ 1 qbit

Optimality proof for teleportation is similar:

Hypothesize any other means to achieve teleportation:

γ ebit + δ cbits ≥ 1 qbit

To lower bound δ  (the comm cost of teleportation):

Use any hypothesized teleportation to supply the 1 qbit 
needed in the known protocol for superdense coding.

Net resource counting for superdensing coding: 
send 2 bits using δ cbits and (1+γ) ebits 

A contradiction unless δ ≥ 2.  (Run recursively to see this).  

Alt: 1 ebit + (γ ebit + δ cbits)
≥ 1 ebit + 1 qbit ≥ 2 cbits .    So, δ ≥ 2.  



Superdense coding: 1 ebit + 1 qbit ≥ 2 cbits
Teleportation: 1 ebit + 2 cbits ≥ 1 qbit

Optimality proof for teleportation is similar:

Hypothesize any other means to achieve teleportation:

γ ebit + δ cbits ≥ 1 qbit

To lower bound γ  (the entanglement cost of teleportation):

Use teleportation to share an ebit between Alice and Bob.

So γ ebit and δ cbits generate 1 ebit.  
Contradiction unless γ ≥ 1.

Alt: γ ebit + δ cbits ≥ 1 qbit ≥ 1 ebit,  so, γ ≥ 1.



Superdense coding: 1 ebit + 1 qbit ≥ 2 cbits
Teleportation: 1 ebit + 2 cbits ≥ 1 qbit

Superdense coding and teleportation invert one another 
IF entanglement is free.  What happens otherwise?  

Note that teleportation generates 2 random bits shared 
between Alice and Bob.   Seems like the initial ebit is 
degraded into these.  



Superdense coding: 1 ebit + 1 qbit ≥ 2 cbits
Teleportation: 1 ebit + 2 cbits ≥ 1 qbit

Harrow 03: define cobit (coherent classical communication)
as the ability to perform: |xiA → |xiA |xiB for a basis.

c.f. 
qbit is the ability to perform |xiA → |xiB
cbit is the ability to perform |xiA → |xiB |xiE



Superdense coding: 1 ebit + 1 qbit ≥ 2 cbits
Teleportation: 1 ebit + 2 cbits ≥ 1 qbit

Harrow 03: define cobit (coherent classical communication)
as the ability to perform: |xiA → |xiA |xiB for a basis.

NB: A cobit is between the ability of a qbit and an ebit:

(1) qbit ≥ cobit: 

Protocol: 
Alice applies a unitary |xiA → |xiA |xiA1
Alice transmits A1 to Bob (using the qbit). A1 becomes B.  
Net effect: |xiA → |xiA |xiB which performs a cobit.

(2) cobit ≥ ebit

Protocol: 
Alice prepares a superposition ∑x |xiA
Send A "coherently" using the cobit
Net effect: the final state ∑x |xiA |xiB is an ebit.

(3) cobit ≥ cbit



Superdense coding: 1 ebit + 1 qbit ≥ 2 cbits
Teleportation: 1 ebit + 2 cbits ≥ 1 qbit

Harrow 03: define cobit (coherent classical communication)
as the ability to perform: |xiA → |xiA |xiB for a basis.

(1) Superdense coding provides more than 2 cbits!  
It leaks no info to the environment.  It achieves: 

1 ebit + 1 qbit ≥ 2 cobits

Why consider such an odd (if not self-ridiculed) task? 



Superdense coding: 1 ebit + 1 qbit ≥ 2 cObits
Teleportation: 1 ebit + 2 cbits ≥ 1 qbit

Harrow 03: define cobit (coherent classical communication)
as the ability to perform: |xiA → |xiA |xiB for a basis.

(2) Is there an inverse? 

2 cobits ≥ 1 qbit + 1 ebit

Not obvious, but let's try:

1 ebit + 2 cobits ≥ 1 qbit + 2 ebits (*)

(*) is suggestive – if there is a protocol giving (*), it's 
like doing teleportation using cobits and recycling 2 ebits 



Teleportation:

• Alice (sender) & Bob (receiver) have initial state |00i+|11iAB

• Alice's message is |ψiA1 = a|0i+b|1i

• Alice measures A1 & A along the basis: 
|y0i=|00i+|11i |y1i=|10i+|01i |y2i=|10i-|01i |y3i=|00i-|11i

• Bob applies σj
-1 to B which now contains |ψi regardless of j.

Prior to the measurement, the state on A1 A B is
(a|0i+b|1i)A1(|00i+|11i)AB = ½ ∑j |yjiA1 A(σj|ψi)B
(just check by expanding both sides)

• If outcome is "j", postmeasurement state is |yjiA1 A (σj|ψi)B

• Alice sends the outcome j to Bob (using 2 cbits) 



Teleportation:

• Alice (sender) & Bob (receiver) have initial state |00i+|11iAB

• Alice's message is |ψiA1 = a|0i+b|1i

• Alice measures A1 & A along the basis: 
|y0i=|00i+|11i |y1i=|10i+|01i |y2i=|10i-|01i |y3i=|00i-|11i

• If outcome is "j", postmeasurement state is |yjiA1 A (σj|ψi)B

• Alice sends the outcome j to Bob (using 2 cbits) 

• Bob applies σj
-1 to B which now contains |ψi regardless of j.

