Examples:

(i) Let $f_n = 1/n\chi_{(0,n)}$. Then: $f_n \to f$ in measure since $\{x : |f_n - 0| \ge \epsilon\} = \emptyset$ for $1/n < \epsilon$.

(iii) Let $f_n=n\chi_{_{[0,1/n]}}$. Then: $f_n\to 0 \text{ in measure since } \{x:|f_n(x)-0|\geq\epsilon\}\subseteq [0,1/n].$

(iv) Let $f_n = \chi_{[j/2^k,(j+1)/2^k]}$ where $n = 2^k + j$ and $0 \le j \le 2^k$. That is, $f_1 = \chi_{[0,1]}, f_2 = \chi_{[0,1/2]}, f_3 = \chi_{[1/2,1]}, f_4 = \chi_{[0,1/4]}, f_5 = \chi_{[1/4,1/2]}$ $f_6 = \chi_{[1/2,3/4]}, f_7 = \chi_{[3/4,1]}, f_8 = \chi_{[0,1/8]}, \cdots$ Then: $f_n \to 0$ in measure.

EAST HER

Proposition 2.29: If $\int_X |f_n - f| d\mu \to 0$, that is $f_n \to f$ in L^1 , then $f_n \to f$ in measure.

Proof: Given $\epsilon > 0$, let $E_{n,\epsilon} = \{x : |f_n - f| \ge \epsilon\}$. Then, $0 \leftarrow \int_X |f_n - f| d\mu \ge \int_{E_{n,\epsilon}} |f_n - f| d\mu \ge \epsilon \mu(E_{n,\epsilon}) \Rightarrow \lim_n \mu(E_{n,\epsilon}) = 0$ for all $\epsilon > 0$.

Note that the converse of Proposition 2.29 is false: Let $f_n = 1/n\chi_{(0,n)}$.

Then, $f_n \to 0$ in measure, but $\int_{\mathbb{R}} |f_n - 0| dm = 1 \not\to 0$.

END HERE

START 2/13

Theorem 2.30: Let (X, \mathcal{M}, μ) be a measure space, and $f_n : X \to \mathbb{R}$ be measurable. Then, if $f_n \to f$ in measure and $f_n \to g$ in measure, then f = g a.e. If $\{f_n\}$ is Cauchy in measure, then there exists $f: X \to \mathbb{R}$ which is measurable such that $f_n \to f$ in measure. Moreover, if $f_n \to f$ in measure, then there exists a subsequence $\{f_{n_i}\}$ such that $f_{n_i} \to f$ pointwise a.e.

[Note that $f_n \to f$ in measure $\{f_n\}$ is Cauchy in measure.]

Proof: Let (X,\mathcal{M},μ) be a measure space, and $f_n:X\to\mathbb{R}$ be measurable. Suppose that $f_n\to f$ in measure and $f_n\to g$ in measure. Then, given $\epsilon>0$, $\{x:|f(x)-g(x)|\geq\epsilon\}\subseteq\{x:|f(x)-f_n(x)|\geq\epsilon/2\}\cup\{x:|g(x)-f_n(x)|\geq\epsilon/2\}$ because $\epsilon\leq|f(x)-g(x)|\leq|f(x)-f_n(x)|+|f_n(x)-g(x)|$. So, $\mu(\{x:|f(x)-g(x)|\geq\epsilon\})\leq\mu(\{x:|f(x)-f_n(x)|\geq\epsilon/2\})$ for all n, and also by the hypotheses $\mu(\{x:|f(x)-f_n(x)|\geq\epsilon/2\})$ for all n, and also by the hypotheses $\mu(\{x:|f(x)-f_n(x)|\geq\epsilon/2\})\to 0$ as $n\to\infty$. Thus, $\mu(\{x:|f(x)-g(x)|\geq\epsilon\})=0$ for all $\epsilon>0$. Now, $\{x:f(x)\neq g(x)\}=\bigcup_{n=1}^\infty\{x:|f(x)-g(x)|\geq1/n\}\Rightarrow\mu(\{x:f(x)\neq g(x)\})=0$. Thus, f=g a.e.

