University of Waterloo STAT 221 – W. H. Cherry

Figure 13.10. SIMPLE LINEAR REGRESSION: Inference for Relationships

Program 25 in: Against All Odds: Inside Statistics

Association between two *categorical* variables is displayed in a *two-way table*, and the null hypothesis that no association is present is tested by the chi-squared test discussed in Program 24; association between two *quantitative* variables is displayed by a *scatterplot*. If the association is *linear*, it is described by a *regression line* and its strength is measured by the correlation coefficient. This program discusses inference about straight-line relationships. You may want to review least squares regression from Programs 8 and 9 before studying this program. Before using the inference methods in this program, check that the data show a straight-line relationship and look for *outliers* and *influential observations*.

Confidence intervals and tests always make statements about attributes of the *respondent population* from which our data are a *sample*. To this point, we have learned methods for inference about population *averages* and population *proportions*. To talk about inference in the linear regression setting, we must first say what attributes we will draw conclusions about. The statistical model for *simple linear regression* says that, in the respondent population, the average of the response variable \mathbf{Y} depends on the explanatory variable \mathbf{X} in a straight-line fashion. The notation $\mu_Y(\mathbf{x})$ stands for *the mean of the random variable Y representing the response variable* \mathbf{Y} *when the explanatory variable* \mathbf{X} *has the value* \mathbf{x} . The model for the population says, first, that $\mu_Y = \beta_0 + \beta_1 \mathbf{x}$; the slope β_0 and intercept β_1 of this population regression line are unknown parameters we want to draw conclusions about.

When we have n observations on the variables X and Y, we estimate the unknown β_1 and β_0 by the slope b_1 and intercept b_0 of the *least squares regression line*; *i.e.*, we let the least squares line we fit to the data estimate the unknown population regression line. Notice that, to emphasize the bs are *estimates* of the β s, we use different notation from Program 8: the least squares line is now $\hat{y} = b_0 + b_1 x$, instead of y = a + b x.

Estimating β_1 and β_0 by b_1 and b_0 is much like using the sample average \overline{y} to estimate a model parameter μ representing a respondent population average. In both cases, we need information about the *distribution* of the population in order to move on to confidence intervals or tests of significance. The rest of the statistical model for regression says that the random variable Y_j representing the response y_j for the value x_j of the explanatory variable has a *normal* distribution, and that the *standard deviation* σ of Y_j is the *same* for *all* values of x_j ; by contrast, the *mean* of Y_j does change with x_j – it is $\beta_0 + \beta_1 x_j$.

The standard deviation σ describes how *variable* the response is. Variation is not measured around a *fixed* centre but about the population *regression line*, because the average of \mathbf{Y} *changes* with \mathbf{X} . To give a test or confidence interval, we must estimate σ . Recall the *estimated residuals* $\hat{\mathbf{t}}_j = observed$ $\mathbf{y} - predicted$ $\mathbf{y} = \mathbf{y}_j - \hat{\mathbf{y}}_j$. The square of the sample standard deviation (*i.e.*, the sample variance) of Y_j about the least squares line is as shown at the right; this variance (MSE or s^2) is our estimate of σ^2 (so s estimates σ). The divisor n-2 in the expression at the right is the *degrees of freedom* of s^2 and of s.

The preliminary calculations in a regression problem are: first, calculate the least squares line $\hat{y} = b_0 + b_1 x$; second, calculate the estimated residuals from this line and the standard deviation s (or obtain MSE from the ANOVA table). These calculations are quite lengthy, so that you should use a statistical calculator or software whenever possible; in exercises, you may be given this basic information.

Several kinds of inference are possible in the regression setting; this program presents the two most important: *inference about the slope* β_1 of the population line, and *prediction* of the response for a given \mathbf{X} . Both kinds of inference use t procedures and the t distribution with n-2 degrees of freedom. Although the formulae are more complicated, the ideas are similar to t procedures for the model parameter μ representing a respondent population average. The similarity is due to the fact that the estimated slope b_1 and the predicted response $\hat{y} = b_0 + b_1 x$ both have *normal* distributions. You can find detailed formulae in the Course Materials (or the Text). All make use of the basic calculations of b_1 , b_0 and s.

Because the slope β_1 is the change in the *average* of **Y** when **X** changes by 1, it is the most important parameter that describes the relationship between **Y** and **X**. The $100(1-\alpha)\%$ confidence interval for β_1 is as given in the *upper* expression at the

right. Throughout this Program, $_{\alpha}t_{n-2}^*$ is the upper $\alpha/2$ critical value of the t_{n-2} distribution; $s.d.(b_1)$ is the estimated standard deviation (or standard error) of the statistic b_1 . To test the null hypothesis H_o : $\beta_1 = 0$, use the t-statistic given at the *lower* right; H_o states that there is *no* linear relationship between \mathbf{Y} and \mathbf{X} , or that straight-line dependence on \mathbf{X} is of no value in *predicting* (or 'explaining') \mathbf{Y} . Inference about the intercept b_0 is similar but is less often important.

 $b_1 \pm \alpha t_{n-2}^* \times s. d.(b_1)$

 $\frac{b_1}{s.d.(b_1)} \sim t_{n-2}$

To predict the *mean response* $\mu_Y(x = x^*)$ for a given value x^* of the explanatory variable **X**, we use the value $\hat{\mu} = b_0 + b_1 x^*$ from the least squares line when **X** is x^* . The confidence interval for the mean response is as shown at the right.

 $\hat{\mu} \pm \alpha t_{n-2}^* \times s. d.(\hat{\mu})$

Instead of predicting the mean (long-term average) response, we may wish to predict the *individual* response \mathbf{Y} on a particular (future) occasion when \mathbf{X} has the value \mathbf{x}^* . Again use the predicted value from the least squares line: $\hat{\mathbf{y}} = b_0 + b_1 \mathbf{x}^*$. There

1995-04-20 (continued overleaf)

University of Waterloo STAT 221 – W. H. Cherry

is more uncertainty in predicting a *single Y* than in predicting the mean response μ_Y when x^* is the value of **X**. So the *prediction interval* for *Y* is *wider* than the confidence interval for μ_Y ; it has the form shown at the right below. In these intervals, the *point estimates* $\hat{\mu}$ and \hat{y} are the *same* value – the notation is just to remind us what we are using the least squares line to predict: an *average* response and an *individual* response. The estimated $\hat{\mu} \pm_{\alpha} t_{n-2}^* \times \hat{s}.d.(\hat{y})$ standard deviation (or standard error) $\hat{s}.d.(\hat{y})$ is similar to $\hat{s}.d.(\hat{\mu})$ but has an *extra* term that reflects the additional uncertainty in predicting an *individual* observation.

Copyright © 1985 by Consortium for Mathematics and Its Applications (COMAP), Inc. Reprinted with permission of W. H. Freeman and Company.

1995-04-20