1/23 -1 Summary: Given F:R-R increasing and right continuous, set $M_{\mathbf{B}}((a, 63) = F(6) - F(a)$ Yields outer measure MF, restrict to Caratheodory Mr = {A | A / p - measurable } obtain by Caratheodory a measure called Lebesgue-Staeltjer measure, H= Know 6@ MF ((a,6]) = MF ((a,6]) = F(6)-F(a) (3) (R) \subseteq M_F . (3) μ_F is σ -finite, since R = U(m, m+1) all finite When we take F(x)=x, corresponding Lebesque-Stieltje's measure, called Lebesque measure, denoted m. In 450, construct a set E that is not celesque measurable, out in this course

Page 35

Theorem 1.16: If $F:\mathbb{R}\to\mathbb{R}$ is increasing and right continuous, then there exists unified Borel measure μ_F on \mathbb{R} such $\mu_F((a,b])=F(b)-F(a)$. If G is another such function, then $\mu_F=\mu_G$ if and only if F-G= a constant. [Note that such a measure is bounded on bounded intervals.] Conversely, if μ is a Borel measure on \mathbb{R} that is finite on bounded intervals, and we set

$$F(x) = \begin{cases} \mu((0, x]) & \text{if } 0 < x \\ 0 & \text{if } x = 0 \\ -\mu((x, 0]) & \text{if } x < 0 \end{cases}$$

then, F is increasing and right continuous, and $\mu = \mu_F$ for Borel Details.

Proof: $f \in \mathbb{R} \to \mathbb{R}$ is increasing and right continuous, and set

 $\mu_{\scriptscriptstyle 0}(\dot\bigcup_{j=1}^n(a_{\scriptscriptstyle j},b_{\scriptscriptstyle j}])=\sum\limits_{j=1}^nF(b_{\scriptscriptstyle j})-F(a_{\scriptscriptstyle j}).$ Then, by Proposition 1.15,

we get a premeasure on \mathcal{A} , an algebra generated by h-intervals. If we take Lebesgue-Stieltjes outer measure μ_F^* generated by F, then by Caratheodory's Theorem, we know that there exists a measure on a collection of μ_F^* -measurable sets, denoted by \mathcal{M}_F . By Proposition 1.13, every set in \mathcal{A} is μ^* -measurable and its measure is μ_0 . Since $\mathcal{A} \subseteq \mathcal{M}_F$, σ -algebra generated by \mathcal{A} is a subset of \mathcal{M}_F . But, the σ -algebra generated by \mathcal{A} is $\mathcal{B}_{\mathbb{R}}$, the Borel set. Thus, $\mathcal{B}_{\mathbb{R}} \subseteq \mathcal{M}_F$. So, $\mu_F^*|_{\mathcal{B}_{\mathbb{R}}}$ is a measure on $\mathcal{B}_{\mathbb{R}}$.

Thus, we have shown that there exists a measure μ_F on $\mathcal{B}_{\mathbb{R}}$ such that $\mu_F((a,b]) = \mu_0((a,b]) = F(b) - F(a)$.

Figure 1. Next, if $\mu_F = \mu_G$, then $\mu_F((a,b]) = F(b) - F(a) = G(b) - G(a) = \mu_G((a,b])$ for all a and b. Thus, F(x) = G(x) - G(0) + F(0), and so F - G = a constant. Conversely, if F - G = a constant, then $\mu_F((a,b]) - \mu_G((a,b])$ for all a and $b \Rightarrow$ give the same premeasure \Rightarrow give the same outer measure, etc. Suppose that μ is a Borel measure on $\mathbb R$ which is finite on

bounded intervals, and define $\int u(0, x]$ if 0 < x

$$F(x) = \begin{cases} \mu((0, x]) & \text{if } 0 < x \\ 0 & \text{if } x = 0 \\ -\mu((x, 0]) & \text{if } x < 0 \end{cases}$$

[Show that F is increasing.]

Let $y \le x$. If $0 \le y \le x$, then $F(y) = \mu((0,y]) \le \mu((0,x]) = F(x)$. If $y \le 0 \le x$, then $F(y) \le 0 \le F(x)$. If $y \le x \le 0$, then $(y,0] \supseteq (x,0] \Rightarrow \mu((y,0]) \ge \mu((x,0]) \Rightarrow -\mu((y,0]) \le -\mu((x,0]) \Rightarrow F(y) \le F(x)$. Thus, F is increasing.

