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On Characterizations of Superlinear Convergence
for Constrained Optimization

THOMAS F. COLEMAN

Abstract. We show how the Dennis—Moré characierization of super-
linear convergence for unconstrained optimization can be applied, and
usefully restricted, for use in the constrained setting.

1. Introduction. The main purpose of this paper is to illustrate how
the Dennis-Moré [7] characterization of superlinear convergence can be
adapted to the (equality) constrained optimization setting. In particu-
lar, we follow Goodman [11] and replace the constrained minimization
problem with a smooth zero-finding problem (valid in a neighborhood
of the solution). It is then possible to apply the Dennis-Moré char-
acterization directly. However, there is a subtle point: the function
in the zero-finding problem is smooth but is not computable because
its definition depends on information computable at the solution only.
Nevertheless, we demonstrate the usefulness of this viewpoint.

In Section 2 we first consider the case where exact second deriva-
tives are known; we provide a new and easy proof of quadratic con-
vergence of algorithms in the sequential quadratic programming (SQP)
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114 T. F. COLEMAN

class. Section 3 follows with a discussion of characterizations of super-
linear convergence and various restrictions. The Boggs-Tolle-Wang [1]
«characterization” is shown to be a restriction of the general character-
ization (i.e., it is applicable to a subclass of methods only). Finally, in
Section 4, we provide a new proof of the superlinear convergence of the
Coleman-Conn [4] method, using the results developed in the previous
section.

2. Quadratic convergence of sequential quadratic programming (SQP).
We are interested in the nonlinear equality constrained problem,

minimize { f(x): ¢(x) = 0}

where f:R" - R, ¢:R" = R, 1 < n, and ¢(x) = (¢1(x),...,¢(x))T. In
this section we provide a simple proof of the quadratic convergence of
the SQP method for problem (1). The proof is new though it is inspired
by the viewpoint developed by Goodman [11]; however, in our approach
we use a smooth zero-finding problem valid in a neighborhood of the
solution, whereas Goodman defines a sequence of smooth zero-finding
problems, each valid around the current point.

The technique and terminology introduced in this section will be use-
ful in the remainder of the paper. Let A(x) denote the matrix of con-

straint gradients A(x) = (Vci(x),...,Ve(x)). The following assump-
tions are frequently used in this paper:

(A)) f and ¢;,i = 1, t, are twice continuously differentiable on an
open convex set D;

(A2) x. € D, where x, is a local solution to (1); A, e A(x,) is of full
column rank ¢;

(A3) V2f. + A3V} is positive definite on null(AT), where V£, +
A, =0;

(A4) A(x) is a continuous function on D satisfying a Lipschitz condi-
tion at x..

We say that {x,} is generated by the SQP method if x;,, = X, +s; %"
- and x:QP solves

(2) min {sTVLk + 3TV L, s: Af's = —c4 }

where L,(x) = f(x) + ).',fc(x), Ar = A(xx), and A satisfies A4. (For
example, the least-squares multiplier function is given by A(x) =
—R(x)~'Y(x)TV f(x) where A(x) = Y(x)R(x); Y is n-by-t with orthonor-
mal columns, R is ¢-by-f and upper triangular.)
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Notational note. For simplicity we will write L, (i.e., without argu-
ment) to mean L, (xx). In addition, we write VL, and V2L, to refer
to the gradient and Hessian of L,(x,), respectively, with 4, treated as
a constant.

If A, is of full column rank  and the two-sided projection of V2L,
onto null(A]) is positive definite, then (2) has a unique solution. Specif-
ically, let Z, be any basis for null(A{) (Zy is not necessarily an orthog-
onal basis). We can write s = Y, v, + Z;h, where v, = R, Te,. Hence,
(2) is equivalent to

(3) minimize hTZ] (V fi + V2L, Yivi) + $hTZ{V?L, Z;h.

But we have assumed that Z{VszZk > 0 and therefore the solution to
(3) is given by

(4) (ZIVAL Z )by = —Zi(V fi + VL Yyv)
and the solution to (2) is
(5) SzQP = Zihg + Yivi.

But (4) and (5) can be combined to give
Ty2 _7T

A{ —Cx
which is equivalent to

ZZVsz SQP —-Z’,{ka
(6) ( e )sk _( i )

Note that s,s‘QP is independent of the particular basis Z,.

To be more precise, we should include a dependence on 4 when we
refer to an SQP direction, e.g., s:QP‘, because the SQP direction will
differ with different A-rules. However, the differences are low-order: All
results presented in this section are valid for any continuous A-function
satisfying a Lipschitz condition at x,, and therefore we suppress the 4
subscript. We do assume that the rule for choosing 4 is consistently
applied so that A(x) can be viewed as a specific continuous function,
Lipschitz continuous at x,.

