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Abstract. The search for low energy states of molecular clusters is associated with the study
of molecular conformation and especially protein folding. This paper describes a new global
minimization algorithm which is effective and efficient for finding low energy states and hence stable
structures of molecular clusters. The algorithm combines simulated annealing with a class of effective
energy functions which are transformed from the original energy function based on the theory of
renormalization groups. The algorithm converges to low energy states asymptotically, and is more
efficient than a general simulated annealing method.
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1. Introduction

We are interested in developing an efficient global search algorithm for finding
low energy states of molecular clusters of identical atoms. This provides a
model for the study of an important, but more difficult, molecular conformation
problem in biochemistry—the protein folding problem, i.e., the study of how
proteins attain their native spatial structures. The computational approach to
this problem is based on the hypothesis that native protein structures correspond
to global minima of protein energy. Given a molecular system of n atoms, let
z = {z; € R% i =1, ..., n} represent the system structure with each z; specifying
the spatial position of atom i, and let the energy function be defined by f(x)
for all z, and

n

f@= Y hi(le - zl) (1)

i=1,j>i
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where h;; is the pairwise energy function determined by the distance between
atoms i and j. Typically, only a small number (< 10) of different forms of the
h;; are required. A useful model problem (and the one considered in this study)
is where h;; = h is identical for all pairs of atoms. In any case, the conformation
problem for the given system can be formulated as a global minimization problem:

minze S f(w) (2)

where S is the set of all possible structures of the system. This problem is ex-
tremely difficult because in theory even simple versions are N'P-complete [7], and
in practice the energy function usually contains numerous local minima so that
the search of global minima can hardly be made efficient even for small problem
instances. However because of its great practical importance in biochemistry, the
problem has motivated many research projects in computational sciences, espe-
cially in the area of numerical optimization. A number of approaches exploiting
problem-specific structures and heuristics have been proposed and studied to
find efficient solutions to the problem, either deterministic or undeterministic,
e.g., [3, 10, 11, 14, 16, 17, 18, 20, 22]. Most approaches have been applied to
small problems, but not to the large problems (typically n» = 1,000-10,000) of
biological interest.

In this paper, we present a global search algorithm which is effective and
efficient for finding low energy states of a molecular system. The algorithm
combines simulated annealing with a class of effective energy functions which
are transformed from the original energy function based on the theory of renor-
malization groups in statistical physics [21]. The algorithm converges to low,
or even the lowest, energy states asymptotically, and more efficiently than a
general simulated annealing method. It can be used to find low energy states
and provide good starting points for local minimization procedures to locate low,
or the lowest, energy minima.

The paper is organized as follows. Section 2 describes briefly the simulated
annealing algorithm and its asymptotic convergence properties. The effective
energy is introduced in Section 3. Section 4 further discusses the isotropic
effective energy and its approximation. Section 5 presents our algorithm —the
isotropic effective energy simulated annealing. Section 6 describes numerical
experiments on the Intel iPSC/860 hypercube computer. Numerical comparisons
with a general simulated annealing method are presented. Annealing strategies,
application of local minimization, and parallelism are discussed. Section 7
contains concluding remarks.

2. Simulated annealing

In the physical annealing of a solid system, the temperature is first increased
to a sufficiently high degree so that the solid melts and then is decreased
slowly until the solid solidifies in its stable state where the system energy is
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globally minimized. The Metropolis algorithm [13] has been used to simulate
the physical process. Using the same philosophy, Kirkpatrick et al. [9] introduced
the simulated annealing algorithm to global and combinatorial optimization. Since
then, the algorithm has been popular as an approximation method with a variety
of applications in solving discrete and continuous optimization problems such as
traveling salesman problems, scheduling problems, molecular conformation, etc.

Let = represent the state of a physical system, and f(z) be the system energy
at z. The simulated annealing algorithm generates a sequence {z} converging to
some z* with minimum energy, simulating the change of the system to the most
stable state during the physical annealing process. The sequence is generated
in such a way that in each step a new state z, is obtained by perturbing the
current state z; z, is accepted as the new current state if f(z+) < f(z), or it is
accepted with probability

_ )1

e kBT 3)

where kp is the Boltzmann constant and T is the system temperature which
is lowered gradually as the algorithm proceeds. The algorithm assumes the
stochastic model of the physical annealing process, and can be proved to converge
asymptotically if the trial sequence generated is sufficiently long.

The simulated annealing algorithm is applied in a similar way to a general
optimization problem by regarding its objective function f(x) as the energy
function of a hypothetical physical system.

Figure 1 presents a formal description of the algorithm. Note that {7, 1 <
k < m} is a sequence of temperatures monotonically decreasing to a sufficiently
low temperature T;,, and Iy is a bound on the number of trials at temperature
T. These values can be prescribed, or determined in each iteration dynamically.
The function random|0,1) returns a random number in {0,1).