Prior to the measurement, the state on A1 A B is
(a|0i+b|1i)A1(|00i+|11i)AB = ½ ∑j |yjiA1 A(σj|ψi)B

WITH COBITS

transforms
|yji to |ji

unitary trsf

After the trsf, it is ½ ∑j |jiA1 A (σj |ψi)B

A1 A to Bob using 2 cobits

resulting state: ½ ∑j |jiA1 A |jiB1 B2 (σj |ψi)B 

conditioned on B1 B2 being j 
final state: ½ ∑j |jiA1 A |jiB1 B2 |ψiB , giving 1 qbit + 2 ebits



Superdense coding: 1 ebit + 1 qbit ≥ 2 cObits
Teleportation: 1 ebit + 2 cbits ≥ 1 qbit

If we use these new ebits in later rounds of teleportation, 
asymptotically we get the exact inverse of SDC: 

2 cobits ≥ 1 qbit + 1 ebit

Teleportation with cobits: 

1 ebit + 2 cobits ≥ 1 qbit + 2 ebits

Therefore: 2 cobits = 1 qbit + 1 ebit

So, the answer to the puzzle is that, SDcoding and 
"teleportation with cobits" are inverses of one another.  
SDcoding is much better than we thought, and  
teleportation, naturally defined, has poorer input & output.



Def: Let X be a classical random var with distribution q(x). 

E={q(x),|ψxi} is called an ensemble of quantum states.  

The classical rv X induces another rv which is a quantum state. 

Interpretation: with prob q(x), quantum state is |ψxi.

Let ρ = ∑x q(x) |ψxihψx| be the "average" state.

Ensembles:

e.g., let q(1) = ½, |ψ1i = |0i
let q(2) = ¼, |ψ1i = (|0i+|1i)/√2
let q(3) = ¼, |ψ1i = (|0i−|1i)/√2

ρ = 1 0
0 0

1 1
1 1
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1
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= ¾ 0
0 ¼

H(X) = -(½ log ½ + ¼ log ¼ + ¼ log ¼) = 1.5

Back to entropy and data compression, quantum version.



The average state: ρ = ∑x q(x) |ψxihψx| is hermitian and 
trace 1, therefore it can be wrriten in terms of its 
eigenvalues and eigenvectors (spectral decomposition):

ρ = ∑v p(v) |evihev|   

von Neumann entropy: 

For the example ensemble: 

So, |e1i = |0i, |e2i = |1i, p(0) = ¾, p(1) = ¼j 

S(ρ) = [entropy of eigenvalues of ρ] = -tr ρ log ρ

Ensembles:
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S(ρ) = - ¾ log ¾ - ¼ log ¼ = 2 - log 3 ≈ 0.8113
but H(X) = 1.5



Suppose we make n iid draws according to E={q(x),|ψxi}.

i.e. with prob q(x1)q(x2)Lq(xn), state is |ψx1i|ψx2iL |ψxni

We can store these n quantum states using 2n[S(ρ)+ε]

dimensions and recover them with average fidelity ≥ 1-δ .

NB. Need much less than 2n[H(q)+ε] (if we're to remember 

x1 x2 L xn)!!  

Quantum data compression (statement of result):

average over the 
distribution of 
quantum states

abs(inner product) 
between given & 
recovered states 

von Neumann entropy of the average state represents the 
space needed for compression of iid source of quantum states.



Consider the spectral decomposition of average state:
ρ = ∑v p(v) |evihev|   

In its eigenbasis |evi:
ρ is a classical random variable V with distn p.
ρ⊗n is n iid draws of V.
Let Tn,ε be the typical set of vn . (Recall what that is)

Quantum data compression (how):

For each typical sequence v1 v2 L vn in Tn,ε, consider the 
state |ev1i |ev2i L |evni =:|evni .

Together, they span typical subspace S with projector:
ΠS = ∑ |evnihevn|   <-- already orthonormal

vn∈Tn,ε

(1) dim S = |Tn,ε| · 2n(H(V)+ε) · 2n[S(ρ)+ε]

(2) Tr(ρ⊗n ΠS) = ∑vn∈Tn,ε p(vn) = prob(Tn,ε ) ≥ 1-δ.  
expand



Suppose the n states to be compressed are 
|ψx1i |ψx2i L |ψxni =:|ψxni 

Otherwise, output |fi an error symbol

Encoded state = ΠS |ψxni  (norm = prob of this happening)

Encoding of quantum compression is simply projecting 
the state onto the typical space S.  

(Reduces to classical data compression for an ensemble of orthogonal states.  
Why it works for an arbitrary ensemble is more delicate ...)  

= ∑xn q(xn) Tr [ |ψxnihψxn| ΠS]cyclic
prop 
trace = Tr [ ρ⊗n ΠS ]

Average output fidelity: ∑xn q(xn) |hψxn|   ΠS |ψxni| 
input output

≥ ∑xn q(xn) hψxn| ΠS |ψxni

≥ 1-δ by previous slide

the normalization inserts the prob of not 
outputing |fi automatically in the fidelity



Encoded state = ΠS |ψxnihψxn| ΠS

+ Tr[(I-ΠS) |ψxnihψxn| (I-ΠS)] |fihf|   

More rigorous analysis using mixed state notation:

Suppose the n states to be compressed are 
|ψx1i |ψx2i L |ψxni =:|ψxni 

Input/output fidelity: 

hψxn| ΠS |ψxnihψxn| ΠS |ψxni| |√



For optimality of both quantum and classical data 
compression (i.e. if we use 2n(S(ρ)-η) dimensions for 
any η>0, we will not recover the states), see Nielsen 
and Chuang.