In order to analyze the convergence behavior of {x,}, where x,,, =

Xx + s:QP, we need the following result (Theorem 3.4 of [8]).

LEMMA 1. Let F:R" — R" satisfy

(a) F is continuously differentiable on an open convex set D,
(b) there exists x. € D such that F(x.) = 0 and ¥'(x.) is nonsingular,
{c) ||F'(x) — F'{x.)|| £ n(lix — x.{]) for all x € D and some n > 0.
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Assume {x;} € D and {x} — X.. If there exists a sequence of non-
singular matrices {By} such that x; ) = Xy + i, Bysy = —F(xg), and
||Bx — F.|| = O(||xk — x.||) then {x,} converges quadratically to x..!

In order to apply Lemma 1 we must phrase (1) as a continuously dif-
ferentiable system of equations (at least in a neighborhood of a solution
x.). System (6) provides a strong hint as to a possible form; however,
a difficulty arises because the standard method of computing Z(x) does
not yield a continuously differentiable basis representation [S}. More-
over, Byrd and Schnabel [3] have shown that a smooth representation of
a basis of the null space does not exist, in general. Nevertheless, various
(theoretical) forms can be used [3], [11] to yield a continuously differ-
entiable representation in the neighborhood of any given point. Below
we derive and use a specific form; other forms are possible. Indeed, it
is possible to proceed without using an explicit form; however, in the
interest of clamy, we prefer to be concrete. Specifically, let X € R” and

suppose that AL A(x) is of full rank . Let Z be any basis for null(A )
and define

(7 Z(x) = (I1- A(ATA)'ATZ.

In a neighborhood of X, Z(x) is continuously differentiable with

(8) Z =A(ATA) 'ATA(ATA)'ATZ - A(ATA)'ATZ
Therefore,

9) 2Z(X) = ~A@A'A)'A®)TZ = -YR 'AX)Z,

where & = YR. (Note that Z(X)TV f(X) = Z' ¥.2,V2¢;(X), where 1 =
R'Y'vf®).)

Using this definition of Z defined around X = x,, consider the non-
linear system F(x) = 0, where

T
(10 R & (200 ).

Clearly, under assumptions (A;)-(Aj3), X. is an isolated zero of (10).
Note that

(1 Ix) EF(x) = (Z(X)TV f (x‘l ;r(f)(X)Tvz f(x))

'We make extensive use of the “O” and “0™ notation: ¢; = O(y, ) means that the ratic

¢« /Wi remains bounded as k — oo and ¢, = o(y,) means that the ratio ¢, /y; — 0 a:
k — oo0.
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and hence

ZV(Vif, + 1 AVic))
(12) J. = ( ) .
Y
Assumptions (A;) and (A3) imply that J. is nonsingular.
Unfortunately, the SQP step is not a Newton step for (10) and there-
fore quadratic convergence is not automatic. Indeed, the construction

of a Newton process for (10) is unclear since
(13) Z{x) = (1- A.(A(X)TA)'A(X)T)Z,

and typically Z, and A, are unknown, except at Xx,.

Our approach to this problem is to show that the solution to (6)
(which is independent of the choice of Z,) is actually a solution to an
approximate Newton system, BksiQP = —F(x;), where ||B;, — J.|| =
‘O(||xx — x.]|)- In particular, since szQP is independent of the choice of
basis Z; in (6), siQP satisfies

Z(x)TV2L, \ sqp _ —Z(x)TV fx
where Z(x;) is defined by (13). Define
Z(x,)TViL
(15) B = (7).
k

Hence, s> satisfies B,s; 2 = —F(x).
k k

LEMMA 2. Let assumptions (A;)-(Aq) hold. Further, assume that
V2f, V2 (i = 1,...,1) are Lipschitz continuous at X.. Let X, be an
arbitrary point and define L.(x) = f(x) + Alc(x), where A = A(x.);

define Z(x)TV2L(x)
0 = (“F 5™ ):
Then, for all x. sufficiently close to x., ||B:(x;) — J.|| = O(||xc — X.{]).
Proofr. First considerrows 1,...,n —{:
(Tn1, 0)(Be(xc) — Ju) = Z(x)T V2L (xc) = ZI(V’L.(x.))
= (Z(x)"T = Z])(V?L.(x.))
+ Z(xc) (V2 Le(xc) — V2La(x.)).

But Z is bounded in a neighborhood of x. and therefore, using Taylor’s
theorem, we have

(16) HZ(xc) — Z.|| = O(llxc = x.])
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for x. in a neighborhood of x.; using the Lipschitz continuity of Vif,
V2¢;, and 4, it follows that

(17) IV2Le(xc) — VLo (x| = O(Ixc — X.1])
in a neighborhood of x.. Equations (16) and (17) yield
(18) [|(Xn—r, 0)(Be — J.)|| = O(lIxc — x4 D),

for all x. in a neighborhood of x.. Next consider the last 7 rows:
(0,1,)(B: — J.) = (A7 — A]).