We state the following two facts about the convergence properties of the
simulated annealing algorithm without proofs. For detailed convergence analysis,
readers are referred to [1].

Fact 1. At each temperature T of simulated annealing, if Ir is sufficiently large,
i.e., if sufficiently many trials are made, the probability for the algorithm to reach
a system state = with energy f(z) is given by the Gibbs-Boltzmann distribution:

1 _ @)
where S is the set of all possible system states, and Z(T') is the partition function,
)
Z(T) =) ekl )
y€S

From Fact 1, it is not difficult to show that:
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Algorithm 1 {The simulated annealing algorithm}
0 {Initialization}
I = Tstart
1 {Iteration}
for T =Ti,...,T,x do {cooling step}

forl=1,...,Ir do {random trial}

Ty =7+ Az
if f(z4) < f(2)
T =T4
1(24)=1(2)

else if e *»T > random{0,1)
T =1z,
end if
end do
end do

Figure 1. The simulated annealing algorithm.

Fact 2. Let z* be a global optimal state with the lowest energy f(z*). Then the
probability for the algorithm to find z* converges to 1 as temperature T goes
to 0.

The simulated annealing algorithm has been used for the study of molecular
conformation as well as protein folding, e.g., [11, 20]. The advantages of this
algorithm are that it is a general global minimization algorithm, and is easy
to implement. However, the success of the algorithm depends strongly on
large numbers of trials and hence large numbers of function evaluations. For
molecular conformation problems, the cost for each function evaluation usually
increases quadratically with problem dimension, i.e., the number of atoms within
the molecule. This causes the algorithm to be too expensive for large problems.

3. Effective energy

4

The algorithm proposed here applies simulated annealing to a class of modified
energy functions constructed in accord with renormalization group ideas from
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statistical mechanics. More specifically, we consider a new class of energy
functions, called effective energy functions, which are transformed from, but
converge to, the original energy function. These functions are smoother than
the original function and possibly have fewer local minima. As the effective
energy functions converge to the original function, they become less smooth, and
all minima of the original function are recovered. More importantly, each of
these functions reflects the variation of the original function at a coarse level;
therefore, its global minima of the effective energy function approximate the
global minima of the original function. The approximation becomes exact as the
functions converge to their limit.

We apply the simulated annealing algorithm with the energy function replaced
by a different effective energy function at each different temperature T. Let the
effective energy function converge to the original energy function as T goes to 0.
Then the simulated annealing will at each temperature T try to locate the global
minimum of corresponding effective energy function, and by tracing the change
of the global minimum, the algorithm will hopefully reach the global minimum
of the original energy function at the end of the annealing. The entire process
here is analogous to the homotopy method for local minimization. Similar ideas
can also be found in [10, 17, 18].

The effective energy function was first introduced to molecular conformation
by Shalloway [17, 18] in the packet annealing algorithm. In this section, we
define the central concepts, and show some of its properties with examples. For
more mathematical and physical background of this type of function, readers are
referred to [12, 17, 18, 21].

Definition 3.1. Given energy function f(z), for a fixed temperature T and
sampling parameter A, the effective energy function fj r(z) is defined by:

_Iar@)

_{&) /
e kT = ﬁA,T(x) = CA/C kgT e‘”(-’”*z )/Auzdm’ -(6)

where ¢, is a normalization factor such that
%/ém%wmmy=1 Q)

Recall that in statistical theory, given a random variable y and its probability
distribution P(y), the average value of any function g(y) is

@p=/mwmw@. (8)

So, the left-hand side of (6) is simply the average value of the probability
distribution corresponding to the energy when sampled by a Gaussian distribution
function centered at point z. Parameter A, called the sampling parameter, can
represent either a matrix or a scalar, depending on the implementation. It
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prescribes the extent of the dominant sampling region and plays an important
role. The averaging can be either coarse or fine depending on how large A is.
As A — 0, the average becomes arbitrarily close to the exact function, i.e., for
any fixed z and T,

lim 7,7() = f(2). ©)
For convenience we also state a special case of the effective energy function:
Definition 3.2. Given a pairwise energy function h(}|y|), for a fixed temperature T

the pairwise effective energy function k) r(||y||) for some parameter X is defined
implicitly by the equation

% L (0] :
e BT =7pr(lyl) = C,\/e T [ )/f\llzdy' (10)

where ¢, is a normalization factor such that
e /e~ll(y—y’)//\ll2dy' =1 (11)

For the pairwise effective energy function, we also have the property that for
any fixed y and T,

lim By, r(llyll) = AClyl)- (12)
Given {A;, k=1, ..., m}, a sequence of sampling parameters, we can define
a sequence of effective energy functions {f4, r(z), k = 1,..., m}. When Ay is

large, the effective energy fa, r(z) estimates coarsely the energy f(z) with all its
variations within small regions averaged out, and hence f, r(x) appears much
smoother than f(z). As A goes to 0, {fs,.r(z), k = 1, ..., m} converges to
f(z). These properties are illustrated with two examples in Figures 2 and 3. (For
convenience, the unnormalized Gibbs-Boltzmann distributions corresponding to
the effective energy functions actually are displayed.)

