Software for Estimating Sparse Jacobian
Matrices

THOMAS F. COLEMAN
Cornell University

BURTON S. GARBOW

and

JORGE J. MORE

Argonne National Laboratory

In many nonlinear problems it is necessary to estimate the Jacobian matrix of a nonlinear mapping
F. In large-scale problems the Jacobian of F is usually sparse, and then estimation by differences is
attractive because the number of differences can be small compared with the dimension of the
problem. For example, if the Jacobian matrix is banded, then the number of differences needed to
estimate the Jacobian matrix is, at most, the width of the band. In this paper we describe a set of
subroutines whose purpose is to estimate the Jacobian matrix of a mapping F with the least possible
number of function evaluations.

Categories and Subject Descriptors: E.1 [Data]: Data Structures—graphs; E.2 [Data): Data Storage
Representation—linked representations; G.1.3 [Numerical Analysis): Numerical Linear Algebra—
sparse and very large systems; G.1.5 [Numerical Analysis]: Roots of Nonlinear Equations—systems
of equations; G.1.6 [Numerical Analysis]: Optimization—least squares methods

General Terms: Algorithms

Additional Key Words and Phrases: Numerical differentiation, Jacobian matrix, large sparse opti-
mization, nonlinear problems, graph coloring

The Algorithm: FORTRAN Subroutines for Estimating Sparse Jacobian Matrices. ACM Trans.
Math. Softw. 10, 3 (Sept. 1984), 346-347.

1. INTRODUCTION

In many nonlinear problems it is necessary to estimate the Jacobian matrix of a
mapping F: R® — R™. In large-scale problems the Jacobian F’(x) is usually
sparse, and then estimation by differences is attractive because the number of
differences can be small compared with the dimension of the problem. For
example, if the Jacobian matrix is banded, then the number of differences needed
to estimate the Jacobian matrix is, at most, the width of the band. In this paper

T. F. Coleman’s work was supported in part by the Applied Mathematical Sciences Research Program
(KC-04-02) of the Office of Energy Research of the U.S. Department of Energy under Contract DE-
AC02-83ER13069.

B. S. Garbow and J. J. Moré’s work was supported in part by the Applied Mathematical Sciences
Research Program (KC-04-02) of the Office of Energy Research of the U.S. Department of Energy
under Contract W-31-109-Eng-38.

Authors’ addresses: B. S. Garbow, and J. J. Moré, Argonne National Laboratory, 9700 South Cass
Avenue, Argonne, IL 60439; T. F. Coleman, Department of Computer Science, Cornell University,
Ithaca, NY 14853.

© 1984 ACM 0730-0301/84,/0300-0329 $00.75

ACM Transactions on Mathematical Software, Vol. 10, No. 3, September 1984, Pages 329-345.

330 . T. F. Coleman, B. S. Garbow, and J. J. Moré

we describe a set of subroutines whose purpose is to estimate the Jacobian matrix
of a mapping F: R" — R™ with the least possible number of function evaluations.

The problem of estimating a sparse Jacobian matrix can be phrased in the
following terms: Given a sparse m by n matrix A, obtain vectors dy, d, ..., d,
such that Ad,, Ad,, ..., Ad, determine A uniquely. In this formulation, A is
associated with the Jacobian matrix F’(x) and the product Ad is associated with
an estimate of F’(x) d. Typically, the estimate of F’(x) d is obtained by the
forward difference

F(x+d)— F(x) =F'(x)d + o(||d]),
or the central difference
3F(x +d) — F(x — d)] = F'(x)d + o(|| d?)

approximations. Thus each evaluation of Ad requires at least one function
evaluation.

Our algorithms for determining a matrix A are based on the observation of
Curtis, Powell, and Reid [4] that a group of columns can be determined with an
evaluation of Ad if no two columns in this group have a nonzero in the same row
position. To establish this claim, let ai, ..., a, be the columns of A, and let
{a;:a; € C} be a group of columns such that no two columns in this group have a
nonzero in the same row position. If d € R" is a vector with components 6; # 0
if a; belongs to C and §; = 0 otherwise, then

Ad = Y ba;,
jec
and since no two columns in C have a nonzero in the same row position, for each
nonzero a; with j € C we have

(Ad), = 6,~a,-,-.
In view of this observation, it is possible to determine an m by n matrix A if we
partition the columns of A into groups Cj, ..., C, so that each column belongs

to one and only one group, and so that no two columns in a group have a nonzero
in the same row position. A partition of the columns of A with this property is
consistent with the determination of A.

In the CPR algorithm as proposed by Curtis, Powell, and Reid [4], the groups
Ci, ..., C, are formed one at a time by scanning the columns in the order a,, a,
..., an, and by including a column in the current group if it has not been included
in a previous group and if it does not have a nonzero in the same row position as
another column already in the group. By looking at the problem from a graph
theory point of view, Coleman and Moré [2] showed that it is possible to improve
the CPR algorithm by scanning the columns in a carefully selected order. Various
orderings were considered and analyzed by Coleman and Moré [2]; One of our
purposes here is to describe the implementation of the resulting algorithms.

Many users will only be interested in subroutines DSM and FDJS. These are
the interface routines for the package, and with these two subroutines it is quite
easy to estimate the Jacobian matrix of a mapping F: R" — R™. An example
illustrating the use of DSM and FDJS appears in Section 4.