Done)
earlier

Page 16

[Show that F is continuous from the right.] Let $x_n \setminus x$. If $x \geq 0$, then $x_n \geq 0$ and $F(x_n) = \mu((0, x_n])$. Now, $\lim_{n \to \infty} F(x_n) = \lim_{n \to \infty} \mu((0, x_n]) = \mu(\bigcap_{n=1}^{\infty} (0, x_n]) = \mu((0, x])$ = F(x). If x < 0, without loss of generality assume that $x_n < 0$, then $F(x_n) = -\mu(x_n, 0] \Rightarrow \lim_{n \to \infty} F(x_n) = -\lim_{n \to \infty} \mu((x_n, 0]) = -\mu(\bigcup_{n=1}^{\infty} (x_n, 0]) = -\mu((x, 0]) = F(x)$ because $(x, 0] \supseteq (x_n, 0]$ and $(x, 0] = \bigcup_{n=1}^{\infty} (x_n, 0]$. Thus, F is continuous from the right.

Note that if we require F(0) = 0, we can get rid of constant term. There is a one to one correspondence between " μ is a Borel measure of finite of bounded intervals" and "F is increasing, right continuous and F(0) = 0."

Now $\mathcal{H}((a,6]) = \mathcal{H}_{\mathcal{F}}((a,6))$ apply $\mathcal{H}W\mathcal{F}_{\boldsymbol{o}}$ Example 1: Fix x_0 , and define

$$F(x) = \begin{cases} 0 & \text{if } x < x_0 \\ 1 & \text{if } x_0 \le x \end{cases}$$

Then, there is a measure μ_F such that

$$\mu_{\scriptscriptstyle F}((a,b]) = egin{cases} 1 & ext{if } x_{\scriptscriptstyle 0} \in (a,b] \ 0 & ext{if } x_{\scriptscriptstyle 0}
otin (a,b] \end{cases} \ \mu_{\scriptscriptstyle F}(E) = egin{cases} 1 & ext{if } x_{\scriptscriptstyle 0}
otin (a,b] \ 0 & ext{if } x_{\scriptscriptstyle 0}
otin (a,b] \end{cases}$$

 $\mu_{\scriptscriptstyle F} \equiv \delta_{\scriptscriptstyle x_0}$ is called **dirac delta** or **point mass at** ${m x_0}$

Start with such a Borel measure μ which leads to F, and from F we get an outer/measure μ_F^* . Then, by Caratheodory's Theorem, we get $(\mathbb{R}, \mathcal{M}_F, \widetilde{\mu}_F)$ which is called **Lebesgue-Stieltjes measure**. Remember that $\widetilde{\mu}_F = \mu_F^* |_{\mathcal{M}_F}$.

The next proposition describe the relationship between $(\mathbb{R},\mathcal{B}_{\mathbb{R}},\mu)$ and

(B, M, F).

HW 6: Let F be the c.d. for the fair

coin discussed earlier. Find μ_F , M_F coin discussed earlier. Find μ_F , M_F two Book measures.

HW7. Let (R, BLR), μ) (R, BLR) μ (B) = μ (B)

HW7 Let $(R, B(R), \mu)$, $(R, B(R), \nu)$ be two Borel measures such that $\mu((a,b]) = \nu((a,b]) < +\infty$, $\forall a,b \in R$, then $\mu(B) = \nu(B) \forall B \in B(R)$ Propin Let (R, B(R), µ) be a Borel measure bounded on intervals, F as above. Then (R, MF, MF) is the completion of (R, B(R), M) Pt: Let E & MF. Assume MF(E) <+00 Know $\mu_{\mathcal{E}}(E) = i \eta \left\{ \sum_{n=1}^{\infty} F(b_n) - F(c_n) \right| E \subseteq \mathcal{U}(a_n, b_n)$ Pick Br = (anik) knik) $\sum_{m} F(b_{n,h}) - F(a_{n,h}) \leq \mu_{F}(E) + \frac{1}{h}$ Bh Borel $\Rightarrow \mu(B_h) = \mu_F(B_h)$. Take $B = \bigcap_{k} B_k$ $E \subseteq B \Rightarrow \mu(E) \leq \mu(B) \leq \mu_F(E) + k$ $\forall k$ E = B U(E(B) General E write $E = U(E \Lambda(m, m+1))$ $m = -\infty$ Each $E_n = B_n \mathcal{O} M_n \Rightarrow E = (UB_n)\mathcal{O}(UM_n)$ Borel mull

1/23-5 Multi-dimensions: Finite lemons of (a, b] x (c, d) algebra of sets on R If we set $M_o((a,b]\times(c,d])=(b-a)\cdot(d-c)$ extend to unions, get premeasure on Az (R2, M2, M2)

