Superdense coding: 1 ebit + 1 gbit > 2 cbits
Teleportation: 1 ebit + 2 cbits > 1 gbit

Resource inequality:

>

Resources on the LHS can be used to produce resource
on the RHS.

Usually it means we known a protocol P for doing so.

Will see "concatenating protocols™ correspond to
algebraic operations of these resource inequalities.



Superdense coding: 1 ebit + 1 gbit > 2 cbits
Teleportation: 1 ebit + 2 cbits > 1 gbit

Can we use less in superdense coding or teleportation?

To show optimality of superdense coding, suppose
o ebit + B gbit > 2 cbits

o, B need not be integers if we have an asymptotic
(but exact) protocol and we look at the average cost.

I.e. there is a (hypothesized) protocol to send 2 bits using
o ebit and by sending 3 qubits (however complicated)

Then, we can use superdense coding to "supply" the

2 cbits needed In the teleportation protocol we already
know to be working.



Using the hypothesized superdense coding protocol to

"supply" the 2 cbits needed in known teleportation:
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Using the hypothesized superdense coding protocol to
"supply" the 2 cbits needed in known teleportation:

substitute the 2 cbits by
Al J hypothesized SDcoding

lw)
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o ebits _\-
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Our known teleportation protocol

Net: send 1 qubit using B gbit & (1+a) ebits. Contradiction
If B < 1 (for any o) (by recursive argument). So, > 1.

Intriguingly, teleportation is the reason why SDcoding is optimal.



Algebraically:

Known to work:
Teleportation: 1 ebit +(2 cbits|> 1 gbit

math: substitute the 2nd
Inequality into the 1st
operationally: we use
the protocol (SD) giving

For any superdense coding protocol:
the 2nd inequality as a
BB in the protocol giving

@t + B gbit > 2 cbits
the 1st inequality. The

1 ebit + (a ebit +  gbit) > math is valid if the
1 ebit + 2 cbits > 1 gbit composition is.

(1+o) ebits + fgbit>1qgbit . So,p>1



Superdense coding: 1 ebit + 1 gbit > 2 cbits
Teleportation: 1 ebit + 2 cbits > 1 gbit

For superdense coding, suppose o ebit + 3 gbit > 2 cbits

What about the entanglement cost, or o?

To analyze this, we use the fact stated last time (to be
proved next class) that a quantum state in d dimensions
cannot transmit more than d classical messages.

Thena + > 2 because the LHS is the total number of
qubits in Bob's hands in the end.

S0, missing ebits have to be made up for by gbits.

Since gbit > ebit, o = = 1 optimal



Superdense coding: 1 ebit + 1 gbit > 2 cbits
Teleportation: 1 ebit + 2 cbits > 1 gbit

Optimality proof for teleportation is similar:

Hypothesize any other means to achieve teleportation:
v ebit + & cbits > 1 gbit

To lower bound & (the commm cost of teleportation):

Use any hypothesized teleportation to supply the 1 gbit
needed in the known protocol for superdense coding.

Net resource counting for superdensing coding:
send 2 bits using & cbits and (1+y) ebits

A contradiction unless 6 > 2. (Run recursively to see this).

Alt: 1 ebit + (y ebit + § chits)
> 1ebit+ 1gbit >2cbits. So, 0> 2.



Superdense coding: 1 ebit + 1 gbit > 2 cbits
Teleportation: 1 ebit + 2 cbits > 1 gbit

Optimality proof for teleportation is similar:

Hypothesize any other means to achieve teleportation:
v ebit + & cbits > 1 gbit

To lower bound y (the entanglement cost of teleportation):

Use teleportation to share an ebit between Alice and Bob.

So y ebit and § cbits generate 1 ebit.
Contradiction unless y > 1.

Alt: y ebit + 6 cbits > 1 gbit > 1 ebit, so, y > 1.



Superdense coding: 1 ebit + 1 gbit > 2 cbits
Teleportation: 1 ebit + 2 cbits > 1 gbit

Superdense coding and teleportation invert one another
IF entanglement is free. What happens otherwise?

Note that teleportation generates 2 random bits shared
between Alice and Bob. Seems like the initial ebit is
degraded into these.