ACM Transactions on Mathematical Software, Vol. 10, No. 3, September 1984.

Estimating Sparse Jacobian Matrices . 331

Given the sparsity pattern of an m by n matrix A, subroutine DSM determines
a consistent partition of the columns of A. The consistent partition is specified
by an array ngrp of length n by setting ngrp(jcol) to the group number of column
jcol. Subroutine DSM is an interface routine for the ordering algorithms and is
quite easy to use; additional details can be found in Section 2.

Given a consistent partition of the columns of the Jacobian matrix, subroutine
FDJS determines an approximation to those columns in a given group of the
partition. The entire Jacobian matrix can be determined by calling FDJS for
each group in the partition. Subroutine FDJS stores the Jacobian matrix with
either a column-oriented or a row-oriented definition of the sparsity pattern. If
the user is storing the Jacobian matrix with a different data structure, it is
necessary to modify FDJS or to provide an interface between the two data
structures. To facilitate this, the coding of FDJS is described in Section 3.

An example illustrating the use of subroutines DSM and FDJS is provided in
Section 4. This example also serves as a test program for our package. Section 5
provides an overview of the subroutines included in the package and a description
of the transition from the data structure used by DSM to the data structure used
by the algorithms called by DSM. Implementation details and an analysis of the
running time of the algorithms used by DSM appear in Section 6. It is only in
this section that we need a modest amount of graph theory.

Section 7 contains some of the numerical results that we have obtained with
subroutine DSM. These results were obtained with the 30 sparsity patterns of
Everstine [5] and show that on these problems DSM outperforms the CPR
algorithm, always obtaining an optimal or nearly optimal partition of the columns
of A. Optimality can sometimes be recognized because DSM determines a lower
bound mingrp on the number of groups possible in any consistent partition. DSM
was optimal on 19 of the Everstine problems, and never required more than
mingrp + 2 groups. In contrast, CPR was optimal on only 6 problems and
required at least mingrp + 3 groups on 12 problems. CPR never obtained a better
partition than DSM.

2. SUBROUTINE DSM

Given the sparsity pattern of an m by n matrix A, subroutine DSM determines
an optimal or nearly optimal consistent partition of the columns of A.

The user specifies a definition of the sparsity pattern of A by providing the
ordered pairs (i, j) for which a;; # 0

(indrow(k), indcol(k)), k=1,2,...,npairs. (2.1)

These pairs can be provided in any order. Moreover, duplicate pairs are allowed
so that npairs need not agree with the number of nonzeros in A.

On output DSM defines a consistent partition of the columns of A via the
integer array ngrp by setting ngrp(jcol) to the group number of column jcol. In
addition, the variable mingrp provides a lower bound on the number of groups
possible in a consistent partition, and the variable maxgrp is the number of

groups in the partition obtained by DSM. On output, DSM also transforms the

specification of the sparsity pattern (2.1), provided by indrow and indcol, into an

ACM Transactions on Mathematical Software, Vol. 10, No. 3, September 1984.

332 . T. F. Coleman, B. S. Garbow, and J. J. Moré

alternative specification that is more appropriate for the algorithms used by
DSM. The original data are effectively preserved because this alternative speci-
fication allows the user to recover the ordered pairs (i, j) for which a;; # 0. Details
are provided at the end of this section.

A lower bound on the number of groups in a consistent partition is pnax Where
Pmax 18 the maximum number of nonzero elements in any row of A. Usually
mingrp is set t0 pmax, but on some problems mingrp may exceed pmax. For example,

if
X X
A=1]x X,
X X

then mingrp is set to 3. Our experience on practical problems has been that DSM
requires at most three groups more than the bound specified by mingrp. For
many problems maxgrp agrees with mingrp and then DSM is optimal.

Execution times for subroutine DSM are quite satisfactory since the number
of operations required by one call is proportional to

T OF

pZ, (2.2)

i
i)

where p; is the number of nonzeros in the ith row of A. This bound is appropriate
because many sparse matrix computations require at least (2.2) operations. For
example, the number of operations needed to compute ATA is at least a constant
multiple of (2.2).

The claim that (2.2) is a measure of the running time of DSM assumes that
npairs, m, and n are not more than a constant times (2.2). This is certainly the
case in any nontrivial situation since (2.2) is not less than the number of nonzero
elements of A.

An impression of the overhead required by DSM can be obtained by noting
that the number of operations needed to evaluate the Jacobian matrix by
differences is on the order of (2.2) when the mapping F is linear. Indeed, in this
case p; operations are needed to evaluate the ith component of F, and thus the
number of operations needed to approximate the Jacobian matrix by differences
is at least :

Pmax .21 Pi. (2-3)
It should be clear that (2.2) is bounded above by (2.3). If Fis a nonlinear mapping,
then estimation of the Jacobian matrix is likely to require considerably more
operations than (2.3). Moreover, in a typical nonlinear problem DSM will only
be called once, whereas it will be necessary to estimate the Jacobian matrix many
times. These arguments further support our claim that the execution times for
DSM are quite satisfactory.
Implementation of DSM so that the execution time is proportional to (2.2)
requires an appropriate data structure. The ordered pairs (i, j) for which a; # 0
is a convenient data structure for the user, but DSM requires a different data

ACM Transactions on Mathematical Software, Vol. 10, No. 3, September 1984.