But A(x) is bounded in a neighborhood of x, and so by Taylor’s theorem
we get

(19) A — Adll = O(lixc — x.]])
for all x. sufficiently close to x,.
The result now follows from (18) and (19). |

We are now poised to use Lemma 1 to prove quadratic convergence
of the SQP method; we need only establish assumption (c) of Lemma
1 with respect to our definition of F. However, the fact that A(x) is
bounded in a neighborhood of x. and definition (8) yield

(20) 1Z(x) - Z.|| = O(lIx — x.1|)

for all x sufficiently close to x.. Next, u§ing (20), the Lipschitz con-
tinuity of V2f, and the boundedness of A(x), we obtain the required
result:

(21) 19 (x) = J.]| = O(]Ix — x.||)

for all x sufficiently close to x..

We now have all the necessary ‘prcrequisites to establish quadratic
convergence of the SQP method.

THEOREM 3. Let assumptions (A,)-(As) hold; assume that V?f,
Vi, i = 1,...,1, are Lipschitz continuous at x,. Assume {x,} € D
and {xy} — X., where {x,} is generated by the SQP method. Then {x,}
converges quadratically.

Proor. Clearly, assumptions (a), (b), and {(c) of Lemma 1 hold.
Moreover, by Lemma 2 there exists a B, such that BksifQP = —F(xy)

and ||B; — J.|| = O(||xx — x.]|), provided D is small enough. The result
follows.

The local convergence of the SQP method is easily established by
Theorem 5.1 in [8].
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REMARK. Goodman’s [11] proof of quadratic convergence differs
from ours in the following respect. Goodman’s technique involves the
fact that the SQP steps—with the least-squares multipliers—form a se-
quence of exact Newton steps for a sequence of functions, F;. In con-
trast, we use the fact that the SQP step—with any Lipschitz continuous
multiplier function—is an approximate Newton step for a fixed func-
tion F. Our proof is also closely related to the approach in Tapia [14]
in which an approximate Newton point of view is also taken. Tapia’s
development differs in that a projection-based function is used instead
of defining a smooth basis Z.

3. Superlinear convergence for constrained optimization algorithms.
For unconstrained minimization the characterization of Dennis and
Moré ([7), Theorem 2.2 or [8], Theorem 3.1) has proven to be very
useful. It can also be used for constrained optimization, using F(x) and
J. defined in (10) and (12), respectively. For completeness we repro-
duce the result here, reworded to reflect the constrained optimization
setting.

THEOREM 4. Let assumptions (A,)-(A3) hold. Let {M,} be a se-
quence of nonsingular matrices. Define F and 3., by (1), (10), and (12).
Suppose that for some xo in D the sequence

(22) Xk +1 =xk—M;'F(xk)’ k=0,l,'~-)

remains in D, x, # X. for k > 0, and converges 10 X.. Then {x;}
converges superlinearly in x. if and only if

(23) lim ”[Mk - J'](xk+l - xk)” = 0.
k—+00 H%ke1 — x|

As noted in [8], if we define s, = X4, — X, and s = —J; 'F(x;) then
it is possible to rephrase (23) without explicitly referring to an iteration
matrix M,.

THEOREM 5. Let assumptions (A\)-(As3) hold. Let {x\} be a se-
quence of points that remains in D, X,y # Xx and xi # X., for k >0,
and converges 1o x.. Then {x;} converges superlinearly to x. if and only

if

sl _
@4 R T I

PROOF. It is easy to see that the assumptions of Theorem 4 imply the
assumptions of Theorem 5. To see that the converse is true, assume that
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the assumptions of Theorem 5 hold. But we can define a nonsingular
matrix mapping the vector —F(x,) to the vector Xk4+1 — Xi: Define W,
to be the matrix a x Q where Q is the orthogonal rotator that brings
the vector —F(x,) onto the ray (x;,, — X )/HXk+1 — X«|| and define a =
IIXx+1 — Xk|I/IIF(x4)]|. Obviously, W, is well defined and nonsingular;
let M; = Wk". The equivalence of the assumptions is established.

To complete the proof we must merely establish the equivalence of
(23) and (24). But

S — Sll‘v = J;lle - Mg ]si
and the result follows. [}
The application of (23) or (24) to constrained optimization is subtle:
F, as defined in (10), is a theoretical construction and is not, in general,
computable at x;. A possible alternative is to derive a characterization

that does not depend explicitly on F. We do this next.
First we show that J, can be replaced in (23).

