PROCEEDINGS OF THE SIXTH SIAM CONFERENCE ON

PARALLEL
PROCESSING FOR
SCIENTIFIC
COMPUTING
Volume |

Edited by Richard F Sincovec
Oak Ridge National Laboratory

David E. Keyes
Yale University

Michael R. Leuze
Oak Ridge National Laboratory

Linda R. Petzold
University of Minnesota

Daniel A. Reed
University of linois

Siaim. Philadelphia

Society for Industrial and Applied Mathematics







Parallel Orthogonal Factorizations of Large Sparse Matrices
on Distributed-Memory Multiprocessors

Thomas F. Coleman* Chunguang Sunt

Abstract. We describe the issues involved in the design and implementation of an efficient parallel
multifrontal algorithm for computing the QR factorization of a large sparse matrix on distributed-memory
multiprocessors. The proposed algorithm has the following novel features. First, a supernodal tree computed
from the sparsity structure of R is used to organise the numerical factorisation. Second, a new algorithm
has been designed for the most crucial task in this context—the QR factorisation of two upper trapezoidal
matrices in parallel. Third, the overall factorisation is accomplished by a sequence of Householder and
Givens transformations. Experimental results on an Intel iPSC/860 are included.

1. Introduction. Let A be a large sparse m x n(m > n) matrix with full column rank.
The QR factorization of A is expressed as

i=o(1).

where Q is an m x m orthogonal matrix and Risann xn upper triangular matrix. Usually
Q is not formed explicitly. It is well known that the upper triangular matrix R is mathe-
matically equivalent to the Cholesky factor of ATA. George and Heath [4] propose a row
merging scheme for reducing A to R by a sequence of Givens rotations. Liu [7] generalizes
the George and Heath scheme into a general row merging scheme which leads to substantial
reduction in arithmetic operations.

2. A multifrontal sparse QR factorization algorithm. The basic idea of multi-
frontal sparse QR factorization is described in [7]. The overall sparse QR factorization is
accomplished by a sequence of upper trapezoidal submatrix merges organized around a row
merge tree. A supernodal tree computed from the structure of R is used as our row merge
tree which is slightly different from the row merge tree described in [7). A multifrontal
algorithm for sparse QR factorization is described below.

* Computer Science Department and Advanced Computing Research Institute, Cornell University, Ithaca,
NY 14853 (coleman@cs.cornell.edu).

! Advanced Computing Research Institute, Cornell Theory Center, Cornell University, Ithaca, NY 14853-
3801 (csun@cs.cornell.edu).

457




458 Coleman and Sun

[

. find a column ordering for A such that R is sparse.

2. compute the elimination tree of RT by using the algorithm described in [6] and

number the nodes of the elimination tree in postorder.
3. determine the symbolic structure of R.
4. compute the supernodal tree of RT from the corresponding elimination tree and
number the supernodes in postorder.

5. perform numerical factorization by processing the supernodes in order.
Let R;. denote row i of R and Stru(R:.) the row structure of R;—i.e., the set of nonzero
column indices of R; in increasing order. The nodes in a supernode are numbered in in-
creasing order. Let K be a supernode. |K| denotes number of nodes in K and First(K)
the first node in K. The upper trapezoidal matrix associated with K is referred to as the
frontal matriz of K and is denoted by Fx. Let mg and nx be the number of rows and the
number of columns of Fx, respectively. Then my < nx = |Stru(R;)|, where i = First(K).
For supernodes close to the root, their frontal matrices are usually upper triangular. The
upper trapezoidal matrix obtained from Fi by deleting the first | K| rows of Fk is called the
update matriz of K and is denoted by Ux. Uk participates in the formation of the frontal
matrix of its parent. The computation associated with a supernode is described in Fig. 1,
where A; denotes the submatrix consisting of all rows from A whose first nonzeros are in
column i. Reduction of A; to an upper trapezoidal matrix R; may be accomplished by either
Householder transformations or Givens rotations. The submatrix merges in line 3 and 6 are
done by sparse Givens rotations.