Estimating Sparse Jacobian Matrices . 333

do10jcol=1,n
d(jcol) = zero

if (ngrp(jcol) .eq. numgrp) d(jcol) = eta(jcol)
10 continue

Program 3.1

structure. The algorithms called by DSM require both column-oriented and row-
oriented definitions of the sparsity pattern. The arrays indrow and jpntr provide
a column-oriented definition of the sparsity pattern if the row indices for the
nonzero elements of the jth column are

indrow(k), k= jpntr(j),...,jpntr(j +1) — 1.

The arrays indcol and ipntr provide a row-oriented definition of the sparsity
pattern if the column indices for the nonzero elements of the ith row are

indcol (k), k= ipntr(i),...,ipntr(i+1) — 1.

Given the ordered pairs (2.1) for which a; # 0, subroutine DSM generates
column-oriented and row-oriented definitions of the sparsity pattern. The tran-
sition from (2.1) is not difficult and is described in more detail in Section 5.

3. SUBROUTINE FDJS

Given a consistent partition of the columns of the Jacobian matrix, subroutine
FDJS determines an approximation to those columns in a given group of the
partition.

An approximation to the columns of the Jacobian matrix in group numgrp can
be obtained by specifying a difference parameter array d with d(jcol) nonzero if
and only if jcol is a column in group numgrp, and an approximation to F'(x)d in
the array fjacd. The approximation to the columns of the Jacobian matrix in
group numgrp is stored in the array fjac. Subroutine FDJS stores the Jacobian
matrix in fjac with either a column-oriented or a row-oriented definition of the
sparsity pattern. If the user is storing the Jacobian matrix with a different data
structure, it is then necessary to modify FDJS or to provide an interface between
the two data structures.

If the consistent partition is specified by an array ngrp by setting ngrp(jcol) to
the group number of column jcol, then the user can define the difference
parameter array d with the section of code in Program 3.1. The array eta contains
the difference parameters used to estimate the Jacobian matrix. The user must
provide suitable values for this array. Curtis and Reid [3], and Gill, Murray, and
Wright [6], for example, discuss techniques for choosing the difference param-
eters.

The user must also provide an estimate for F’(x)d in fjacd. For example, the
estimate

F(x—d) - F(x)
corresponds to the forward difference formula, and the estimate

l[F(x + d) — F(x — d)]

ACM Transactions on Mathematical Software, Vol. 10, No. 3, September 1984.

334 . T. F.Coleman, B. S. Garbow, and J. J. Moré

corresponds to the central difference formula. It might have been simpler to have
the user provide d and a subroutine fcn to evaluate F(x). This, however, would
force the user to transfer to fcn all the information needed to evaluate F(x). For
large-scale problems this can be a serious disadvantage.

Given d and fjacd, it is then possible to determine all the elements in the
columns of the Jacobian matrix in group numgrp with a call to subroutine FDJS:

call fdjs(m, n, col, ind, npntr, ngrp, numgrp, d, fjacd, fjac)

The method used to store the Jacobian matrix is specified by the logical parameter
col. If col is true, then the Jacobian matrix is stored with a column-oriented
definition (ind = indrow and npntr = jpntr) of the sparsity pattern; the nonzero
elements of column j are then

fjac(k), k = npntr(j),...,npntr(j+1) — 1.

If row-oriented storage (ind = indcol and npntr = ipntr) is desired, set col to
false; the nonzero elements of row i are then

fiac(k), k = npntr(i),...,npntr(i + 1) — 1.
An example of the use of FDJS can be found in the next section.

4. EXAMPLE

The use of subroutines DSM and FDJS can be illustrated by considering the
problem of approximating the Jacobian matrix F’(x) of a mapping F: R" — R"
such that F’(x) has a sparsity pattern of the form

T, D,
D, T. Ds},) (4.1)
D, D, B

where the T’s have tridiagonal patterns, the D’s have diagonal patterns, and B
is of lower bidiagonal form. This is a simplified form of the neutron kinetics
problem described by Carver and MacEwen [1].
A consistent partition of the columns of (4.1) can be determined with a call to
DSM:
call dsm (m, n, nnz, indrow, indcol, ngrp, maxgrp, mingip,
info, ipntr, jpntr, iwa, liwa).

We are mainly interested in the first eight parameters of the calling sequence.
The parameters nnz, indrow, and indcol define the sparsity pattern of (4.1).
These parameters can be determined with the section of code in Program 4.1,
where it is assumed that each of the submatrices in (4.1) is of order [/ so that
m = n = 3l, and nnz denotes the number of nonzero elements in (4.1).

Table I provides the output values of mingrp and maxgrp produced by DSM.
These results show that DSM requires six groups to determine a matrix of the
form (4.1) for each of the tested dimensions. Also note that maxgrp does not
agree with mingrp. In some cases it is not possible to determine a matrix A with
mingrp groups, but for (4.1) this is indeed the case. This can be shown by noting

ACM Transactions on Mathematical Software, Vol. 10, No. 3, September 1984.