In Figure 2, (a) is the unnormalized probability distribution p(y) = e~ /®)/ksT
for an energy function f(z), and (b) shows the distributions 5, r(y) for effective
energy far(y) with different A values. We see from this example that when
A = 0 the function in (b) is exactly the same as in (a), while as A increases, the
function is deformed and becomes smoother and smoother, and eventually one
of the extrema disappears.

Figure 3 shows the behavior of the effective energy in a 2-dimensional example,
where (a) is the probability distribution for a 2-dimensional energy function, and
(b)-(f) are those for corresponding effective energies with increasing A values.
Notice that as A gets sufficiently large, the graph becomes very smooth, and all
four high and steep mountains are removed.
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Figure 2. A sequence of effective energy probability distributions (b) transformed from (a) at fixed
temperature T and different values of A.




152 COLEMAN, SHALLOWAY, AND WU

Figure 3. A sequence of effective energy probability distributions (b)-(f) transformed from (a) for
increasing values of A at constant T.
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As can be seen from (6), the lowest effective energy state of an effective energy
function will be located in a region that on average has low energy. Physically, it
represents a region where the low energy states are most likely to occur; in other
words, a region where the system is most likely to be stable in the sense that it
can maintain low energy even with small perturbations. As the effective energy
function changes to the original energy function, the lowest effective energy state
converges to the original lowest energy state. So, the global minimum of effective
energy function has both physical and mathematical significance as an asymptotic
approximation to the original lowest energy state.

4. Isotropic effective energy and its approximation

In general, the sampling parameter A in (6) should be a matrix, which corresponds
to a high dimensional anisotropic sampling region. Here, we only consider the
case where A is a scalar. The effective energy defined this way is called isotropic.

The effective energy is hard to compute because, in general, the high di-
mensional integral in (6) cannot be calculated either analytically or numerically.
Shalloway [17, 18] has suggested the following approximation to the isotropic
effective energy:

Far@ =~ Y Par(lz:i—z;l) +c (13)

i=1,5>i

where T 7 is the pairwise effective energy; c is a constant; and A = g(n, 4, T)
(g is an unknown function, but limy_og = 0). The formula provides a good
approximation when the energy function is close to a quadratic form. For general
functions, the approximation could be good or poor, depending on given functions.
In any case, to compute the effective energy with this approximation, we only
need to calculate all pairwise effective energies, which can be done numerically.

For minimization, the constant c is not important. So, for convenience, we will
always refer to the isotropic effective energy as only the first term of (13), the
sum of all pairwise effective energies. Let the sum be denoted by f) 7(z). Then

Hr@ = Y. Fr(lz-zl). (14)
1=1,7>1

Note that the isotropic effective energy defined this way still maintains the
property that for any fixed z and T,

lim f,.7(2) = /(@) as)

since limy_o R r(||ly|]) = A(|ly]]) for any fixed y and T. This property guarantees
that even if the approximation to the effective energy is poor, we will still get
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Algorithm 2 {The IEESA algorithm}
0 {Initialization}
I = Zstart
01 = Ostart
1 {Iteration}
for k = 1,...,m do {cooling step}
T=T, X=X\
for [ =1,...,l; do {random trial}
2, =24+ Az =z +0s
if far(z4) < frr(z)

I =T4

. _i) T(x4)=1\ 7(3)
else if e B > random{0, 1)

T =1,
end if

end do

calculate 0,4,

end do

Figure 4. The isotropic effective energy simulated annealing algorithm.

a sequence of functions converging to the original energy function, and our
approach will still be applicable.

5. Isotropic effective energy simulated annealing

Figure 4 contains an outline of the isotropic effective energy simulated annealing
algorithm (IEESA). At the top level, the algorithm is quite similar to simulated
annealing. It decreases the temperature from high temperature T; to sufficiently
low temperature Tp,, and at each temperature Ty, 1 < k < m, generates a
sequence of random trials. In contrast with simulated annealing, the trials are
not performed with the original energy function. Instead, at each Ty, the isotropic
effective energy function f,, 1, defined by (14) is used:

Pun@ = > Tan(llzi — zi). (16)

i=1,5>1

where M, 1 <k <m is a sequence of A values converging to 0.
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Note that Fact 1 in Section 2 for simulated annealing also applies to this
algorithm. That is, at each temperature Tj, the probability distribution of the
random trials generated by the algorithm is characterized by the Gibbs-Boltzmann
distribution with respect to the effective energy f\, r,(z). Therefore, the algorithm
can find low effective energy states at each temperature with high probabilities,
and at the end, it will find low, or the lowest, energy states for the original
energy function with a probability close to 1. (A complete convergence analysis
will not be discussed in this paper.)