Resulting measure called 2-dimensional Cebesque measure m2. Again Az will be contained in Mr => $\mathcal{B}(\mathbb{R}^2) \subseteq \mathcal{M}_{\mathbb{Z}}$ and $m_{\mathbb{Z}}(14,6] \times (6,d)$ = (b-a)(d-c)k-dimensional Lebesque Similarly for maane

Chapter 2 Integration

2.1 Measurable Functions

Definition: Let \mathcal{M} and \mathcal{N} be σ -algebras. Also, let (X, \mathcal{M}) and (Y, \mathcal{N}) be measurable spaces. A function $f: X \to Y$ is called $(\mathcal{M}, \mathcal{N})$ -measurable provided that $f^{-1}(E) \in \mathcal{M}$ for all $E \in \mathcal{N}$. Recall that $f^{-1}(E) = \{x: f(x) \in E\}$, preimage or inverse image of f.

Proposition: Let (X, \mathcal{M}) , (Y, \mathcal{N}) and (Z, \mathcal{O}) be measurable spaces. Let $f: X \to Y$ be $(\mathcal{M}, \mathcal{N})$ -measurable and $g: Y \to Z$ be $(\mathcal{N}, \mathcal{O})$ -measurable. Then, $g \circ f: X \to Z$ is $(\mathcal{M}, \mathcal{O})$ -measurable.

Proof: Let (X, \mathcal{M}) , (Y, \mathcal{N}) and (Z, \mathcal{O}) be measurable spaces. Let $f: X \to Y$ be $(\mathcal{M}, \mathcal{N})$ -measurable and $g: Y \to Z$ be $(\mathcal{N}, \mathcal{O})$ -measurable. Suppose that $E \in \mathcal{O}$. Then, $(g \circ f)^{-1}(E) = \{x: g(f(x)) \in E\} = \{x: f(x) \in g^{-1}(E)\} = f^{-1}(g^{-1}(E))$. [Note that $g^{-1}(E) \in \mathcal{N}$ and $f^{-1}(g^{-1}(E)) \in \mathcal{M}$.] Thus, $(g \circ f)^{-1}(E) \in \mathcal{M}$, and so $g \circ f: X \to Z$ is $(\mathcal{M}, \mathcal{O})$ -measurable.

Proposition 2.1: Let (X, \mathcal{M}) and (Y, \mathcal{N}) be measurable spaces, and \mathcal{N} be a σ -algebra generated by \mathcal{E} . Let $f: X \to Y$. If $f^{-1}(E) \in \mathcal{M}$ for all $E \in \mathcal{E}$, then f is $(\mathcal{M}, \mathcal{N})$ -measurable.

Proof:Let (X, \mathcal{M}) and (Y, \mathcal{N}) be measurable spaces, and \mathcal{N} be a σ algebra generated by \mathcal{E} . Let $f: X \to Y$. Also, let $f^{-1}(E) \in \mathcal{M}$ for all $E \in \mathcal{E}$, and $\widetilde{\mathcal{N}} = \{B \in Y : f^{-1}(B) \in \mathcal{M}\}$. Then, $\mathcal{E} \subseteq \widetilde{\mathcal{N}}.$

[Note that $\widetilde{\mathcal{N}}$ is a σ -algebra $\Rightarrow \mathcal{N} \subseteq \widetilde{\mathcal{N}} \Rightarrow \text{If } B \in \mathcal{N}$, then $f^{-1}(B) \in \mathcal{M}$.]

[Show that $\widetilde{\mathcal{N}}$ is a σ -algebra.]

Since $f^{-1}(\emptyset) = \emptyset \in \mathcal{M}, \emptyset \in \widetilde{\mathcal{N}}$. Next, if $B \in \widetilde{\mathcal{N}}$, then $f^{-1}(B) \in \mathcal{M}$. Since \mathcal{M} is a σ -algebra, $(f^{-1}(B))^c = f^{-1}(B^c) \in \mathcal{M}$. Thus, $B^c \in \widetilde{\mathcal{N}}$. Also, if $B_n \in \widetilde{\mathcal{N}}$, then $f^{-1}(B_n) \in \mathcal{M}$. Since \mathcal{M} is a σ -algebra, $\bigcup_n f^{-1}(B_n) = f^{-1}(\bigcup_n B_n) \in \mathcal{M}$, $\bigcup_n B_n \in \widetilde{\mathcal{N}}$. Thus, $\widetilde{\mathcal{N}}$ is a σ -algebra, and so $\mathcal{N} \subseteq \widetilde{\mathcal{N}}$. Therefore, if $B \in \mathcal{N}$, then $B \in \widetilde{\mathcal{N}}$ and so $f^{-1}(B) \in \mathcal{M}$. Thus, f is $(\mathcal{M}, \mathcal{N})$ -measurable.