Estimating Sparse Jacobian Matrices . 335

m=n
l=n/3
nnz =0
dol10j=1,n
nnz=nnz+1
indrow(nnz) = j
indcol(nnz) = j
if (mod(j, 1) .ne. 0) then
nnz=nnz+ 1
indrow(nnz) =j + 1
indcol(nnz) = j
end if
if (7 le. 2*1) then
nnz=nnz+1
indrow(nnz) =j + 1 Program 4.1
indcol(nnz) = j
if mod(j, l) .ne. 1) then
nnz=nnz+1
indrow(nnz) =j — 1
indcol(nnz) = j
end if
end if
nnz=nnz+1
if (j .gt. 1) then
indrow(nnz) =j — |
else
indrow(nnz) = j + 21l
end if
indcol(nnz) = j
10 continue

Table I. Output from DSM for the Neutron
Kinetics Problem

n nnz mingrp maxgrp Time
300 1295 5 6 1.10
600 2595 5 6 2.18
900 3895 5 6 3.37

1200 5195 5 6 4.48

that a consistent partition of the columns of (4.1) is obtained if column j is
assigned to group ngrp(j) where

ngrp(j) = mod(j — 1,5) + 1, 1=sj=|

ngrp(j) = mod(j — I + 1,5) + 1, l<j=<al

ngrp(j) = mod(j — 2! + 3,5) + 1, 21<j =<3l

This example shows that for regular structures like (4.1) it is sometimes possible
to improve on DSM. Finally, note that the execution time (measured in seconds

ACM Transactions on Mathematical Software, Vol. 10, No. 3, September 1984.

336 . T. F. Coleman, B. S. Garbow, and J. J. Moré

subroutines fcn(n, x, indcol, ipntr, fuec)
integer n

integer indcol(*), ipntr(n + 1)

real x(n), fvec(n)

¢ Function subroutine for testing FDJS.

integer i, ip
real sum
do20i=1,n
sum = 0.0
do 10 ip = ipntr(i), ipntr(i+ 1) — 1
sum = sum + x(indcol(ip))
10 continue
sum = sum + x(1)
fvec(i) = sum*(1.0 + sum) + 1.0
20 continue
return
end

Program 4.2

on a VAX 11/780) grows linearly with n. This is to be expected since, for this
problem, (2.2) is proportional to n.

The use of FDJS can be illustrated by considering the mapping F: R" — R"
with components f;: R” — R defined by

filx) = so(si + 3 sk), PE) = EQ+5) +1, (42

where £ is the kth component of x, and the set S; represents the sparsity pattern
of the ith row of the matrix (4.1). This is a simple function, but it serves quite
well to illustrate the use of FDJS.

The subroutine in Program 4.2 evaluates F at x and returns F(x) in the array
foec. In this program we make use of the fact that DSM returns in indcol and
ipntr a row-oriented definition of the sparsity pattern.

We can now use FDJS to obtain an approximation to the Jacobian matrix of
F. The code in Program 4.3 stores the approximation in the array fjac with a
row-oriented definition of the sparsity pattern.

If a column-oriented definition is desired instead, then it is only necessary to
set col to true, and change indcol to indrow and ipntr to jpntr in the call to fdjs.
Also note that the difference parameters used in Program 4.3 are only for
illustrative purposes; in general, the choice of difference parameters depends on
the accuracy and nonlinearity of the problem function.

5. SUBROUTINES FOR ESTIMATING SPARSE JACOBIAN MATRICES

We have already described the interface subroutines DSM and FDJS in our
package. In this section we provide a brief overview of the remainder of the
package; implementation details for the sequential algorithm and the ordering
algorithms are provided in Section 6.

ACM Transactions on Mathematical Software, Vol. 10, No. 3, September 1984.

Estimating Sparse Jacobian Matrices + 337

call fen(n, x, indcol, ipntr, fvec)
.do 30 numgrp = 1, maxgrp
dol10j=1,n
d(j)=0.0
if (ngrp(j) .eq. numgrp) d(j) = 0.001
xd(j) = x(j) + d(j)
10 continue
call fen(n, xd, indcol, ipntr, fjacd)
do20i=1,m
fiacd (i) = fjacd (i) — fvec(i)
20 continue
col = .false.

call fdjs(m, n, col, indcol, ipntr, ngrp, numgrp, d, fjacd, fjac)
30 continue

Program 4.3

All of our algorithms for determining a consistent partition of the columns of
an m by n matrix A use the sequential algorithm with some ordering of the
columns of A. A consistent partition is obtained by first determining an ordering
of the columns and then calling the sequential algorithm to obtain the consistent
partition. Subroutine SEQ implements the sequential algorithm and the subrou-
tines DEGR, IDO, and SLO determine orderings of the columns of A. In the
remaining sections we describe these subroutines in detail.

Subroutine DSM obtains a consistent partition by calling the sequential
algorithm with the ordering subroutines in the order SLO, IDO, and DEGR. All
three ordering subroutines are used in an attempt to produce optimal or near-
optimal results in all cases. If any of the orderings lead to a consistent partition
with mingrp groups, DSM terminates at that point; otherwise DSM returns the
best result obtained.

The transition from the data structure (2.1) to the column-oriented and row-
oriented definitions of the sparsity pattern is accomplished by subroutines
SRTDAT and SETR. Because this transition is not difficult, we describe these
subroutines briefly.

Subroutine SRTDAT permutes indrow and indcol so that indcol is in nonde-
creasing order, and determines jpntr so that indrow and jpntr provide a column-
oriented definition of the sparsity pattern. SRTDAT is a standard inplace sort.
The execution time for SRTDAT is proportional to the number of input pairs in
(2.1), so that if there are no duplicates, then the execution time is proportional
to the number of nonzeros in A. After execution of SRTDAT it is easy to
eliminate any duplicates among the input pairs (2.1), so we assume that this has
been done.