Usually, if the number of trials is not large enough, the simulated annealing
method can be trapped at high local minima. This is less likely for the IEESA
algorithm in most cases since it uses effective energy functions which are smoother
than the original energy function (when ) is large, many high local minima may
even be removed). Even though )\ eventually becomes small, and all local
minima of the original energy function are recovered, the algorithm still has a
better chance of avoiding high local minima traps since it is guided, during the
early iterations with large A and T, away from these regions and toward regions
containing many low local minima. For example, if the original energy function
contains many deep and narrow local minima, simulated annealing will most likely
be restricted to very small random jumps and the search will hardly be sufficient to
jump out of local minima. However, the local minima will be deformed shallower
and wider on effective energy functions. Therefore, the IEESA algorithm will
tend to escape from high energy local minima. Further, if the magnitude of
A is properly matched to T, then each evaluation of the effective energy will
provide appropriately averaged information which otherwise is only obtained by
multiple evaluations of the original energy function in conventional simulated
annealing. Thus IEESA might be more effective and efficient in the case when
only a limited number of random trials are allowed. This is always the case in
practice because sufficiently large numbers of random trials for large problem
instances are not affordable even on today’s most powerful supercomputers.

Even if the low energy state found within a limited number of trials by the
IEESA algorithm is not the lowest energy state, it is still physically interesting
since it lies in a low effective energy region where most nearby states have low
energy. Hence it is a stable energy state in the sense that there is a larger
probability that the system in this region will maintain low energy even after
small perturbations. This is essential because a molecular system, or protein
structure, changes dynamically [2], and is most likely to be found in a region highly
populated by low energy states. (Using the terminology of statistical mechanics,
the system seeks the state of lowest free energy.) Thus, it makes more sense to
use the effective energy to locate low and stable energy states of molecules.

In practice, besides the quality of the approximation to the effective energy
calculation, the performance of the IEESA algorithm depends on other factors
such as the cooling schedule T' = T3, ..., T,,, the choice of the sampling param-
eters A = A, ..., Ay, the number of random trials at each cooling step, and the
strategy for generating the random jump from z to z,, etc. We will address
these issues in detail in the following sections.
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6. Preliminary numerical experiments

In this section we discuss our numerical experiments with the IEESA algorithm
in searching for low energy states of molecular clusters interacting with the
Lennard-Jones potential. The algorithm is compared with a general simulated
annealing algorithm (SA), which is obtained by setting all A values to 0 in IEESA.
Results for small molecular clusters with 3 to 27 atoms as well as larger ones
with 36, 54, and 100 atoms are presented.

The computer system

The IEESA algorithm has been parallelized and implemented on an Intel iPSC/860
hypercube located at Cornell University. The machine we used has 32 processors
with eight megabytes local memory for each processor. Our programs are written
in C with some extensions for interprocessor communication.

The Lennard-Jones potential

The pairwise energy for a pairwise distance |ly|| was defined in this experiment
by the Lennard-Jones potential:

1 2
h(llyll) = TWIE ™ Tl @17

a potential that is widely used in molecular simulations. The function that results
when (17) is used in (1) provides a good model for the conformational energy
function that governs the behavior of a particularly simple physical system—a
molecular cluster (microcluster) of chemically inert atoms (e.g., argon). The
coordinates of the global minimizer of this function correspond to the molec-
ular structure that is most stable at very low temperatures. Local minimizers
describe metastable structures. The conformations of these types of molecular
clusters have been studied by generating polyhedral sequences [8], by stochastic
approaches [3, 20], by searching special lattice structures [14, 22] and by some
deterministic methods [10, 17, 18]. These results provide standards for testing
new algorithms.

Effective energy evaluation

Efficient effective energy evaluation is important for the IEESA algorithm since
thousands of function evaluations usually are required. With (14), the effective
energy is computed by summing all pairwise effective energies defined implicitly
in (10). As described in [17], the right-hand side of that equation can be reduced
to a 1-dimensional integral:
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4 — 2)‘2 1 |
szzﬁifaﬂili_.jf e'MAvﬁagiGﬁshﬂ][zny”\/g?g(l/v)] dv. (18)
0

¥l

that can be calculated by numerical integration.

In our implementation, to reduce the cost for computing the pairwise effective
energy, a function value look-up table first is constructed for &y (||y||) at different
T, X and ||y|| values. Then, function value requests by the algorithm are obtained
by cubic spline interpolation. Using this special way of evaluating the effective
energy, the cost for each individual function evaluation is efficient and the same
for both IEESA and SA.