1 allocate space for Fk;

2  assemble U into Fix and deallocate F¢, where C is a child of K;

3  for each remaining child C of K do merge Uc into F;

4 for j = First(K) to First(K)+|K| -1 do

5 reduce A; to an upper trapezoidal matrix R; by orthogonal transformation;
6 merge R; into Fi;

7 row j — First(K) + 1 of Fx is the computed row j of R;

8 end for

Fia. 1. A sequential algorithm for forming the frontal matriz of e supernode K from the wpdate mairices
of its children and corresponding rows from the original matriz A

3. A parallel multifrontal sparse QR factorization algorithm. Several parallel
algorithms for the numeric phase of the sparse QR factorization on distributed-memory
multiprocessors have been described in the literature (1, 8]. We propose a new distributed
algorithm for the numeric phase of the multifrontal sparse QR factorization described in
Section 2. The supernodal tree is mapped onto the multiprocessors by a proportional map-
ping algorithm [9]. The root of the supernodal tree is partitioned among all processors. If a
supernode has already been mapped to a set of processors, each subtree rooted at a child of
that supernode is allocated a subset of processors whose size is proportional to the workload
associated with that subtree. Initially each processor is working on its own subtrees. Later
on processors cooperate to compute the frontal matrix of a partitioned supernode. When a
supernode is partitioned among a set of ¢ processors {s,s+1,---,8+q—1}, the rows of Fx




Parallel Factorizations of Large Sparse Matrices 459

are partitioned into ¢ blocks of approximately equal number of rows. Block b is assigned to
processor s + b— 1 for 1 < b < ¢q. The processor s + ¢ — 1 having the last block of Fy is
denoted by LP(Fk).

Parallel algorithms are needed for assembling the update matrix of a child of K into
Fx, merging the update matrix of a child of K into Fx and rotating relevant rows from A
into Fx. Because of space limitation, we omit the descriptions of the parallel algorithms
for assembling an update matrix into a frontal matrix and rotating rows from A into a
frontal matrix. We briefly describe the parallel algorithm for merging an update matrix
into a frontal matrix. Assume that C = {16,17,18} is a child of K = {19,20,21} in the
supernodal tree. Assume that Stru(Rie.) = (16, 17, 18, 19, 20, 21, 46, 47, 48, 49} and
Stru(Rye,.) = {19,20,21,43,44,45,46,47,48,49}. Let mg = 10 and m¢c = 10. F; is
partitioned into two blocks and Fx is partitioned into five blocks as illustrated in Fig. 2.
The first block of Fc consisting of the first five rows of F¢ is assigned to processor po and
the second block of F¢ consisting of the last five rows of Fp is assigned to processor p;.
The block i of Fx consisting of rows 2i — 1 and 2i of Fx is assigned to processor p;_; for

1 <1 < 5. The first three rows of F¢ are the computed rows 16,17 and 18 of R after Fy is
formed.

F1a. 2. Two partitioned frontal mdtrices Fc (left) and Fi (right)

Let B denote the second block of Fc. B is partitioned into three segments since there
are three processors p;, p; and p, to which the rows in B should be initially sent. These
three processors are referred to as the target processors of B. The first segment consisting of
the first row of B is rotated into the second, third, fourth and fifth block of F, successively.
The second segment consisting of row 2 and row 3 of B is rotated into fourth and fifth block
of Fg, successively. The third segment consisting of row 4 and row 5 of B is rotated into
fifth block of Fx. The distributed submatrix merging algorithm is described in Fig. 3.

4. Experimental results. Our algorithm has been tested on a 32-node iPSC/860 for a
set of problems with regular and irregular sparsity structure. The problems with regular spar-
sity structure include two-dimensional(2D) k x k nine-point grid and three-dimensional(3D)
k x k x k twenty-seven point grid. The matrix associated with a 2D grid is constructed as
follows. There is a column associated with each vertex of the grid and a row with each square
element. The row has nonzeros for each of the four vertices that define the element. This
row is repeated r times to obtain a (k—1)?r by k? sparse matrix. A matrix associated with a
3D grid can be similarly constructed. The grid problems are ordered by the nested dissection
ordering [3]. The problems with irregular sparsity structure are generated randomly. The
number of nonzero entries in a row is limited. However, the locations of the nonzero entries
in a row are randomly distributed. Random problems are ordered by the minimum degree
ordering [5)].

The experimental results are shown in Table 1 and Table 2, where m denotes number of
rows, n number of columns, r number repetitions of a row corresponding to a square element,
|A] number of nonzeros in matrix A, |R| number of nonzeros in factor R, s.node number