Superdense coding: 1 ebit + 1 gbit > 2 cbits
Teleportation: 1 ebit + 2 cbits > 1 gbit

Harrow 03: define cobit (coherent classical communication)
as the ability to perform: |x), — |X)A |X)g fOr a basis.

c.f.
gbit is the ability to perform |x), — |X)g
cbit is the ability to perform |x), — |X)g |X)e



Superdense coding: 1 ebit + 1 gbit > 2 cbits
Teleportation: 1 ebit + 2 cbits > 1 gbit

Harrow 03: define cobit (coherent classical communication)
as the ability to perform: |x), — |X)A |X)g fOr a basis.

NB: A cobit is between the ability of a gqbit and an ebit:
(1) gbit > cobit:

Protocol:

Alice applies a unitary |[X), — X5 1X) a1

Alice transmits Al to Bob (using the gbit). A1 becomes B.
Net effect: |Xx), — |X)a |X)g Which performs a cobit.

(2) cobit > ebit

T
Protocol: (3) cobit > chit

Alice prepares a superposition > |X),
Send A "coherently" using the cobit
Net effect: the final state > |X), |X)g IS an ebit.



Superdense coding: 1 ebit + 1 gbit > 2 cbits
Teleportation: 1 ebit + 2 cbits > 1 gbit

Harrow 03: define cobit (coherent classical communication)
as the ability to perform: |x), — |X)A |X)g fOr a basis.

Why consider such an odd (if not self-ridiculed) task?

(1) Superdense coding provides more than 2 cbits!
It leaks no info to the environment. It achieves:

1 ebit + 1 gbit > 2 cobits



Superdense coding: 1 ebit + 1 gbit > 2 cObits
Teleportation: 1 ebit + 2 cbits > 1 gbit

Harrow 03: define cobit (coherent classical communication)
as the ability to perform: |x), — |X)A |X)g fOr a basis.

(2) Is there an inverse?
2 cobits > 1 gbit + 1 ebit

Not obvious, but let's try:
1 ebit + 2 cobits > 1 gbit + 2 ebits ™)

(*) is suggestive — if there is a protocol giving (*), it's
like doing teleportation using cobits and recycling 2 ebits



Teleportation:

= Alice (sender) & Bob (receiver) have initial state |00)+|11) g

= Alice's message is |v),; = al|O)+b|1)

e Alice measures Al & A along the basis:
1Yo)=100)+]11)  |y;)=[10)+]01) ly»)=110)-]01) |y;)=]00)-]11)

Prior to the measurement, the state on A1 AB is

(@l0)+b[1)) A, (100)+]11)) pg = Y2 2 1Yj)a1 aloilW))E
(Just check by expanding both sides)

e If outcome is "}", postmeasurement state is |yj>A1A (Gj|\|!>)B

e Alice sends the outcome j to Bob (using 2 cbits)

= Bob applies 5;* to B which now contains |y) regardless of j.



Teleportation: WITH COBITS

= Alice (sender) & Bob (receiver) have initial state |00)+|11) g

= Alice's message is |v),; = al|O)+b|1)
transforms

= Alice measures AT & Aatong-thebasis: |y;) to [j)
lVo)=100)+]11) |y,)=]10)+]01) ly»)=110)-]01) |y;)=]00)-|11)

_ unitary trsf _
Prior to the measurement, the state on A1 AB is

(@]0)+b|1)),.(100)+]|11)) s = Y2 Zj ij>A1 A(Gj|\|f>)|3
After the trsf, itis %2 2 |j)a1 a (o5 lW)p

- tfoutcome s, postmeasurenent state s |9j7A1A (GjW))B
Al A to Bob using 2 cobits
e Alice sends the-euteemeftoBob—(using—2—cbits)

resulting state: %2 2 |j)a1 a 1J)e182 (55 1W))s

e Bob applies ;1 to B conditioned on B1 B2 being j
final state: Y2 2,; |j)a1 a li)e182 IW)s » 9iving 1 gbit + 2 ebits



Superdense coding: 1 ebit + 1 gbit > 2 cObits
Teleportation: 1 ebit + 2 cbits > 1 gbit

Teleportation with cobits:
1 ebit + 2 cobits > 1 gbit + 2 ebits

If we use these new ebits in later rounds of teleportation,
asymptotically we get the exact inverse of SDC.:

2 cobits > 1 gbit + 1 ebit

Therefore:| 2 cobits = 1 gbit + 1 ebit

So, the answer to the puzzle is that, SDcoding and
"teleportation with cobits" are inverses of one another.
SDcoding is much better than we thought, and
teleportation, naturally defined, has poorer input & output.