Generating random jumps

Given z = {z; € R3, i = 1,..., n}, a state of a given molecular system of n
atoms, a random jump to z, from z is generated with:

Ty =+ Az, (19)

where Az = s for some step size 6 and random step s = {s; € R3, s; =
+random[0, 1%, i = 1, ..., n}. Note that the step size determines the acceptance
rate of trial sequences (see discussion in [20]). The scalar 6 is adjusted adaptively
at each cooling step so that 25%-50% of total random jumps can be accepted.

The number of random trials

In general, we set [;, the maximum number of random trials at the kth cooling
step, to be a polynomial function of n. The number also is made proportional
to (1 —log(7)) (as in [20]) to provide more trials at low temperatures. More
specifically, we always let [, be determined by

I = nlog(n)(1 — log(T%)), (20)

except for cases where even more trials are necessary.

The cooling schedule and sampling parameters

The cooling schedule T = Ty, ..., T;, as well as the choice of sampling parameters
A = A1, ..., Ay are crucial to the performance of our algorithm. A simple strategy
to determine these values is to choose them uniformly between given T3();) and
Tm(Am), i€., for 1 <k <m,

£ (n - T, 1)

Li=T - —
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k-1
A=A — m(/\l — Am), (22)
where T,, and ), are set to 0; and T3, A\, and m are chosen arbitrarily, or based
on some preliminary experiments. This strategy is simple and straightforward, but
to find proper 71, A1, and m, many experiments have to be conducted. Moreover,
good choices for such sequences may not necessarily be uniformly spaced. For
example, a typical simulated annealing procedure reduces temperature T with
Tie+1 = XTk,k =1,...,m—1, for some x,0 < x <1 [1, 20].
In our experiments, we generated the temperature sequence {7y, k = 1,...,m}
with the formula

Tis1 = XTIk, x =08,k =1,....m-1 (23)
where 77 = 1.0; and m = 22 so that T, = 0.009 was sufficiently close to 0.
Also, the sampling parameters {A;,k = 1,...,m} are calculated to adapt to the
changes of step sizes of random jumps:

)\k=a9k\/§,k=1,...,m (24)

where « is a constant; 0 is the step size of random jumps at the kth cooling
step; and the product 6xv/3 corresponds to the maximum distance that each
individual atom might jump. The reason for using (24) is that we want the
sampling parameter \; to be roughly proportional to, though smaller than, the
random jump scale {(i.e., the maximum value of || A zj for all Az generated
at the kth cooling step), which is proportional to 6; by (19). In this way, the
random search conducted by the algorithm will sample the “long wavelength”
behavior of the system after the “short wavelength” information (i.e., fluctuations
of spatial extent < );) have been averaged out.

Experiments for 3 < n <27

We have conducted experiments on searches for low energy states of the Lennard-
Jones molecular clusters with the IEESA algorithm. Clusters with up to 27 atoms
have first been considered. The algorithm has been compared with a simulated
annealing method (SA) by comparing energy levels of final states found by both
algorithms within the same number of trials (fixing the number of trials at each
cooling step by (20)). All results were obtained on an Intel iPSC/860 hypercube
using 16 of the 32 available processors.

The IEESA algorithm performs differently when a in (24) is set to different
values, and particularly yields just the results of SA when o = 0. To be “effective,”
the algorithm must have o > 0. A good choice of o > 0 also is critical. A
typical situation is that with a limited number of trials, the energy level of the
final state decreases with increasing o from 0, and starts increasing when « is
beyond a certain point.
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Let the energy level of the final state found by the algorithm for a cluster
of n atoms be denoted by E,, then E, = E,(a) is a function of a. E,(0) is
the energy level reached by SA. To make the comparison between IEESA and
SA, we applied the algorithm for all 3 < n < 27 with o = 0,0.1,0.2,..., etc.
Then we obtained a set of function values for E,(a). (Actually, the process was
repeated five times, and the average value of E,(a) was recorded.) Figure 5
shows typical E,(a) functions (n = 8, 10, 12, 14, 16, 18, 20, 22) obtained from
these experiments. The bottom line of each graph corresponds to the energy
level of the best known solution based on previous studies by {8, 14, 20]. All
E,(c) functions appear roughly parabolic: they start at « = 0 with relatively high
values, and decrease with increasing a; at some « > 0, they achieve their lowest
values, which are very close to the bottom lines of the graphs. This implies that
with a limited number of trials, SA can only find relatively high level energy
states of tested clusters, while with proper choices of «, those found by IEESA
are at very low energy levels. The difference can further be observed in Table 1,
where the lowest energy levels reached by SA and IEESA are listed. Figure 6
shows differences between the two sets of energy levels. Apparently, IEESA
outperforms SA for all tested clusters.