Assume that $\{f_n\}$ is Cauchy in measure. Let $\epsilon_1 = \epsilon_2 = 1/2$, then there exists N_1 such that $n, m \ge N_1$ implies that $\mu(\{x: |f_n - f_m| \ge 1/2\}) < 1/2$. Let $g_1 = f_{N_1}$. Now, pick $N_2 > N_1$ such that $\epsilon_1 = \epsilon_2 = 1/4$. Then, whenever $n, m \geq N_2$, $\mu(\{x: |f_n - f_m| \ge 1/4\}) < 1/4$. Let $g_2 = f_{N_2}$. Continue the process inductively to get $g_j = f_{N_j}$ such that $\mu(E_j) = \mu(\{x : |g_{j+1} - g_j| \ge 1/2^j\}) < 1/2^j$. Let $F_k = \bigcup_{j=1}^{\infty} E_j$ (the tail end of E_j 's), then $\mu(F_k) \leq \sum_{i=k}^{\infty} \mu(E_j) < \sum_{i=k}^{\infty} 2^{-j} = 2^{1-k}$. Let $F_{\infty} = \bigcap_{k=1}^{\infty} F_k$. Remember that $F_1 \supseteq F_2 \supseteq \cdots$. Next, let $h(x) = g_1(x) + \sum_{l=1}^{\infty} (g_{l+1}(x) - g_l(x))$. If $x \notin F_k$ (that is, $x \in F_k^c$), $x
otin E_j$ for all $j \geq k \Rightarrow |g_{_{j+1}} - g_{_j}| < 1/2^j \Rightarrow$ the above series is absolutely convergent if $x \in F_k^c$, which is true for all k. Thus, the series for h is absolutely convergent for all $x \in \bigcup_{k=1}^{\infty} F_k^c$ $=(\bigcap_{k=1}^{\infty}F_k)^c=F_{\infty}^c$. Hence, if $x\notin F_{\infty}$, $h(x)=\lim_i[g_1(x)+$ $\sum_{i=1}^{j}(g_{i+1}(x)-g_{i}(x))]=\lim_{j}g_{j+1}(x).$ Thus, $g_{j}(x)=f_{N_{j}}(x)
ightarrow$ h(x) for all $x \notin F_{\infty}$. But, $\mu(F_{\infty}) = \lim_{k} \mu(F_{k}) = 0$. Therefore, $f_{N_i} \to h$ pointwise a.e.

Corollary 2.32: If $\int_X |f_n - f| d\mu \to 0$, then there exists $\{f_{n_j}\}$ such that $f_{n_j} \to f$ pointwise a.e.

Proof: By Proposition 2.29, $\int_X |f_n - f| d\mu \to 0 \Rightarrow f_n \to f$ in measure every subsequence $f_{n_j} \to f$ in measure. But, by Theorem 2.30, we can pick $\{f_{n_j}\}$ such that $f_{n_j} \to f$ pointwise a.e. [Cheek] $f_{n_j} \to f$ in measure $f \to f$ a.e. Thus, $f_{n_j} \to f$ pointwise a.e.

Recall example (60)

Egoroff's Theorem: Assume that $\mu(X) < +\infty$. Let $f_n \to f$ pointwise a.e. Then, given $\epsilon > 0$, there exists $E \subseteq X$ and $\mu(E) < \epsilon$ such that $f_n \to f$ uniformly on E^c .

<u>Note</u>: A sequence of functions may converges to a function pointwise, but it is not guaranteed that the function is continuous. But, Egoroff's Theorem says that if we throw away a not-nice part, even a crazy or wild sequence of functions converges pointwise to a function which is continuous.

Proof: Write $X = X_1 \cup N$ where $\mu(N) = 0$ and $f_n(x) \to f(x)$ for all $x \in X_1$. Let $E_{n,k} = \bigcup_{m=n}^{\infty} \{x \in X_1 : |f_m(x) - f(x)| \ge 1/k\}$. Note that $E_{n,k} \supseteq E_{n+1,k} \supseteq \cdots$. So, $\bigcap_{n=1}^{\infty} E_{n,k} = \emptyset \Rightarrow$ $\lim_n \mu(E_{n,k}) = 0$. Pick n_k such that $\mu(E_{n_k,k}) < \epsilon/2^k$, and let $E = \bigcup_{k=1}^{\infty} E_{n_k,k} \Rightarrow \mu(E) \le \sum_{k=1}^{\infty} \mu(E_{n_k,k}) < \epsilon$. Pick $\delta > 0$ such that $1/K < \delta$. Then, $x \in E^c \Rightarrow x \notin E \Rightarrow x \notin E_{n_K,K}$ for all $K \Rightarrow |f_m(x) - f(x)| \le 1/K < \delta$ for any $m > n_K$. Thus, $f_n \to f$ uniformly on E^c .