LEMMA 6. Let the assumptions of Theorem 4 hold. Further, let {B,}
be any sequence of matrices satisfying

(25) lim “Bk - J.“ =0.
k—+o00
Then {x,} converges superlinearly 1o x. if and only if
(26) lim “[Mk — Bk](xk+l - Xk)” =0.
k—+00 X410 — x|

PROOF. We need only show that condition (26) is equivalent to (23).
However,

(27)

My — By J(ie1 = Xk) _ Mk = 3]0 — %) + He = Bil(xesr — %)
(Xk41 —X) (Xk41 — Xi) (k41 — %)

from which the result follows directly. [

THEOREM 7.  Let the assumptions of Theorem 5 hold. Lets, = x;,,—
X, and let s,fQP be the SQP step (i.e., (3) or (6) or (14)). Then {x,}
converges superlinearly to x. if and only if

- Isk — s39F)]
28 hm ———&% " .
(28) e T Tisell

PROOF. The SQP step is the solution to a system Bs;¥ = —F(x;),
where B, and F are defined in (15) and (10), respectively; hence, by
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Lemma 2, ||Bx — J.|| = O(||xx — x.||). But our assumptions imply the

existence of a nonsingular matrix M, such that M;s;, = —F(xx) and
therefore,

(29) sk — 5;% = B, ' [Bx — Mylsy

and the result follows using Lemma 6. ]

Hence, a superlinear rate is achieved if and only if the steps approach
the SQP steps, asymptotically, both in size and direction.
For completeness, we remark that the superlinearity characterization

given in [6] can be expressed in the context of problem (1) using F given
by (10).

THEOREM 8. Let the assumptions of Theorem 5 hold. Then x; con-
verges to x, superlinearly if and only if

(Z(x,‘zxT ZVsz ) S, + (‘Z(xkc):wk) n =0.

)]

The proof is straightforward; we omit it. This type of characteriza-
tion has proven useful in the unconstrained setting in the context of
an iterative technique for solving the current linearized approximation
inexactly; (30) is not immediately useful in the constrained setting be-
cause Z is not computable at x,, in general. However, if we define P?
to be the orthogonal projector onto null(A’{), then (30) is equivalent to

(Pf(VZTLkSk + ka))

. 7 A s, +c¢,

(31) Jim = | (ﬁfwk
| Ck ) ‘

which is computable using local information only. Note that (31) is
independent of the choice of basis Z,.

(30) lim

k—o0

l -0

3.1. Quasi-Newton SQP methods. A characterization of superlinear
convergence for constrained optimization, in the special case when a
quasi-Newton SQP algorithm is used, was first given in [1]. Theorem 4
is more general because it does not presuppose an algorithm class (also,
linear convergence is assumed in [1], whereas convergence only is as-
sumed above). However, the application of Theorem 4 is not obvious
since F—given by (7), (10)—is a theoretical device and is not, in gen-
eral, computable at x,. Nevertheless, the restricted characterization in
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[1] is a direct consequence of the following result which, in turn, is an
easy consequence of Theorem 4.

LEMMA 9. Let the assumptions of Theorem 4 hold. Further, let {C,}
be a sequence of matrices such that {||Cy||} is bounded above and

(32) lim ”(l - Ck)(Mk — J‘ )sk ”
k—oo lisll
Then {x,} converges to x. superlinearly if and only if

=0.

(33) lim “Ck(Mk —J.)Sk“ =0
' ko0 |Is«l '

ProOF. First suppose {x;} converges superlinearly; therefore, by
Theorem 4, (23) holds. But,

HCx (M = Ju)sill < |ICkll - H(Mk = J.)si]l = O(|(My — 3.)si )
and therefore (33) holds. On the other hand, suppose (33) is true. But,
WMk = J)si|l < |(X = C)(My — Ja)sill + [|Cu (M — I )i,
which implies (23) and hence superlinear convergence. ]

It is worthwhile noting at this point that our application will involve
the use of a specific choice for C;, constant for all k:C, will be the
orthogonal projector onto (e,,...,e,—,}, denoted by P.

The following result was originally established by Boggs, Tolle, and

Wang [1]. Since then alternative proofs have been provided in [9], [12],
[13].

COROLLARY 10. Let assumptions (A)-(A3) hold. Let H, be a sym-
metric matrix with the restriction of H, onto null(AY) positive definite
(by restriction we mean the two-sided projection). Let {x,} be defined by
Xx4+1 — Xx + Sx, where s, solves

minimize {sTVﬁ + 3sTHs: Afs = —ck}.