Back to entropy and data compression, quantum version.

Ensembles:

Def: Let X be a classical random var with distribution g(x).
E={a(X),|wv,)} is called an ensemble of quantum states.

The classical rv X induces another rv which is a quantum state.

Interpretation: with prob q(x), quantum state is |y, ).
Let p = 2, q(X) |v,)(w,| be the "average" state.

e.g., letq(l) =%, |y,) = |0)

let q(2) = Y4, lyy) = (0)+]1))/42
let q(3) = ¥4, lyy) = (10)-|1))/V2

p:l10+1 1-1] =| %0
2|00 11 0 va

H(X) = -(*21log %2 + Valog Va + YValog ¥4) = 1.5



Ensembles:

The average state: p = >, q(X) |v,){w,| is hermitian and
trace 1, therefore it can be wrriten in terms of its
eigenvalues and eigenvectors (spectral decomposition):

P = Zv p(V) Iev> <ev|
von Neumann entropy:

S(p) = [entropy of eigenvalues of p] = -tr p log p
For the example ensemble:
p=1[10 |4+ 1119 )+2121(1.49) =([%0
2,100 4211 42|91 O Ya
So, |e;) = 10), ley) = [1), p(0) = %4, p(1) = V4]

S(p) =-%log ¥ -Yalog¥a=2-log 3~ 0.8113
but H(X) = 1.5



Quantum data compression (statement of result):

Suppose we make n iid draws according to E={q(x),|wv,)}-

I.e. with prob q(x,)q(x;)---q(x,), state is |wy,1)|w.o) - vy

We can store these n quantum states using 2nLS(P)+e]

dimensions and recover them with average fidelity > 1-6.

NB. Need much less than 2"H@*z] (if \ve're to remember
Xq Xy oo X )

average over the abs(inner product)
distribution of between given &
quantum states recovered states

von Neumann entropy of the average state represents the
space needed for compression of iid source of quantum states.




Quantum data compression (how):

Consider the spectral decomposition of average state:
p=2,PV) le,(e,l

In its eigenbasis |e,):
p IS a classical random variable V with dist" p.
p®"is n 1id draws of V.
Let T, . be the typical set of v". (Recall what that is)

For each typical sequence v, v, --- v, In T, consider the

state |e,,) ley,) - leyn) =:leyn) -

n,e?

Together, they span typical subspace S with projector:
[l = > |e,n)(e,n] <-- already orthonormal
vheT, o

(1) dim S = |T,, | < 2"HMW*+e) < 2niSE)+el
(2) Tr(p®"Ilg) = 2Zyncr, . P(V") = prob(T, . ) > 1-8.

expand



Encoding of qguantum compression is simply projecting
the state onto the typical space S.

(Reduces to classical data compression for an ensemble of orthogonal states.
Why it works for an arbitrary ensemble is more delicate ...)

Suppose the n states to be compressed are

|\Vx1> |\|/x2> |\|fxn> —. |\|lxn> the normalization inserts the prob of not
outputing |f) automatically in the fidelity

Encoded state = I1; |y,n) (norm = prob of this hap[aening)

Otherwise, output |f) an error symbol
Input output
Average output fidelity: 2.0 q(X") (vl Tl |wen)|
> 2,0 (X)) (yyn] Ts Jwyn)

cyclic _ = 2.n qQ(X") Tr [ Jw,n)(w,.n| ]
prop e

trace = Tr [ p®" I1g ] > 1-8 by previous slide



More rigorous analysis using mixed state notation:

Suppose the n states to be compressed are
W) 1Wi2) = TWyn) =1 1wyn)

Encoded state = Ilg |y, n){y,n| Ig
+ Tr[(1-Tg) wyn){w,nl (I-TI5)] [F)(f|

Input/output fidelity:
\/ |<\|]xn| 1_IS I\Vxn><\|/xn| 1_IS I\lan>|




For optimality of both quantum and classical data
compression (i.e. if we use 2" dimensions for
any n=0, we will not recover the states), see Nielsen

and Chuang.