- Miltern Material Ends Here

Midterm: Feb. 27, in-class

Final: Sat. April 21, 4-6:30 pm, PAC Upper !

HW11: Assume $\mu(X) < +\infty$ bet $Y = \{ [f] | f: X > R \text{ measurable}, [f] = [g] (=) f = g \text{ a.e.} \}$ have that a e then :
(1) $P([f],[g]) = \int_{X} \frac{|f-g|}{|+|f-g|} d\mu$ is a metric on (2) [fn], [f] EY then p([f], [fn]) >0 HW12: Let for f be measurable, for ?0 If for of in measure, then St du = liming Stradu

Rage 11

2.5 Product Measures

Goals:

- (1) Suppose that we are given measure spaces (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) . We want a measure on the product $X \times Y$, $\mu \times \nu$ such that $\mu \times \nu(A \times B) = \mu(A) \cdot \nu(B)$ where $A \in \mathcal{M}$ and $B \in \mathcal{N}$. We want to construct something like this in a general product space.
- (2) In Calculus, if $I = [a, b] \times [c.d]$, then $\int_I f dA = \int_a^b \int_c^d f(x, y) dy dx = \int_c^d \int_a^b f(x, y) dx dy$. We want to prove a formal theorem to justify the above.

<u>Recall</u> that given measurable spaces (X, \mathcal{M}) and (Y, \mathcal{N}) , the σ -algebra of subsets of $X \times Y$ generated by the sets of the form $\{A \times B : A \in \mathcal{M} \text{ and } B \in \mathcal{N}\}$ is denoted by $\mathcal{M} \otimes \mathcal{N}$ and called the **product** σ -algebra.

Definition: Suppose that $E \subseteq X \times Y$. For any $x \in X$, we define $E_x = \{y : (x,y) \in E\}$. Also, for any $y \in Y$, we define $E^y = \{x : (x,y) \in E\}$. If $f : X \times Y \to \overline{\mathbb{R}}$, then we define $f_x : Y \to \overline{\mathbb{R}}$ by $f_x(y) = f(x,y)$ for any $x \in X$, and $f^y : X \to \overline{\mathbb{R}}$ by $f^y(x) = f(x,y)$ for any $y \in Y$.

Proposition 2.34: Let (X, \mathcal{M}) and (Y, \mathcal{N}) be measurable spaces. Then:

- (a) If $E \in \mathcal{M} \otimes \mathcal{N}$, then $E_x \in \mathcal{N}$ for all $x \in X$, and $E^y \in \mathcal{M}$ for all $y \in Y$.
- (b) If $f: X \times Y \to \overline{\mathbb{R}}$ is $\mathcal{M} \otimes \mathcal{N}$ -measurable, then $f_x: Y \to \overline{\mathbb{R}}$ is \mathcal{N} -measurable for $x \in X$, and $f^y: X \to \overline{\mathbb{R}}$ is \mathcal{M} -measurable for all $y \in Y$.

Proof of (a): Let \mathcal{F} be the set $\{E \subseteq X \times Y : E_x \in \mathcal{N} \text{ for all } x \in X \text{ and } E^y \in \mathcal{M} \text{ for all } y \in Y_{\bullet, \bullet}^{?}$

Claim: \mathcal{F} is a σ -algebra.

Proof of Claim: It is clear that \emptyset , $X \times Y \in \mathcal{F}$. If $E \in \mathcal{F}$, then $(E^c)_x = (E_x)^c \in \mathcal{N}$ because $E_x \in \mathcal{N}$ and \mathcal{N} is a σ -algebra. Similarly, $(E^c)^y = (E^y)^c \in \mathcal{M}$. If $E_n \in \mathcal{F}$, then $(\bigcup_{n=1}^{\infty} E_n)_x = \bigcup_{n=1}^{\infty} (E_n)_x \in \mathcal{N}$. Similarly, $(\bigcup_{n=1}^{\infty} E_n)^y = \bigcup_{n=1}^{\infty} (E_n)^y \in \mathcal{M}$. Thus, \mathcal{F} is a σ -algebra.