Assume {xc} — x.; let P} be the orthogonal projector onto null(AT).
Then {x\} converges superlinearly to x. if and only if
) PZ _x72 .
(35) lim P (Hy — V2L, )si||
k—+o00 |Iskll

Proor. For sufficiently small D the restriction of H, onto nuli{A})
is positive definite and therefore s, is the solution to the system

— T
(36) Myse = (7209 VA < ko),

= 0.
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where
_ Z(Xk)THk def M,l(
Z(xy) is defined by (7), and F is given by (10). By (12),
ZTV2L, \ der (J!
69 = ()= ()

Let P be the orthogonal projector onto (ey,.--,en—r); hence,
0
=P =305 = (o 32 )

o) tim UMEZ IO, AL KDl
k—oo |Is«l k—o0 |Is«l

and therefore assumption (32) of Lemma 9 is satisfied (with C; = P for

all k). To complete the proof we must merely show the equivalence of

(35) and (33) in this case where we restrict the algorithm to class (34).

But,
(40) P(M, — J.)s = ((Mi —Jl)sk)

and

0

0
and

(M — I)sill = IN(Z(xx) " Hi — ZTV2La)sil|
< ||Z(x) T (Hx = V2L)s || + 1(Z(xi) = Z.)TV2L.si||-
But,
NZ(xx)"T (Hi — VL)l
= NZxk) "Z(ai)DNZ(xi) TZ(xi)) ™ Z(xi )T (Hy — V2 L)l
< |Z(xo)Il - [IPF (Hi = V2LL)sill-
Therefore (35) implies (33). To see that (33) implies (35) use (40) and
note that
(M} — I)s«ll = NZ(x)THi — ZIV2L.)s||
= |1Z(x)T(Hy = V2La)s + (Z(xc) — Z2)T V2 Losi|
> |1 Z0x)T(Hk = V2L2)sell = N(Z(xk) = Z.)T V> Lasi]|
But
T 2 NZ (2 ) Z(xk )T Z(xi)] !
120xe)" (He = V- E)sell = ||Z(xk)[2(xk)TZ(xk;1-'l|||
NNZ(xk) T(Hi = V2LL)sic|
> |IPZ (Hy — V2L.)sll|
= NZxi ) Z(xk)TZxi)) |
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Hence, (33) implies (35) and the proof is complete. |

Next we make additional restrictions on the approximating matrix
M,.

LEMMA 11. Let the assumptions of Theorem 4 hold;, assume that
{Cf} and {Cg} are sequences of matrices such that {||CE||} is bounded
Jrom above. Further, assume

lim (X = CH)(My = Ju)sell

41 =0
(41) kb el
and

k—+00 |Isk |l
Then {x,} converges to x. superlinearly if and only if

Lim. R
(43) | lim HC, (M — J)Clsi||
k—+00 lIs |l

= 0.

ProoF. First suppose {x,} converges superlinearly to x,. But
ICK (M — J)CEsill < ICK (M — J.)si || + ICE(My — 3.)(T = CR)sy|
< ICEI - 1My — 3 )|
+{ICk (M - J.)(X - CR)ysy |

and therefore by Theorem 4 and assumption (42), (43) follows. Next
assume (43). But

(M = J.)s = (1= CE) (M, — J.)sy
+ Ci(My — J.)CEs + CL (M, — 3.)(I - CR)s,
and therefore by Theorem 4 superlinear convergence follows. |

We can apply Lemma 11 to a quasi-Newton SQP-algorithm by mak-
ing specific choices for matrices Cf and C¥.

THEOREM 12. Let the assumptions of Corollary 10 hold: further, as-
sume

IIPE(Hy — V2L )(I - PZ)s; | ~0

44) lim
( feard el

Then {x,} converges superlinearly to x. if and only if

Z R v 2 Z
(45) tim Pk = VAL OPEsill _

k—oo s« il
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ProOF. From Corollary 10 it follows that superlinear convergence is
achieved if and only if

0.
k—+00 skl

But,
(47) PEZ(Hy — V2L.)sk

= PZ(H, — V2L.)(1 - PZ)si + Pf (Hy — V2L.)P{s,.
The result now follows trivially. )

Theorem 12 has interesting algorithmic implications. Specifically, it
turns out that it is possible to satisfy assumption (44) while only main-
taining an explicit approximation to PZV2L,PZ. To see this consider
the following (two-step) algorithm, where H, is a symmetric matrix, of
order n, and positive definite on null(A}).

Solve

(48) (ZIH*Z" 0 ) ("k) _ (—ZI(VLk(xk +Yka)))

0 R} ) \ v —Cy
where Z, is any basis for null(A]), and then set
(49) s — Zihy + Yive,  Xpi) — Xg + Sk

COROLLARY 13. Let assumptions (A;)-(A3) hold. Let Hy be a sym-
metric matrix with the restriction of H, onto null(AT) positive definite
(by restriction we mean the two-sided projection). Let {x;} be defined by
(48)-(49). Assume that {4} — A.; {xx} — X.. Let PZ be the orthogonal

projector onto null(A}). Then {x,} converges superlinearly to x. if and
only if (45) holds.

