

MARKS
7
(5, 2)

6. Three urns contain the numbers of balls of three different colours shown at the right below. An urn is selected equiprobably ('at random') and a ball is chosen equiprobably from it.

(a) Find the probability the ball is *white*.
 (b) If the ball is white, find the probability urn *A* was the one selected.

Urn *A*: 4 red; 2 white; 2 black
 Urn *B*: 2 red; 1 white; 3 black
 Urn *C*: 1 red; 3 white; 3 black

(a) This problem involves **conditional probability**.

Define: event *A*: *ball is selected from urn A*,
B: *ball is selected from urn B*,
C: *ball is selected from urn C*,
W: *ball is white*.

Then: $\Pr(A) = \Pr(B) = \Pr(C) = \frac{1}{3}$ because the urn is selected **equiprobably**,

and: $\Pr(W|A) = \frac{2}{8} = \frac{1}{4}$; $\Pr(W|B) = \frac{1}{6}$; $\Pr(W|C) = \frac{3}{7}$.

Hence: $\Pr(W) = \Pr(W|A) \times \Pr(A) + \Pr(W|B) \times \Pr(B) + \Pr(W|C) \times \Pr(C)$

$$= \frac{1}{4} \times \frac{1}{3} + \frac{1}{6} \times \frac{1}{3} + \frac{3}{7} \times \frac{1}{3} = \frac{1}{12} + \frac{1}{18} + \frac{1}{7}$$

$$= \frac{21+14+36}{252} = \frac{71}{252} \approx 0.2817.$$

$$\boxed{\frac{71}{252} \approx 0.2817} \quad (a)$$

Probability

(b) Using Bayes' rule, we have:

$$\Pr(A|W) = \frac{\Pr(W|A) \times \Pr(A)}{\Pr(W)}$$

$$= \frac{\frac{1}{4} \times \frac{1}{3}}{\frac{71}{252}}$$

$$= \frac{21}{71} \approx 0.2958.$$

$$\boxed{\frac{21}{71} \approx 0.2958} \quad (b)$$

Probability