QIC890/PMATH950 HOMEWORK SET 1 DUE FEBRUARY 6, 2020

VERN I. PAULSEN

1. Problem

Let X and Y be Banach spaces, let $V \subseteq X$ be a vector subspace and let W denote its closure. Given $T:V\to Y$ a bounded linear map and $w\in W$, show that if $\{v_n\}\subseteq V$ is any sequence such that $\|w-v_n\|\to 0$, then there exists a vector $y\in Y$ such that $\|y-Tv_n\|\to 0$. Show that y is independent of the particular sequence $\{v_n\}$ converging to w and that setting $R:W\to Y$ by Rw=y where y is the unique vector obtained in this manner defines a bounded linear map that extends T with $\|R\|=\|T\|$. We will refer to this process as **extension by continuity** and refer to R as the closure of T.

2. Problem

Let \mathcal{H} be a separable Hilbert space with a countably infinite o.n.b. given by $\{e_n : n \in \mathbb{N}\}$. Let $\lambda_n \in \mathbb{C}$ with $\lambda_n \neq 0$ for every n. Set $T(\sum_n a_n e_n) = \sum_n a_n \lambda_n e_{n+1}$. Prove:

- (1) $T \in B(\mathcal{H}) \iff \sup\{|\lambda_n| : n \in \mathbb{N}\} < +\infty$ and that in this case $||T|| = \sup\{|\lambda_n| : n \in \mathbb{N}\}$
- (2) $T \in \mathbb{K}(\mathcal{H}) \iff \lim_{n \to \infty} \lambda_n = 0.$
- (3) $T \in \mathcal{C}_p(\mathcal{H}) \iff \sum_n |\lambda_n|^p < +\infty \text{ and that } ||T||_p = (\sum_n |\lambda_n|^p)^{1/p}.$
- (4) In the polar decomposition of T=W|T|, with $W:\mathcal{R}(|T|)^-\to \mathcal{R}(T)^-$ show that the unitary W can never extended to a unitary on \mathcal{H} .

3. Problem

Let \mathcal{H} be a Hilbert space with a possibly uncountable o.n.b. $\{\phi_a : a \in A\}$. Prove that for each vector $h \in \mathcal{H}$ there is at most a countable set of $a \in A$ such that $\langle \phi_a | h \rangle \neq 0$.

4. Problem

Let T be an $n \times n$ matrix, which we think of as an element of $B(\mathbb{C}^n)$, where \mathbb{C}^n is the standard n dimensional Hilbert space with o.n.b. $\{e_1, ..., e_n\}$. Prove that in this case we may write T = U|T| where $U : \mathbb{C}^n \to \mathbb{C}^n$ is a unitary. Show that there are two unitary matrices U_1 and U_2 such that

 $T = U_1 D U_2$ where D is the diagonal matrix whose entries are the singular numbers of T.

5. Problem

Let \mathcal{H} be a Hilbert space with a countable o.n.b. $\{e_n : n \in \mathbb{N}\}$. Given $T \in B(\mathcal{H})$ we define the matrix of T with respect to the o.n.b. to be the array $(t_{i,j})_{i,j\in\mathbb{N}}$ where

$$t_{i,j} = \langle e_i | Te_j \rangle.$$

Prove that:

- (1) for each $i, \sum_{j} |t_{i,j}|^2 < +\infty$, (2) for each $j, \sum_{i} |t_{i,j}|^2 < +\infty$, (3) if $h \in \mathcal{H}$ with $h = \sum_{j} a_j e_j$ then $Th = \sum_{i,j} t_{i,j} a_j e_i$, (4) $T \in \mathcal{C}_2(\mathcal{H}) \iff \sum_{i,j} |t_{i,j}|^2 < +\infty$ and that in this case $||T||_2 = \left(\sum_{i,j} |t_{i,j}|^2\right)^{1/2}$.

Finally, give an example of a $p,1 and <math>T \in \mathcal{C}_p(\mathcal{H})$ such that $\sum_{i,j} |t_{i,j}|^p = +\infty.$

INSTITUTE FOR QUANTUM COMPUTING AND DEPARTMENT OF PURE MATHEMATICS, University of Waterloo, Waterloo, ON, Canada N2L 3G1

E-mail address: vpaulsen@uwaterloo.ca