PrOOF. By Taylor’s theorem, for any vector uy,
VL(x + ) = VL (xk) + VELk(Xp )uy + Wi
where ||[wk|| = o(]|uk|l). Equivalently,
(50) (V2Li(x) + Ex)ue = VL (xk +uy) — VLi(xi)

where E; = w,‘(nzuk)+ u}: and (-)* denotes the pseudo-inverse (i.e., at =
a-! if a # 0; otherwise, a* = 0). But

NE Il < lwiell - H(ugug)*uid]
and therefore, if u, = 0 then E; = 0; otherwise,

o(||ukll)
E| < el
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and so
(51) if {|lucl|} — 0 then {JIE/{|} — 0.
If u; = Y, v, then by (50) we can rewrite (48)-(49) as

(52) _(z{mzk z{(szk(xk)+Ek)Yk) (hk) _ (_z;v f,()

0 R] Vi —cx

and then set
(53) sk — Zihy + Yevi,  Xeq) — Xx + Ske
But (52)-(53) can be expressed in the form (34) using matrix H,, where
(54) H, = P{H,P{ + P{ (V2L (x) + Eo)(1 - P).
However,
PZ(H, — V2L.)(I1 - P{) = PZ£(V2Li(x) + E, — V2L,)(1 - P%)

and therefore, using (51) and {4} — A., assumption (44) of Theorem
12 is satisfied and the result follows. |

This last method is an approximate quasi-Newton SQP method: s,
is not computed by solving a problem of the form (34). However, we
include it in this subsection because theoretically it is easily expressed
in this form (as we have seen). This is not the case for the class of
methods described next.

3.2. Approximate quasi-Newton SQP methods. Unfortunately, the
characterizations of superlinear convergence for quasi-Newton SQP
methods are not as useful as one would hope: existing quasi-Newton
methods do not always fit precisely into the SQP mode. However, it
is possible to view such methods as approximate quasi-Newton SQP
procedures; the (unrestricted) superlinear characterizations, discussed
at the beginninig of this section, can be applied to establish a super-
linear characterization for a broad class of approximate quasi-Newton
SQP methods. We do this next.

The following algoﬁthm uses, at each step, matrices ik and Kk; note
that, in general, (Z;) # (Z(xi)), (Ax) # (A(x)), and ATZ, # 0.2 Let
A = Y(R,.

2If M is a matrix then {M) refers to the space spanned by the columns of M.
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Solve
55 (2IHk2k z{“k?k) (hk) _ ("zIVLk(xk))
( ) T - _ ’
0 R, Vi Cx
(56) Sy «— 2khk + ?kvk,
(57) Xk+1 — Xg + Sk.

THEOREM 14. Let assumptions (A))-(A3) hold. Let {s,} and {x;}
be generated as above. Assume {x;} — X.. Further, assume

(i) there exist matrices Sy and T, such that
21( = Z(xx )Ty + Sy

where the singular values of T are bounded below away from
zero and bounded above, and

1Skl = OdlIs«);
(i) limg_oo Ak = As;
(11i) {Hx} is a sequence of matrices such that the restriction of H;

onto null(AY) is positive definite, {||H,||} is bounded above,
(lV) limk_,oo{).k} = As.

Then, {x,} converges superlinearly to x, if and only if

(58) lim PEH = V2L )sill _

0.
k—+00 |Iskll

PRrROOF. Our proof technique is to establish that s; solves a system

Z(x,)"H, + E} ) _(—Z(x)"V
(59) ( AT +E} s"‘( et )
such that limy_, o ||E; || = lim;_, ||E,2(l| = 0, and Z(x,) is defined by
(7). The result then follows directly from Lemma 9 (with C; = P, the

orthogonal projector onto (e),...,e,_;)).
But (55)-(57) can be written

ZTH, -ZIvL
60 ok = k ok
©0 (ﬂ+w)” (728)
where E2 = —wls] /(sTs,) and w} = ATZ, h,. Note that
|lwill NE
IEz]l < 5227 = O(IA{ Z4]))

1]

and therefore,by convergence and assumptions (i) and (i1), limy _, o, {|E,f, I
=0.
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Next, using (i), we write
Z, = Z(x;)Ty + Sk
where {T,} is uniformly nonsingular and |{S,|| = O(||s«||). Hence,
ZIVL, = T Z(x,)"VL, + w}

where w! £ STVL,. If we define E} = wls]/(s]s;) then (60) can be
written

ZTH, +E}\ —T{Z(xk)TVLk)
(61) ( AT+ E2 )"’*'( —i -

Note that ||EL|| < |[wi{|/}Isk]| and
(62) widl < ISkl - IV L]l

But, by assumption (i), ILSkll = O(||s«l|l) and VL, — VL, = 0, using
(iv); therefore, lim,_, o, ||E}|| = 0.
Finally,

