Tutorial 2

- **T2 1.** A (study) population has $\mathbf{N} = 6$ elements with the following values for a quantitative response variate (\mathbf{Y}): 9, 1, 5, 15, 19, 7.
 - (a) List all the possible samples of size 2 under equiprobable selecting (EPS).
 - (b) Tabulate the value (\bar{y}) of the average for each sample, together with its selection probability.
 - (c) Use the probability function tabulated in (b) to find the mean and standard deviation of the random variable \overline{Y} representing the sample average under EPS.
 - (d) Verify that the values obtained in (c) are, respectively, $\overline{\mathbf{Y}}$, the population average and $\mathbf{S}\sqrt{\frac{1}{n}-\frac{1}{\mathbf{N}}}$, the standard deviation of the sample average under EPS, s.d. (\overline{Y}) .
 - (e) For each sample, calculate the *square* of the sample (data) standard deviation (s) defined at the right. Using the probability function tabulated in (b), verify that the mean of the random variable S^2 is S^2 .
- T2 2. In each of the following cases, explain how you would obtain, by EPS and using the table of equiprobable digits provided with Assignment 1,
 - (a) fifty school buses from the 4,000 such buses registered in a province;
 - (b) one hundred points in time (designated in minutes) during working hours next week (9:00 a.m. to 5:00 p.m., Monday through Friday).
- *T2-3. A (study) population consists of N = 9 elements with the following responses for some quantitative response variate (Y): 9, 17, 5, 10, 8, 18, 15, 19, 7. Suppose we wish to estimate the average of this population using the average of a sample selected from it.
 - (a) Find the mean and standard deviation of the sample average based on two elements obtained by EPS from the population, using the results of EPS theory.
 - (b) Suppose that a sample of size two is actually obtained by EPS from the population and the elements with responses 19 and 9 are obtained. Find the sample average and compare it with the population average. Are they equal? If not, explain why this does *not* contradict the fact that the random variable representing the sample average under EPS is an *un*biased estimator of the population average.
 - (c) Using the sample described in (b), estimate the square of the population (data) standard deviation. Comment briefly on the value you obtain.

*Bonus question

#0.28-2 University of Waterloo STAT 332 – W. H. Cherry

Blank page