Extension to larger problems

For the Lennard-Jones clusters with n > 27, we empirically approximate the
optimal value of « as a function of n. Let the function be denoted by a*(n). As
we have discussed above, the sampling parameter ), is chosen to be proportional
to the random jump scale —the maximum value of | A z|| for all Az generated
at the kth cooling step. By (19) this value is equal to 6xv3n. Thus

A o¢ 643, (25)

Comparing (25) with (24), we must have a « /n. Because of this and also the
empirical fact that o*(3) ~ 0, we choose our approximation function to be

a*(n) =cvn-3 (26)
where c is a constant to be determined. Using a least squares calculation,
27 . R
= Zi=2370‘i i=3 _ 03413, (27
> iz3(i—3)

where « is the empirical values for o*(4), 3 < i < 27, shown in Table 1. Then
we obtain

a*(n) = 0.3413v/n - 3 (28)
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Table 1. Low energy values obtained by IEESA and SA with adaptive reduction for molecular clusters
interacting with the Lennard-Jones potential.

]

Low Energy Levels Found by IEESA and SA

# of atoms best-known IEESA SA
energy level o energy level 87

3 —3.000000e + 00 | —2.9981e+ 00 | 0.1e0 | —2.9977e + 00 | 0.0€0

4 —6.000000e + 00 | —5.9892¢ + 00 | 0.4e0 | —5.7018¢ + 00 | 0.0€0

5 —9.104000e + 00 | —9.0817e¢ + 00 | 0.4e0 | —8.5161e + 00 7 0.0e0

6 —1.271200e + 01 | —1.2638e + 01 | 0.5¢0 | —1.0974e + 01 | 0.0e0

7 ~1.650500e + 01 | —1.6414e + 01 | 0.7¢0 | —1.4253¢ + 01 | 0.0€0

8 —1.982200e + 01 | —1.9692e + 01 | 0.7¢0 | —1.5635e + 01 | 0.0e0

9 —2.411300e + 01 | —2.3974e + 01 | 0.8¢0 | —1.8768e + 01 | 0.0e0
10 —2.842000e + 01 | —2.8256e + 01 | 0.9¢0 | —2.2390e + 01 | 0.00
11 —3.276500e + 01 | —3.2479¢ + 01 | 0.7¢0 | —2.4369¢ + 01 | 0.0e0
12 —3.796700e + 01 | —3.7730e + 01 | 1.0e0 | —3.0004¢ + 01 | 0.0e0
13 —4.432700e + 01 | —4.3814e+ 01 | 1.4e0 | —2.9484e + 01 | 0.00
14 —4.784500e + 01 | —4.7091e + 01 | 1.2¢0 —3.2643e + 01 | 0.0€0
15 —~5.232300e + 01 | —5.1220e + 01 | 1.1e0 | —3.5032¢ + 01 | 0.0e0
16 —5.681600e + 01 | —5.5457¢ + 01 | 1.2e0 | —3.6883e + 01 | 0.0e0
17 —6.131800e + 01 | —5.9391e+ 01 | 1.2¢0 | —4.1419¢ + 01 | 0.0€0
18 —6.653100e + 01 | —6.3742e + 01 | 1.4¢0 | —4.4888e + 01 | 0.0¢0
19 —~7.266000e + 01 | —6.8408e + 01 | 1.5¢0 | —4.5110e + 01 | 0.0e0
20 —7.717700e + 01 | —7.3858e + 01 v 1.2e0 | —4.9980e + 01 | 0.0e0
21 —8.168500e + 01 | —7.7983e + 01 | 1.4e0 | —6.3856e + 01 | 0.0e0
22 —8.681000e + 01 | —8.4000e + 01 | 1.6e0 | —6.6034e + 01 | 0.0€0
23 —9.284400e + 01 | —8.8037e¢+ 01 | 1.6e0 | —7.2082¢ + 01 | 0.0e0
24 —9.734900e + 01 | —9.2708e + 01 | 1.7¢0 | —7.7758e + 01 | 0.0¢0
25 —1.023730e + 02 | —9.7823e + 01 | 1.9¢0 | —8.2202¢ + 01 | 0.0¢0
26 —1.083160e + 02 | —1.0214e+ 02 | 1.2¢0 | —9.2653¢ + 01 | 0.0e0
27 —1.128740e + 02 | —1.0767e + 02 | 1.7¢0 | —9.8123e + 01 | 0.0e0
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Figure 6. Differences in energy values obtained by IEESA and SA.

Figure 7 shows the empirical values o, and the predicted values o*(n) for n =
3 to 27. The predicted function fits the empirical data well.

With (28), we can approximate the optimal choice for a for any n > 27. Table 2
contains some results from applying IEESA to the Lennard-Jones clusters with n
= 36, 54, 100, where a values are obtained from (28). Although the energy levels
reached by IEESA are not very close to the best-known results, they are much
better than those reached by SA. The performance may be further improved by
testing o values around a*(n) to find the optimal choice.