ZTH, = TJZ(x,)"H, + STH,
= TR Z(xx)"Hy + E}

where E} def SfH, and therefore, using assumptions (iii) and (i),
limy o, ||E3|| = 0. System (59) is now obtained with E} = T, T(E} +
E}). ]

Note. The assumption that ||S;|| = O(||s«]|) is practical since it is
satisfied by most (if not all) known superlinearly convergent updating
schemes. However, it is possible to replace this assumption with condi-
tions on {x; } and {4, }. Specifically, we can replace assumption (i) with

(¥):

(i’) There exist matrices Sy and T, such that
2/( = Z(xk )Tk + Sk

where the singular values of T, are bounded below away from
zero and bounded above, and

IS« |l — 0.

Moreover, we assume that {x;} converges to X. linearly and
1Ak — Ad]l = Oiixx — x.]]).
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Then (62) still holds but, using Taylor’s theorem,

(63)
IV Lill = O(lIxx — x.]1) + O(|| 4 — A.1])

(64) = O(lIxk —x.|}) (by (i')
(65) = O(|iskll) (by the linear convergence assumption in (i')).

Consequently, lim;_, ||1AZ,'(|| = 0 and the rest of the argument follows
unchanged.
If, in addition, we assume

IPZ (H, — V2L)(I - PE)si||

(66) lim =0,

k=00 lIsll

then the remaining requirement for a superlinear characterization is on
PZH,PZ alone.

THEOREM 15. Let the assumptions of Theorem 14 hold. Further,
assume (66). Then {x,} converges to x. superlinearly if and only if

k=00 lIs«ll

0.

PROOF. Assume superlinear convergence to x,. But,
IIPZ (Hy — VEL)PEsk|| < |IPF(Hy — V2L )sil|
+ |IPE (Hy — V2L, )1 - PE)sill

and so by (58) and assumption (66), (67) follows. On the other hand,
assume (67). But,

PZ(Hy — V2L,)sy = PZ(Hy — V2L )1 - PE)sy + PE(Hy — V2L, )PEs,.
Hence, (66) and (67) yield (58) and by Theorem 14 superlincar conver-

gence is established. (]

It is possible to satisfy assumption (66) using an extra gradient eval-
uation. Specifically, let us replace algorithm (55)-(57) with
Solve

(68) (ZIszk 0 ) (hk) _ ("ZZVLk(xk + Yyeve)

0 R/ \ %« —Ck ’
(69) sk — Zhy + Yyvy,
(70) Xk+1 + Xx + Sg.
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TueOREM 16. Let the assumptions of Theorem (14) hold with the
exception that algorithm (55)-(57) is replaced with (68)-(70). Then,
{xx} converges 10 X. superlinearly if and only if
|IPE(H, - VEL)PEsill _

() hae Tl

PrOOF. Repeating the technique used in the proof of Corollary 13,
we obtain a matrix G such that

"Gk“ < O(“?Vk")

¥l
and (68)-(70) is equivalent to
Solve
ZIHZ,  ZJ(V2Li(x) + GV \ (b ~ZIVL,
(72) o - .
0 R, Vi —Ck

Therefore, if we define
fi, = PZH,PZ + PZ (V2L (x) + G )(1 - PY),

then (98)—(70) can be expressed in the form of algorithm (55)-(57

using H,, to play the role of the matrix H, in (55)-(57). The result no
follows easily. |

4. An application. In this section we illustrate the usefulness of th
viewpoint developed in the previous sections by providing a new proc
of superlinear convergence of the constrained quasi-Newton method du
to Coleman and Conn [4). Coleman and Conn [4] established two-ste
superlinear convergence; subsequently, Byrd [2] strengthened the resu
to (one-step) superlinear convergence. Byrd’s proof is quite differe:
from the proof we present here.