Given a column-oriented definition of the sparsity pattern of a matrix A,
subroutine SETR determines a row-oriented definition of the sparsity pattern.
This is done by first determining the number of nonzeros in the rows of A, then
setting pointers to the start of the rows in indcol, and finally filling indcol. It is
straightforward to show that the execution time for SETR is proportional to the
number of nonzeros in A.

For ease of reference, we next provide brief descriptions, in alphabetic sequence,
of the subroutines in our package for estimating sparse Jacobian matrices. With

ACM Transactions on Mathematical Software, Vol. 10, No. 3, September 1984.

338 . T. F.-Coleman, B. S. Garbow, and J. J. Moré

the exception of NUMSRT all of the subroutines have been mentioned earlier;
NUMSRT is a standard bucket sort.

Subroutine DEGR: Given the sparsity pattern of an m by n matrix A, this
subroutine determines the degree sequence for the
graph G(A).

Subroutine DSM: This subroutine is a driver for determining an optimal
or near-optimal consistent partition of the columns of
an m by n matrix A.

Subroutine FDJS: Given a consistent partition of the columns of an m by
n Jacobian matrix, this subroutine computes approxi-
mations to those columns in a given group.

Subroutine IDO: Given the sparsity pattern of an m by n matrix A, this
subroutine determines the incidence degree ordering
of the columns of A.

Subroutine NUMSRT: Given a sequence of integers, this subroutine groups
together those indices with the same sequence value
and, optionally, sorts the sequence into either ascend-
ing or descending order.

Subroutine SEQ: Given the sparsity pattern and an ordering of the col-
umns of an m by n matrix A, this subroutine deter-
mines a consistent partition of the columns of A by a
sequential algorithm.

Subroutine SETR: Given a column-oriented definition of the sparsity pat-
tern of an m by n matrix A, this subroutine determines
a row-oriented definition of the sparsity pattern of A.

Subroutine SLO: Given the sparsity pattern of an m by n matrix A, this
subroutine determines the smallest-last ordering of the
columns of A.

Subroutine SRTDAT: Given the nonzero elements of an m by n matrix A in
arbitrary order as specified by their row and column
indices, this subroutine permutes these elements so
that their column indices are in nondecreasing order.

6. IMPLEMENTATION DETAILS

The sequential algorithm and the ordering algorithms used by subroutine DSM
have been described by Coleman and Moré [2]. Implementation of these algo-
rithms is not straightforward, so we now describe these implementations and
show, in particular, that these implementations execute in time proportional to
(2.2).

The sequential algorithm and the ordering algorithms can be described best
with the help of some graph theory terminology. A graph G is an ordered pair
(V, E) where V is a finite and nonempty set of vertices and the edges E are
unordered pairs of distinct vertices. The vertices u and v are adjacent if (u, v) is
an edge with endpoints u and v. The degree of a vertex v is the number deg(v) of
edges with v as an endpoint.

ACM Transactions on Mathematical Software, Vol. 10, No. 3, September 1984.

m-:“‘,—p- -

Estimating Sparse Jacobian Matrices . 339

Given an ordering vy, Vs, ..., U, of the vertices of a graph G, we can use a
sequential algorithm to partition the vertices of G into groups such that vertices
in a given group are not adjacent. At the kth stage of the sequential algorithm
the group numbers ngrp(vy), . . . , ngrp(ve-1) have been assigned; ngrp(vs) is then
set to the smallest positive integer such that ngrp(v.) # ngrp(v;) if (vk, v;) is an
edge of G for some j with 1 =j <k.

We are interested in the application of these concepts to a special class of
graphs. Given an m by n matrix A with columns a,, a,, . . ., a,, we define a graph
G(A) with vertices a;, as, . . ., a, and edge (a;, a;) if and only if i # j and columns
i and j have a nonzero in the same row position. It should now be clear that the
sequential algorithm on G(A) generates a consistent partition of the columns of
A, and that the purpose of an ordering is to minimize the number of groups
required by the sequential algorithm.

The array ngrp defines a coloring of G in the sense that ngrp(u) # ngrp(v) if u
and v are adjacent. Thus the sequential algorithm can be viewed as a graph
coloring algorithm. This is the point of view adopted by Coleman and Moré [2];
in this paper we deemphasize the graph-coloring viewpoint and instead prefer to
work in terms of consistent partitions, since this concept is closer to the software.
On the other hand, the graph-coloring viewpoint is important because the
ordering algorithms only make sense when viewed as graph-coloring algorithms.

An ordering vy, vy, . . ., U, of the vertices of a graph G is a largest-first ordering
if dég(v,) < - - - < deg(v,). The descriptions of the other two ordering algorithms
require additional graph theory terminology: Given a graph G = (V, E) and a
nonempty subset W of V, the subgraph G[W] induced by W has vertex set W and
edge set

{(u,v):(u,v) € Eand u,v € Wi.

In the smallest-last ordering the kth vertex v is determined after vi41, ..., Un
have been selected by choosing vy so that its degree in the subgraph induced by

V= {vk+1, - -, Un}

is minimal. In the incidence degree ordering v, is determined after vy, ..., U
have been selected by choosing v} so that its degree in the subgraph induced by
{v1, ..., Ux} is maximal. The incidence-degree of v, is the degree of v in this
subgraph.