Increasing numbers of trials

The experiments described above were conducted with the number of trials at
temperature T' limited by Iy = nlog(n)(1 — log(T)). Figure 8 illustrates the
behavior of IEESA and SA as the number of trials increases. Typically, with
larger numbers of trials, the energy levels reached by SA tend toward those that
were reached by IEESA with smaller numbers of trials. That is, IEESA performs
significantly better. Note that the way we increased the number of trials was to
set Iy = nlog(n)(1 — rlog(T)) for r = 1, 2, 3, etc.

Exploiting parallelism

There are at least two reasons to exploit parallelism for the IEESA algorithm.
First, the computation can be very intensive when the algorithm is applied to
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Table 2. Low energy levels reached by IEESA and SA for n = 36, 54, 100.

r Low Energy Levels Found by IEESA and SA
# of atoms best-known IEESA SA
| energy level « energy level «
36 | —1.618250e + 02 | —1.5203e + 02 | 1.9606e0 | —1.4088e + 02 | 0.0e0
54 —2.722090€ + 02 | —2.5088¢ + 02 | 2.4374e0 | —2.3464¢ + 02 0.0e0
100 —5.570400e + 02 | —4.9125¢ + 02 | 3.3614e0 | —4.6191e + 02 | 0.0e0

large problems, and the speed-up from parallel computation is extremely helpful.
Second, the algorithm is easy to parallelize, and the parallel efficiency can be
made close to 100%.

The algorithm has been parallelized with the following simple strategy: with p
processors, the algorithm generates p trial sequences at each cooling step; then
the total number of accepted trials is calculated across all processors; based on
this number, the step size for random jumps is adjusted; multiple trial sequences
are generated at next cooling step with the new step size; the process goes on
until the last cooling step, where the energy states found by all processors are
compared and the best one is chosen as the final solution.

The parallel efficiency of the algorithm is close to ideal because all processors
generate their own trial sequences independently with little communication. in
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Figure 8. The performance of IEESA and SA with increasing numbers of random trials.
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addition, they make the same number of trials, and hence the computation
load is perfectly balanced. We have studied the performance of IEESA for
varying p (the number of processors). Usually, as shown in Figure 9, when the
number of processors is increased, the energy level reached by the algorithm is
decreased significantly, while the computation time increases little. This suggests
that IEESA could be used for solving large molecular conformation problems on
massively parallel computers.

Including local minimization

Both IEESA and SA can find global energy minima of molecular clusters when
sufficiently many random trials are allowed. However, in practice it would be
“better to use them to only provide low energy states in fixed computation time
as we have done in the above experiments. Then by using local minimization
procedures with these energy states as starting points lower energy minima can
be located more efficiently.

A simple way to integrate the local minimization procedure into IEESA or
SA is to apply the procedure at the very end of the IEESA or SA process. In
this case, the low energy state found by IEESA or SA is taken as the starting
point for the local minimization. However, for IEESA, the local minimization
can also be used at the end of each cooling step so that lower effective energy
states can be found.

We have implemented both of these approaches using a line search quasi-
Newton’s method based on [5] as a local minimization procedure. Thus, three
integrated algorithms were studied: IEESA and SA with local minimization at the
very end and IEESA with local minimization at the end of each cooling step. We
denote these methods by IEESA’, SA’, and IEESA”, respectively. Table 3 shows
results from applying the algorithms to the Lennard-Jones molecular clusters with
n = 3 to 27 atoms. For each n, five runs were made for all three algorithms. A
+ sign is marked if the lowest energy state was found, and a — sign otherwise.
Note that o values for IEESA’ and IEESA” were the same as those (best choices)
for IEESA in Table 1, and the values for SA’ were 0. Also the number of random
trials at each cooling step still was determined by (20).

From Table 3 we see that in most cases, SA’ did not find the lowest energy
states, but IEESA’ did. While IEESA’ did not find solutions for some clusters,
IEESA” found them for all. Furthermore, IEESA” found solutions for most
clusters in almost all five runs. So IEESA” apparently performs the best among
three algorithms.