4.1. The Coleman-Conn algorithm. The algorithm recurs a positi
definite matrix of order n — ¢, H,. Let x,_ be a previous point wi
constraint matrix A, = Y,_R,_. The columns of the matrix Z(
form an orthonormal basis for the null space of A(x)T. The functic
UPDATE(M, s, y) refers to either of the well-known positive defin:
secant updates, BFGS or DFP: the matrixM is a positive definite matr
s is the current “step,” y is the difference in “gradients,” and sy >0
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THE ALGORITHM.
(1) Solve R{_ Vi = —C.
(2) Xk, ~ Xk + Yi_ Vi _
(3) Compute A, = Yy Ry, ; compule Z,,. an orthonormal basis for
null(A] ).
(4) Compute V fi, € V f(xy,)-
(5) Solve Ry Ay, =Y V..
(6) Solve Hyhy =:ZI* V.-
(1) Xiqr — Xk, + Zy, by . i
(8) Hy,, — UPDATE{Hy,h,Z; (VSi+1 — Akrrdi,) — Z, Y.}
(9) k —k+1, k. —k,

The key to the proof of superlinearity is that the correction 10 x, can
be expressed in the form (68)-(70). To see this note that x;,, can be
obtained via:

Solve
(73) (—}_lk 0 ) (hk) = (“2I+VLk(Xk + Yk_Vk))
0 Rk__ Vi —Cx ?
(74) s — Zi,hy + Y4 v,
(75) Xx4+1 &« Xg + Sg.

Therefore, if we let H; = 'Zk*ﬁk_il we see that the Coleman-Conn
algorithm is in the form (68)-(70).

THEOREM 17. Let assumptions (A;)-(A3) hold. Let {x\} and {H,}
be generated as described above with {xo, Ho)} the starting pair, Xo_ = Xo,
and Hy is symmetric positive definite. Further, assume that Z(x) is a
Lipschitz continuous function on D; the Hessian matrices V2 f and Vic;,
j = 1,...,t, are Lipschitz continuous on D.

Then, there exist positive scalars € and A such that if ||xo — x.|| < &
and ||[Ho— M.|| < A, where M., = Z: (V2 f.+ Y ArVic;)Z, and Z. is the
limit point of {Z;}. then {x,} converges at a superlinear rate.

PRrOOF. Since Coleman and Conn [4] have established convergence,
we can prove superlinearity by applying Theorem 16 provided we es-
tablish that the assumptions of Theorem 14 hold. But assumptions (11)—
(iv) of Theorem 14 follow straightforwardly (with the boundedness of
{|[Fi,]|} given by Coleman and Conn [4]). To establish that assumption
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(i) of Theorem 14 holds, note that we can write

1
(76)  Z(xx,) = Z(x) + (/0 Z(xy + T(xh, — xk))af) - (Xk, — Xi)-

But ||Z(x)|| is bounded above for sufficiently small D, and therefore
(77) Z(x,,) = Z(x) + Sk

where S, = O(||sk||). Since both Z,, and Z(x;,) are bases for null(A{’)
there exists a nonsingular matrix T; such that

(78) —Zh = Z(Xh )Tk.

In fact, continuity of Z, and Z(x,) and convergence yield that th
columns of T are uniformly linearly independent and {||T||} is bound
ed above, for sufficiently small D. Using (77) and (78), we have

(79) Z,, = Z(x, )T, + Sk

where S; = §ka and ||Si|| = O(lis]l). Therefore, assumption (i) o
Theorem 14 is established.

Next an argument similar to that used to establish Theorem 3.6 an
Corollary 3.11 of Coleman and Conn [4] can be used to give

N, — Mobl|
sl
But (80) implies (71); the theorem is established.

(80) 0.

4.2. Concluding remarks. (1) The two-step superlinear convergenc
result of Coleman and Conn [4] was actually with respect to the sequenc
{x4,} as defined above. It was Richard Byrd who first suggested—an
later proved [2]—that the {x,} sequence might be (one-step) superlir
ear.

(2) The proof of (80) does depend on the use of a smooth Z(x); as w
have mentioned, this can be a thorny issue. Practical constructions hav
been suggested in [5, 10]; however, Byrd and Schnabel (3] proposed
modification to the Coleman—Conn algorithm that is not dependent o
the choice of basis. The Byrd-Schnabel algorithm can be expressed i
the same form as above with an additional “adjustment” to H; to refle
the change in Z. Specifically, precede step (6) with

(67) H;, — TIH, T, + ZLY,(__C}Y{_ Z,

where Ty = Z] Z,,. This is actually a slight generalization of the Byrd
Schnabel suggestion: they proposed what amounts to a specific choic
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for Cy, Cx = Bil;, where By is a scale factor. Here, C, is symmetric
but otherwise arbitrary. (The idea is that the matrix Z, H; ZT + Y, C Y}
represents an approximation to the Hessian of the Lagrangian.)

Convergence properties for this algorithm are unknown; our develop-
ment here suggests a possible way to proceed. Specifically, because the
algorithm can be expressed in the form (68)-(70), a major step toward
a proof is to show that (71) holds. It appears that a bounded deteriora-
tion result could be used, similar to the manner suggested by Coleman
and Conn [4], provided the perturbation introduced by (67) is bounded
by O(max{|[xk — X, lIXk+1 — Xe|1})-
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