460 Coleman and Sun

of supernodes, “fac_time” numerical factorization time, “MFLOPS” number of mega flops
performed per second during numerical factorization, and k¥ maximum number of nonzero

num.masg = 0;
for each block B of Uc do
let s be the processor to which B is mapped;
for each seqment S of B do
let ¢ be the target processor of S;
if p=s then
if p=1t then
rotate S into the block of Fx mapped to p;
if p # LP(Fk) then send the resulting block to p + 1;
else
send S to t;
end if
else
if p=t then
receive S and rotate it into the block of Fx mapped to p;
if p # LP(Fx) then send the resulting block to p + 1;
end if
if s < p and p <= LP(Fx) then num_msg = num.msg + 1;
end if
end for
end for

while (num_msg > 0) do
receive a block from p — 1 and rotate it into the block of Fx mapped to p;
num_msg = num.msg — 1;
if p # LP(Fk) then send the resulting block to p+1;

end while

F1a. 3. Distributed merge of an update matriz Uc into & frontal matriz Fx on processorp

entries per row for a random problem. A flop is either a multiplicative operation or an addi-
tive operation. The notation k-2D represents a k x k nine-point grid while k-3D represents
a k x k x k twenty-seven point grid. The reduction of A; to an upper trapezoidal matrix R;
is done by Householder transformations.

5. Concluding remarks. We have described an efficient algorithm for computing the
sparse QR factorization of a large sparse matrix on distributed-memory multiprocessors.
The distributed sparse submatrix merge is accomplished by a block approach on a chain of
processors. This approach tries to reduce the communication cost and avoids the potential
danger of communication deadlock on a ring of processors such as the algorithm described
in [1]. No practical performance results are given in [1]. Our approach also avoids the
disadvantage of the algorithm described in (8] where the amount of arithmetic work increases
as number of processors increases. Experiments on problems with irregular sparsity structure




Parallel Factorizations of Large Sparse Matrices 461
TasLe 1
sparse QR factorizations for grid problems on an iPSC/860 with 32 nodes.
problems m n| r |A| |R| | s.node | fac_time | MFLOPS
127-2D 158,760 | 16,129 | 10 635,040 | 518,578 | 8,191 3.740 40.44
127-2D 793,800 | 16,129 | 50 | 3,175,200 | 518,578 | 8,191 4.220 66.49
24-3D 60,835 | 13,824 | 5| 486,680 | 2,806,944 | 4,824 92.529 42.98
TABLE 2
sparse QR faciorizations for random problems on an iPSC/860 with 32 nodes.
m n|k |Al |R| | s.node | fac_time | MFLOPS
10,000 | 1,000 | 2 | 19,993 | 252,117 330 76.015 62.53
10,000 | 1,000 | 3 | 29,971 | 381,405 158 | 155.841 71.39
10,000 | 2,000 | 2 | 19,997 | 555,185 | 1,034 | 128.166 60.81
10,000 | 3,000 | 2 | 19,998 | 746,525 | 1,892 | 147.334 55.91

from practical applications will be conducted. A comprehensive description of our algorithm
and experimental results will be given in [2].

Acknowledgements. This research was partially supported by the Cornell Theory
Center, which receives major funding from the National Science Foundation and the IBM
corporation, with additional support from New York State and members of its Corporate
Research Institute. Numerical experiments were performed on a 32-node Intel iPSC/860 in
the Computer Science Department, Cornell University.

REFERENCES

(1] E. Cuu AND A. GEORGE, Sparse orthogonal decomposition on a Aypercube muliiprocessor, SIAM .
Mat. Anal. Appl., 11 (1990), pp. 453-468.

(2] T. F. CoLEMAN AND C. SuN, Parallel orthogonal factorizations of large sparse matrices on distributed-
memory multiprocessors. Work in preparation, 1992.

(3] J. A. GEORGE, Nested dissection of & regular finite clement mesh, SIAM J. Numer. Anal., 10 (1973),
pp. 345-363.

(4] J. A. GEORGE AND M. T. HEATH, Solution of sparse linear least squares problems using Givens rola-
tions, Linear Algebra and its Appl., 34 (1980), pp. 69-33.

(5] J. A. GEORGE AND J. W. H. Liu, The evolution of the minimem degree algorithm, SIAM Review, 31
(1989), pp. 1-19.

[6] 3. W. H. Liu, A compact row storage scheme for Cholesky factors using elimination trees, ACM Trans.
on Math. Software, 12 (1986), pp. 127-148.

, On general row merging schemes for sparse Givens transformations, SIAM 1J. Sci. Stat. Comput.,
7 (1986), pp. 1190-1211.

[8] P. E. PLASSMANN, Sparse Jacobian estimation and factorization on & multiprocessor, in Large-Scale
Numerical Optimisation, T. F. Coleman and Y. Li, eds., SIAM, Philadelphia, 1990, pp. 152-179.

(9] A. POTHEN AND C. SUN, A distribsted multifrontal algorithm using cligue irees, Tech. Report 91-24,
Computer Science, Pennsylvania State University, University Park, PA, 1991,

Y