Finally, we also applied IEESA” to some larger clusters, e.g., containing 36,
54, and 100 atoms (Table 4). For the clusters of 36 and 54 atoms, the algorithm
found the global solutions twice in five runs. We only made one run for the
cluster of 100 atoms since it was very time-consuming. The number of trials
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Table 3. Searches for global energy minima for the Lennard-Jones molecular clusters by IEESA”,
1EESA’, and SA’. Notation: n, number of atoms; p, number of processors; +, the lowest energy
state found; —, the lowest energy state not found.

r Searches for Global Energy Minima J
n lowest energy ieesa” ieesa’ sa’ p
3| -3.000000e +00 | + ++++ | +++++ | +++++ 1
4 | —6.000000e +00 | +++++ | +++++ | +++++ 1
51| -9103852¢+00 | +++++ | +++++ | ++++ + 1
6| 1271206 +01 | +++++ | ————— | ————— 1
7| —1650539¢+01 | +++++ | +—+—— | ————— 2
8| —1.982149 +01 | ———+— | +++++ | ++-++ | 2
9 | —2.411336e+01 | +++++ | — =+ ++ | ———+ — 2
10 | —2.842254e+01 | + ++—+ | +——+— | ————— 2
11 | —3.276597¢e+01 | +++++ | ++—++ | —+ - —— 4
12 | -3.796761e+01 | +++++ | +++++ | ——+ —— 4
13 | —4.432681e+01 | +++++ | +++++ | —+—+— | 4
14 | 4784517 +01 | +++++ | +++++ | ———+ - 4
15 | =5.232265¢+01 | +++++ | +—-4+++ | + ———— 4

| 16 | —=5.681575¢+01 | +++++ | +++++ | + ——— - 8
17 | —6.131801e+01 | -+ +—— | -+ ——— | —+ — — — 8
18 | —6.653097¢+01 | —++++ | ++ -+ | ————— 8
19 | -7.265979¢+01 | +++++ | - —-+++ | ————— 8
20 | —7717701e+01 | + ++++ | ——4—— | ————— 8
21 | —8.168460e+01 | + ++++ | ——+—+ | ——— —— 16
22 | -8.680981e+01 | +++++ | +—+++ | ~———— 16
23 | —9.284451e+01 | +++++ | ———-—-= | === —— 16
24 | 9734884 +01 | + ++++ | —+——— | ————— 16
25 | -1.023727e+02 | +++++ | —+—++ | ————— 16
26 | —1.083156e+02 | + ++++ | ————— | ————— 16
27 | 11287366 +02 | + -+ —+ | —4——— | ————— 16
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Table 4. Searches for global energy minima for the Lennard-Jones molecular clusters by IEESA”,
Notation: n, number of atoms; p, number of processors; +, the lowest -energy state found; —, the
lowest energy state not found.

Searches for Global Energy Minima ]

n 36 54 100
lowest energy | —1.618250e + 02 | —2.72209 + 02 | —5.570400¢ + 02
ieesa” -+ —4+—+— | —5379205¢ + 02

P 32 32 32

determined by (20) seemed insufficient for this instance, and hence only a local
(but not global) energy minimum was found.

7. Concluding remarks

We have presented a new global minimization algorithm for finding the low energy
states of molecular clusters. The algorithm combines simulated annealing with a
class of effective energy functions transformed from the original energy function
using renormalization group ideas from statistical mechanics. The effective energy
functions appear to be smoother than the original energy function with possibly
fewer local minima. So the algorithm works on these “easier” functions, first
to locate low effective energy states, and then to trace their changes to low
energy states as the effective energy function is changed gradually to the original
energy function.

The algorithm (with and without local minimization) has been parallelized and
implemented on an Intel iPSC/860 hypercube computer. Numerical experiments
have been done with the algorithm applied to molecular clusters of identical
atoms interacting with the Lennard-Jones potential. Small clusters with 3 to 27
atoms as well as larger ones with 36, 54, and 100 atoms have been tested. The
algorithm was significantly more effective and efficient than those obtained with
conventional simulated annealing.

Strategies for choosing proper sampling parameters for the effective energy
functions have been proposed. Experiments show that with proper choices
of these parameters, the algorithm performs well. A method for adaptively
determining good sampling parameters has been demonstrated.

While the algorithm is promising as a feasible approach to large molecular
conformation, many lines of investigation can be pursued to further improve
performance. First, the current algorithm still is costly in terms of computational
complexity in function evaluation. Usually, at each cooling step, O(nlog(n))
function evaluations are conducted. Each function evaluation costs O(n?) op-
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erations since we at least need to calculate O(n?) pairwise distances. So the
total function evaluation for the whole algorithm costs O(n®log(n)) operations.
This may require too much time when n is large, say, 1,000. One way to re-
duce the complexity might be to reduce the cost for each function evaluation to
O(nlog(n)) by doing a partial update for each random jump, e.g., only perturbing
the positions of a subset of atoms.

Second, the isotropic effective energy averages the energy variation equally
along all directions in the sampling space. But the variation itself should be
different along different directions. A better algorithm should use the effective
energy functions with the sampling parameters A as matrices (i.e., anisotropic
effective energy functions). However, the algorithm will be complicated by the
need to compute the sampling matrices.

Third, to date the algorithm has only been applied to, although it is not
specific to, molecular clusters of identical atoms interacting with the Lennard-
Jones potential. For application to protein folding, we will consider some real
proteins of relatively small sizes, which have different types of atoms and more
complicated potential functions.
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