Claim: If $A \in \mathcal{M}$ and $B \in \mathcal{N}$, then $A \times B \in \mathcal{F}$.

Proof of Claim: $(A \times B)_x = \begin{cases} B & \text{if } x \in A \\ \emptyset & \text{if } x \notin A \end{cases}$ Since $B \in \mathcal{N}$ and $\emptyset \in \mathcal{N}$, $(A \times B)_x \in \mathcal{N}$ for all $x \in X$. Also,

 $(A \times B)^y = \begin{cases} A & \text{if } y \in B \\ \emptyset & \text{if } y \notin B \end{cases} \Rightarrow (A \times B)^y \in \mathcal{M} \text{ for all }$

 $y \in Y$. Thus, $A \times B \in \mathcal{F}$ for all $A \in \mathcal{M}$ and for all $B \in \mathcal{N}$.

Thus, $\mathcal{M} \otimes \mathcal{N} \subseteq \mathcal{F}$, and hence $E \in \mathcal{M} \otimes \mathcal{N} \Rightarrow E \in \mathcal{F}$, that is $E_x \in \mathcal{N}$ for all $x \in X$ and $E^y \in \mathcal{M}$ for all $y \in Y$.

Proof of (b): Consider $f_{x_0}^{-1}((\alpha, +\infty]) = \{y : f_{x_0}(y) > \alpha\} = \{(x, y) : x \in \mathbb{R} \}$

 $f(x,y) > \alpha$ _{x₀}. Since f is measurable, $\{(x,y) : f(x,y) > \alpha\}$ $\in \mathcal{M} \otimes \mathcal{N} \Rightarrow \{(x,y): f(x,y) > \alpha\}_{x_0} = f_{x_0}^{-1}((\alpha,+\infty]) \in \mathcal{N}$

Thus, f_x is \mathcal{N} -measurable. Similarly, f^y is \mathcal{M} -measurable.

Definition: Let X be a set. Then, $\mathcal{C} \subseteq \mathcal{P}(X)$ is called a monotone class if $E_j \in \mathcal{C}$ and $E_1 \subseteq E_2 \subseteq \cdots$, then $\bigcup_{i=1}^{\infty} E_j \in \mathcal{C}$, and also if $E_j \in \mathcal{C}$ and $E_1 \supseteq$ $E_2\supseteq\cdots$, then $\bigcap_{j=1}^\infty E_j\in\mathcal{C}.$

Note: Given any collection $\mathcal{E} \in \mathcal{P}(X)$ of subsets, we can talk about the monotone class generated by \mathcal{E}

Folland: Exercise 4 in page 24: An algebra \mathcal{A} is a σ -algebra if and only if \mathcal{A} is closed under countable increasing unions (that is, if $\{E_j\}_{j=1}^\infty\subset\mathcal{A}$ and

$$E_1 \subset E_2 \subset \cdots$$
, then $\bigcup_{j=1}^{\infty} E_j \in \mathcal{A}$.)

Proof (\Rightarrow): Suppose that an algebra \mathcal{A} is a σ -algebra, and suppose that $\{E_j\}_{j=1}^\infty\subset\mathcal{A} \text{ and } E_1\subset E_2\subset\cdots$ Then, $\bigcup_{j=1}^\infty E_j\in\mathcal{A}$ by the definition of σ -algebra.

Proof (\Leftarrow): Suppose that \mathcal{A} is an algebra, and \mathcal{A} is closed under countable increasing unions. Let $\{A_n\}_{n=1}^{\infty}\subset\mathcal{A}$, and let $B_1=$

$$A_1, B_2 = A_1 \cup A_2, \cdots$$
 Then, $\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} B_n$, and also $B_1 \subset B_2 \subset \cdots$ Thus, $\bigcup_{n=1}^{\infty} B_n \in \mathcal{A}$ and so $\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$.

Therefore, A is a σ -algebra