The largest-first and smallest-last orderings are well known in the graph-
coloring literature, but the incidence degree ordering was introduced by Coleman
and Moré [2]. For a general graph G these algorithms can be implemented to run
in time proportional to | V| + | E| provided we are given the adjacency lists for

the graph; that is, arrays npntr(-) and nghbr(-) such that the vertices adjacent
to the jth vertex are

nghbr(k), k = npntr(j),...,npntr(j + 1) — 1.

See, for example, Matula and Beck [8]. However, the adjacency lists for G(A)
may require storage of order n? even if A is sparse, so this data structure is not
appropriate. Our ordering algorithms use column-oriented and row-oriented
definitions of the sparsity pattern of A and thus require only 27 words of storage,
where 7 is the number of nonzero elements of A.

ACM Transactions on Mathematical Software, Vol. 10, No. 3, September 1984.

340 . T. F. Coleman, B. S. Garbow, and J. J. Moré

tag(j) =n
do 20 jp = jpntr(j), jpntr(j + 1) — 1
i = indrow(jp)
do 10 ip = ipntr(i), ipntr(i + 1) — 1
adjcol = indcol(ip)
if (tag(adjcol) .lt. j) then
tag(adjcol) = j
ndeg(adjcol) = ndeg(adjcol) + 1
ndeg(j) = ndeg(j) + 1

end if
10 continue
20 continue
Program 6.1

We now describe the ordering algorithms and the sequential algorithm. We
only attempt to cover the important details and not complete descriptions of the
algorithms.

6.1. Largest-First Ordering

The purpose of subroutine DEGR is to obtain the degree sequence for G(A) and
thus the largest-first ordering is determined by DEGR.

Algorithm. Degrees of G(A).

Forj=1,2,...,n

(a) Mark column j.

(b) Find all unmarked columns adjacent to column j and update the degrees of the
unmarked columns and of column j.

An important part of the implementation of DEGR is a tagging scheme
(Gustavson [7]) for efficiently updating the degrees of the unmarked columns
adjacent to column j. Our implementation uses an array ndeg to record the
degrees of the columns, and an array tag to mark columns and to update the
degrees of the unmarked columns. Initially ndeg(l) = 0 and tag(l) = 0 for all
columns I. We mark column j by setting tag(j) = n, and if adjcol is an unmarked
column adjacent to column j, we set tag(adjcol) = j. Program 6.1 shows how the
tagging scheme is used to determine the unmarked columns adjacent to column
j and update the degrees of the unmarked columns and of column j.

The running time of DEGR can be analyzed by noting that the number of
operations needed to execute Program 6.1 is proportional to

2 Pi, | (61)

where p; is the number of nonzero elements in the ith row. The total amount of
work is thus proportional to

:21 (§0 Pi) = _i pi. (6.2)

This shows that the time needed to execute DEGR is proportional to (2.2).

ACM Transactions on Mathematical Software, Vol. 10, No. 3, September 1984.

Estimating ‘Sparse Jacobian Matrices . 341

6.2. Smallest-Last and Incidence Degree Orderings

The implementations of the smallest-last and incidence degree orderings in
subroutines SLO and IDO, respectively, are very similar. In the smallest-last
ordering the column chosen at the kth stage has minimal degree in the graph
induced by the unordered columns, whereas in the incidence degree ordering the
chosen column -has maximal incidence degree among the unordered columns.
From this description it is clear that we need a data structure that permits the
easy updating of the two types of degrees. A doubly linked list is a standard
structure that satisfies this requirement.

We can implement a doubly linked list with the three arrays head, prev, and
next. Each unordered column j is in a list of columns with the same degree. The
first column in the list of columns with degree deg is head (deg) unless head(deg)
= (. In this case there are no columns in the deg list. The column before j in the
degree list of column j is prev(j) unless prev(j) = 0. In this case j is the first
column in the degree list. The column after j in the degree list of column j is
next(j) unless next(j) = 0. In this case j is the last column in the degree list.

In the above description the term degree may refer either to the degree in the
graph induced by the unordered columns or to the incidence degree for an
unordered column. This permits us to discuss the smallest-last and incidence
degree orderings at the same time. In the sequel we shall refer to these degrees
as the degrees for the unordered columns.

Algorithm. Smallest-Last Ordering.

Fork=n,n-1,...,1

(a) Choose a column j of minimal degree and let list(k) = j.

(b) Delete column j from the list of columns of minimal degree.

(c) Find all unordered columns adjacent to column j and update the degree lists for the
unordered columns.

The tagging scheme used is similar to the DEGR scheme. Initially tag(l) = n for
all . Ordered columns are marked by setting tag(j) = 0, and if column adjcol is
an unmarked column adjacent to column j, we then set tag(adjcol) = k. With this
tagging scheme it is easy to update the degree lists for the unordered columns
adjacent to column j.

The incidence degree ordering is quite similar to the smallest-last ordering.
The main difference is that it is now necessary to update the incidence degrees.

Algorithm. Incidence Degree Ordering.

Fork=1,2,...,n

(a) Choose a column j of maximal incidence degree and let list(k) = j.

(b) Delete column j from the list of columns of maximal incidence degree.

(c) Find all unordered columns adjacent to column j and update the incidence degree lists
for the unordered columns.

The tagging scheme used by this algorithm initially sets tag(l) = 0 for all I
Ordered columns are marked by setting tag(j) = n, and if ¢column adjcol is an
unmarked column adjacent to column j, we set tag(adjcol) = k.

