University of Waterloo W. H. Cherry

RESPONSE MODELS IN STAT 231: Definitions of Symbols

This Statistical Highlight #72 summarizes definitions of the symbols in the common STAT 231 response models; some terminology and notation has been slightly modified from that in the Course Notes – EPS denotes equiprobable (or 'random') selecting.

Model 1: $Y_j = \mu + R_j$, j = 1, 2, ..., n; $R_j \sim G(0, \sigma)$; independent; EPS.

- Y_j is a random variable whose distribution represents the possible values of the measured response variate for the jth unit in the sample of n units selected equiprobably from the respondent population, if the selecting and measuring processes were to be repeated over and over.
- μ is a model parameter which represents the *average* of the measured response variate of the units of the respondent population.
- R_j is a random variable (called the *residual*) whose distribution represents the possible *differences*, from the structural component of the model, of the measured value of the response variate for the *j*th unit in the sample of n units selected equiprobably from the respondent population, if the selecting and measuring processes were to be repeated over and over.
- σ the (probabilistic) *standard deviation* of the Gaussian model for the distribution of the residual, is a model parameter which represents the (data) *standard deviation* of the measured response variate of the units of the respondent population; this (data) standard deviation (and, hence, σ) *quantifies* the *variation* of the measured response variate over the units of the respondent population as this variation increases, so does the respondent population (data) standard deviation (and, hence, so does σ).

Model 1 is useful for a Question with a *descriptive* aspect investigated with a Plan which involves *equiprobable* selecting and a *calibrated* measuring process.

The Question usually involves the values of μ and/or σ .

Model 1a: $_{M}Y_{j} = \tau + \delta + R_{j}$, j = 1, 2, ..., m; $R_{j} \sim G(0, \sigma)$; independent; EPS.

- $_{\rm M}Y_j$ is a random variable whose distribution represents the possible values of the *j*th measurement of the response variate of a unit, if the measuring process were to be repeated over and over on this unit.
- τ is a model parameter which represents the *true value* of the response variate of the unit measured m times independently.
- δ is a model parameter (called the *bias*) which represents the *inaccuracy* of the measuring process; the value of δ quantifies the inaccuracy of the measuring process as inaccuracy *increases* (*i.e.*, as accuracy *decreases*), δ *increases*.
- R_j is a random variable (called the *residual*) whose distribution represents the possible *differences*, from the structural component of the model, of the value of the *j*th measurement of the response variate of the unit measured m times independently, if the measuring process were to be repeated over and over on this unit.
- σ the (probabilistic) *standard deviation* of the Gaussian model for the distribution of the residual, is a model parameter (called the *variability*) which represents the *imprecision* of the measuring process and describes measuring variation if the measuring process were to be repeated over and over on a unit; the value of σ *quantifies* the imprecision of the measuring process as imprecision *increases* (*i.e.*, as precision *decreases*), σ *increases*.

Model la is useful for a Question involving assessing the *inaccuracy* and *imprecision* of a measuring process with a Plan which involves measuring m times independently the response variate of a unit whose true value is *known*. The Question usually involves the values of δ and σ .

If we take the response variate as $Y_i = {}_{M}Y_i - \tau$, the difference between the measured value and the true value,

Model 1b: $Y_j = \delta + R_j$, j = 1, 2, ..., m; $R_j \sim G(0, \sigma)$; independent; EPS. thus, Model 1a rewritten as Model 1b is equivalent to Model 1, except the structural component is δ instead of μ .

Model 2: $Y_{ij} = \mu_i + R_{ij}$, i = 1, 2, ..., q, $j = 1, 2, ..., n_i$; $R_{ij} \sim G(0, \sigma)$; independent; EPS.

- Y_{ij} is a random variable whose distribution represents the possible values of the measured response variate for the jth unit in the sample of n_i units selected equiprobably from respondent population i, if the selecting and measuring processes were to be repeated over and over.
- μ_i is a model parameter which represents the average of the measured response variate for the units of respondent population i.
- R_{ij} is a random variable (called the *residual*) whose distribution represents the possible *differences*, from the structural component of the model, of the measured value of the response variate for the *j*th unit in the sample of n_i units selected equiprobably from respondent population i, if the selecting and measuring processes were to be repeated over and over.
- σ the (probabilistic) *standard deviation* of the Gaussian model for the distribution of the residual, is a model parameter which represents the (data) *standard deviation* of the measured response variate of the units of *each* of the q respondent populations; this (data) standard deviation (and, hence, σ) quantifies the *variation* of the measured response variate over the units of each of the q respondent populations as this variation increases, so does each (data) standard deviation (and, hence, so does σ).

Model 2 is useful for a Question with a *causative* aspect investigated using a Plan with *out* blocking or matching. When q = 2, the Question usually involves the value of the difference $\mu_1 - \mu_2$.

q=2, the Question usually involves the value of the difference μ_1 μ_2 .

