University of Waterloo W. H. Cherry

CONFIDENCE INTERVALS: Quantifying Sampling (and Measuring) Imprecision (for some types of Questions)

Section headings to provide a content overview

- 1. An Illustration of a Measuring Process the Mass of NB10
- 2. A Confidence Interval for μ Representing the Mass of NB10
- 3. Understanding Confidence Intervals for a Model Mean Representing a Population Average
 - 1. Interpretation of a CI
 - 2. The value used for the confidence level
 - 3. Interpretation of the confidence level
 - 4. Factors affecting the width of a CI for the model mean μ representing the population average \overline{Y}
 - 5. CI numerical coefficients from the t_v instead of the N(0,1) distribution
 - 6. Modelling assumptions underlying the CI derivation

Assumption 1

Assumption 2 – sampling

Assumption 2 – measuring

Assumption 3

Example HL2.1

Example HL2.2

- 4. Modelling a Measuring Process which has Inaccuracy
 - 1. Calibrating a measuring process to quantify measuring inaccuracy.
 - 2. A CI for the mean μ representing the population average \overline{Y} calculated from inaccurate measurements
- 5. Calculating a Sample Size in the Plan for an Investigation to Estimate $\overline{\mathbf{Y}}$

Specifying imprecision by interval width

Specifying imprecision by interval half-width

Specifying imprecision by the standard deviation of \overline{Y}

- 6. Appendix 1: t_v Distribution History
- 7. Appendix 2: Least Squares Estimating
- 8. Appendix 3: t_{ν} Distribution Theory

The χ_{ν}^2 distribution

The K_{ν} distribution

The distribution of $\tilde{\sigma}$

The t_{ν} distribution

The distribution of $\tilde{\mu}$

9. Appendix 4: A Confidence Interval for σ representing \mathbf{S} (and for σ^2 representing \mathbf{S}^2)

Example HL2.3

10. Appendix 5: The International Reference Kilogram

Ten tables

Twenty-one diagrams

Forty-five equations

2021-06-20