In both ordering algorithms it is necessary to keep track of the degrees for the
unordered columns. The array list can be used for this purpose provided we
modify step (a) in both algorithms so that list(j) = k. Thus list(j) is the degree

ACM Transactions on Mathematical Software, Vol. 10, No. 3, September 1984.

342 . T. F. Coleman, B. S. Garbow, and J. J. Moré

of the jth column if j is an unordered column, whereas if j is ordered then list()
is the position of column j in the order. If the array list is inverted at the end of
the algorithm, then list(k) is the kth column in the ordering.

The argument used to analyze the running time of the largest-first ordering
also applies to the smallest-last and incidence degree orderings because the
number of operations needed to order column j is proportional to (6.1). Thus
subroutines SLO and IDO execute in time proportional to (2.2).

A by-product of the smallest-last and incidence degree orderings is a lower
bound mingrp on the number of groups needed by any consistent partition of the
columns of A. This lower bound is obtained by determining a set of columns that
are mutually adjacent in G(A); in graph-theory terminology such a set is a clique
of G(A). The orderings can be used to determine a clique by noting that, if the
kth column in either ordering has degree k& — 1, then G(A) has a clique of size k.
Note that this property of the smallest-last and incidence degree orderings is not
shared by the largest-first ordering. It is also possible to determine the size of a
clique in G(A) by computing pmax, Where ppay is the maximum number of nonzero
elements in any row of A. This observation is based on the fact that if columns
ji,..., Jr have a nonzero in a given row then these columns form a clique in
G(A). Subroutine DSM sets mingrp to the size of the largest clique found by one
of the techniques discussed above.

6.3. The Sequential Algorithm

In the sequential algorithm the order of the columns is specified by the array list
by letting list(k) be the kth vertex in the ordering. On output from the sequential
algorithm the array ngrp specifies a consistent partition of the columns of A by
setting ngrp(j) to the group number of the jth column.

Algorithm. Sequential Algorithm.

Fork=1,2,...,n:

(a) Find all columns adjacent to column list(k) and mark all the groups of the columns
adjacent to column list(k).

(b) Let ngrp(list(k)) be the smallest unmarked group.

A tagging scheme is used in the sequential algorithm to determine the groups of
the columns adjacent to column list(k). We initially set tag(l) = 0 for all groups
I, and if column adjcol is adjacent to column j = list(k), we mark the group of
adjcol by setting tag(l) = k where | = ngrp(adjcol). It is then easy to determine
the smallest unmarked group.

The number of operations needed to mark the groups of columns adjacent to
column j = list(k) is proportional to (6.1), whereas the number of operations
needed to find the smallest unmarked group is no more than deg(a;). Since

2 deg(aj) = 2 pl?’
j=1 i=1

the running time of subroutine SEQ is proportional to (2.2).

7. NUMERICAL RESULTS

In Section 2 we discussed the overhead required by DSM and showed that the
requirements of DSM are quite modest. In this section we present some numerical

ACM Transactions on Mathematical Software, Vol. 10, No. 3, September 1984.

Estimating Sparse Jacobian Matrices . 343

Table II. Output from DSM for Naval Problems

n nnz mingrp maxgrp
59 267 6 6
66 320 6 6
72 222 5 5
87 541 13 13

162 1182 9 10

193 3493 30 30
198 1392 12 12
209 1743 17 17
221 1629 12 12
234 834 10 10
245 1461 13 13
307 2523 9 11
310 2448 11 11
346 3226 19 20
361 2953 9 10
419 3563 14 15
492 3156 11 11
503 6027 25 25
512 3502 15 16
592 5104 15 15
607 5131 14 16
758 5994 11 11
869 7285 15 15
878 7448 10 11
918 7384 13 14
992 16744 18 18
1005 8621 27 27
1007 8575 10 11
1242 10426 12 14
2680 25026 19 19

results for DSM. A referee has pointed us to a set of Grenoble computer
simulation problems from the Harwell-Boeing collection of sparse matrices. For
three of these dimensions, 185, 512, and 1107, the differences between maxgrp
and mingrp are, respectively, 5, 4, and 4. On all other practical problems, however,
our experience has been that DSM requires at most three more groups than the
bound specified by mingrp.

Table II shows the results of using DSM on the 30 sparsity patterns of the
Everstine [5] collection. The patterns are for symmetric matrices with orders
ranging from 59 to 2680. In addition to the order n of the matrix, Table II
contains the number nnz of nonzeros in the matrix, and the output values for
mingrp and maxgrp. Note that on 19 of the problems maxgrp agrees with mingrp
and therefore DSM is optimal on these problems. DSM may still be optimal on
the other problems because mingrp is always set to the size of a clique in G(A),
and it is possible for the largest clique in G(A) to be less than the number of
groups in an optimal consistent partition of the columns of A. For example, if A
is a lower bidiagonal matrix of order n except for a nonzero in the (1, n) position
then the largest clique of G(A) has size 2 but a consistent partition of the columns
of A needs at least 3 groups if n is odd and n = 5.

ACM Transactions on Mathematical Software, Vol. 10, No. 3, September 1984.