(continued overleaf)

University of Waterloo W.H. Cherry

- **Model 3:** $Y_{ij} = \mu_i + \gamma_j + R_{ij}$, i = 1, 2, j = 1, 2, ..., n; $R_{ij} \sim G(0, \sigma)$; independent; EPS.
 - γ_j is a model parameter (called *the effect for block j*) which represents the amount by which the *average* of the measured response variate of the units in block *j* differs from the average of the measured response variate for the units of respondent population i; the effect for block *j* is assumed to be the *same* when i = 1 and i = 2.

Taking the response variate as $Y_i = Y_{ii} - Y_{2i}$, the intrapair difference, Model 3 becomes:

- **Model 3a:** $Y_i = \mu_d + R_i$, j = 1, 2, ..., n; $R_i \sim G(0, \sigma_d)$; independent; EPS. Model 3a is Model 1 with parameters μ_d and σ_d .
 - Y_i is a random variable whose distribution represents the possible values of the difference in the measured response variate for the jth unit in the sample of n units selected equiprobably from the respondent population when i = 1 and i = 2, if the selecting and measuring processes were to be repeated over and over.
 - $\mu_d = \mu_1 \mu_2$ is a model parameter which represents the *difference* between the *averages* of the measured response variate for the units of the respondent population when i = 1 and i = 2.
 - $R_j = R_{1j} R_{2j}$ is a random variable (called the *residual*) whose distribution represents the possible *differences*, from the structural component of the model, of the difference in the measured response variate for the *j*th unit in the sample of n units selected equiprobably from the respondent population when i = 1 and i = 2, if the selecting and measuring processes were to be repeated over and over.
 - σ_d the (probabilistic) *standard deviation* of the Gaussian model for the distribution of the residual R_j , is a model parameter which represents the (data) *standard deviation* of the measured difference in the value of the response variate of the units of the respondent population when i = 1 and i = 2; this (data) *standard deviation* (and, hence, σ_d) quantifies the *variation* of the measured difference in the response variate over the units of the respondent population when i = 1 and i = 2 as this variation increases, so does σ_d .

Model 3 is useful for a Question with a causative aspect investigated using a Plan with blocking or matching.

The Question usually involves the value of the difference $\mu_d = \mu_1 - \mu_2$.

In comparative investigating using a Plan with blocking or matching, there are *two* respondent populations corresponding to the units available for investigating with the *two* values of the focal variate; when using Model 3, the definitions of the symbols become too cumbersome unless we denote these two respondent populations as *one* population with i=1 and i=2, as in the definitions of Y_i , μ_d , R_i and σ_d above.

- **Model 4:** $Y_j = \alpha + \beta_1(\mathbf{x}_j \overline{\mathbf{x}}) + R_j$, j = 1, 2, ..., n; $R_j \sim G(0, \sigma)$; independent; EPS.
 - Y_j is a random variable whose distribution represents the possible values of the measured response variate for the jth unit in the sample of n units selected equiprobably from the respondent population, if the selecting and measuring processes were to be repeated over and over.
 - α is a model parameter which represents the *average* of y for the units of the respondent population whose value of x is \overline{x} , the *sample* average; it can be convenient to think of α as an 'intercept' the ordinate of the point on the straight-line model for the relationship between x and the average of y when $x = \overline{x}$.
 - $\beta_0 = \alpha \beta_1 \overline{x}$ is a model parameter which represents the *y intercept* of the straight-line model for the relationship between x and the average of y in the respondent population; *i.e.*, the ordinate of this straight line when x = 0.
 - β_1 is a model parameter which represents the *slope* of the straight-line model for the relationship between x and the average of y in the respondent population; *i.e.*, the change in the measured average of y for unit change in x over the units of the respondent population.
 - x_j is the value of the explanatory variate x for the jth unit in the sample of n units selected equiprobably from the respondent
 - \overline{x} is the average value of the explanatory variate x over the n units of the *sample*.
 - R_j is a random variable (called the *residual*) whose distribution represents the possible *differences*, from the structural component of the model, of the measured value of the response variate for the *j*th unit in the sample of n units selected equiprobably from the respondent population, if the selecting and measuring processes were to be repeated over and over.
 - σ the (probabilistic) *standard deviation* of the Gaussian model for the distribution of the residual, is a model parameter which represents the (data) *standard deviation* of the measured response variate of the units of the respondent population with value x_j for explanatory variate x_j ; this (data) standard deviation (and, hence, σ) quantifies the *variation* of the measured response variate of the units of the respondent population with value x_j for explanatory variate x_j as this variation increases, so does σ .

Model 4 is useful for a Question with a *causative* aspect investigated with a Plan in which values are available for an explanatory variate x that has a relationship to the average of y that can be modelled by a straight line.

The Question usually involves the value of the slope parameter β_1 and sometimes the intercept parameters α or β_0 of the model for the straight-line relationship between x and the average of y in the respondent population.

- Numbering the Models (1, 2, 3, 4) is only for convenience in this Highlight #72 and does *not* carry over to the Course Notes.
- When using the definitions from this Highlight #72 in a specific Question context, the generic 'response variate' should be replaced by the relevant description of the *actual* response variate for the Question context.