344 . T. F. Coleman, B. S. Garbow, and J. J. Moré

We have tested DSM on all the sparsity patterns described by Coleman and
Moré [2]. In particular, we have tested DSM on the nonsymmetric patterns
obtained from the Everstine problems by considering the columns in the same
order as on the tape provided by Everstine—it turns out that this leads to
unsymmetric patterns. The results obtained on these unsymmetric patterns are
similar to those in Table II. The only differences occur in the problems with
dimensions 162, 307, 346, and 1242. The number of groups required is then 9, 12,
21, and 15, respectively. Thus DSM needs only two additional groups to determine
the 30 unsymmetric patterns. This is not surprising because DSM is not strongly
dependent on the ordering of the columns of the matrix. In contrast, CPR needs
15 more groups to determine the unsymmetric patterns.

We conclude this section by comparing our codes with those in Harwell’s
subroutine TD02A.

Given a column-oriented definition of the sparsity pattern, and a subroutine
that evaluates the problem function, subroutine TD02A determines a consistent
partition of the columns of the Jacobian matrix and computes an approximation
to the Jacobian matrix. There are several differences between TD0O2A and our
codes:

TDO02A determines both a consistent partition and an approximation to the
Jacobian matrix. In our codes DSM determines the consistent partition and
FDJS determines the approximation to the Jacobian matrix.

TDO2A uses a column-oriented definition of the sparsity pattern. DSM needs
both a column-oriented and a row-oriented definition of the sparsity pattern.

TDO2A uses the CPR algorithm to determine a consistent pattern. DSM uses
the largest-first, smallest-last, and incidence degree orderings.

TDO2A requires the user to provide a subroutine which evaluates the problem
function. DSM uses reverse communication.

TDO2A uses the ideas of Curtis and Reid [3] to automatically choose the
difference parameters.

We have discussed throughout the paper the last three differences. We now
turn to the first two differences.

One of the main reasons for having a separate subroutine for the calculation
of a consistent partition of the columns of a sparse matrix is that we expect this
calculation to have other applications. Also, this calculation requires a specialized
data structure, and it is natural to keep separate the demands of this data
structure.

TDO02A needs only a column-oriented definition of the sparsity pattern because
this data structure allows the efficient implementation of the sequential algo-
rithm. However, the efficient implementation of the largest-first, smallest-last,
and incidence degree orderings require, in addition, a row-oriented definition of
the sparsity pattern. If only a column-oriented definition is provided, then
determining these orderings would require order n? operations; for large scale
problems, this cost would be prohibitive.

The length of the code for TDO02A is shorter than for DSM/FDJS; the storage
requirements of DSM/FDJS are no larger, however, because DSM and FDJS can
share storage. TD02A needs 2nnz storage locations; nnz locations for the column-
oriented definition of the storage pattern and nnz locations for the approximation

ACM Transactions on Mathematical Software, Vol. 10, No. 3, September 1984.

Estimating Sparse Jacobian Matrices . 345

to the Jacobian matrix. DSM requires 2nnz storage locations for the ordered
pairs (i, j) for which a;; # 0, but once DSM computes the partition it is necessary
to retain only the n-element array ngrp. FDJS needs nnz locations for either a
column-oriented or a row-oriented definition of the storage pattern and nnz
locations for the approximation fjac to the Jacobian matrix, but the nnz locations
for fjac can certainly be shared with DSM. If the storage of fjac is row-oriented,
as in Program 4.3, then the statement

equivalence(indrow, fjac),

in the main program, allows indrow and fjac to share storage. If the storage of
fjac is column-oriented, then the appropriate statement is

equivalence(indcol, fjac)

Finally, note that the storage requirements of DSM/FDJS are much less than,
for example, the storage required by an algorithm for the LU decomposition of
the approximation to the Jacobian matrix.

ACKNOWLEDGMENT

We are grateful to the referees for their suggestions and, in particular, for bringing
to our attention the tagging scheme of Gustavson [7].

REFERENCES

1. CARVER, M.B., AND MACEWEN, S.R. On the use of sparse matrix approximations to the
dJacobian in integrating large sets of ordinary differential equations. SIAM J. Sci. Stat. Comput.
2(1981), 51-64.

2. CoLeMAN, T.F., AND MORE, J.J. Estimation of sparse Jacobian matrices and graph coloring
problems. SIAM J. Numer. Anal. 20 (1983), 187-209.

3. CURTIS, A.R., AND REID, J.K. The choice of step lengths when using differences to approximate
Jacobian matrices. J. Inst. Math. Appl. 13 (1974), 121-126.

4. CURTIS, A.R., POWELL, M.J.D., AND REID, J.K. On the estimation of sparse Jacobian matrices.
dJ. Inst. Math. Appl. 13 (1974), 117-119.

5. EVERSTINE, G.C. A comparison of three resequencing algorithms for the reduction of matrix
profile and wavefront. Int. J. Numer. Methods Eng. 14 (1979), 837-853.

6. GILL, P.E., MURRAY, W., AND WRIGHT, M.H. Practical Optimization. Academic Press, New
York, 1981, 339-345.

7. GUSTAVSON, F.G. Finding the block lower triangular form of a sparse matrix. Sparse Matrix
Computations, J.R. Bunch and D.J. Rose, Eds. Academic Press, New York, 1976, 275-289.

8. MaTuLA, D.W., AND BECK, L.L. Smallest-last ordering and clustering and graph coloring
algorithms. J. ACM 30 3 (1983), 417-427.

ACM Transactions on Mathematical Software, Vol. 10, No. 3, September 1984.

