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Abstract. Discrete-time optimal control (DTOC) problems are large-scale optimization problems with a dynamic
structure. In previous work this structure has been exploited to provide very fast and efficient local procedures.
Two examples are the differential dynamic programming algorithm (DDP) and the stagewise Newton procedure—
both require only O(N) operations per iteration, where N is the number of timesteps. Both exhibit a quadratic
convergence rate. However, most algorithms in this category do not have a satisfactory global convergence strategy.
The most popular global strategy is shifting: this sometimes works poorly due to the lack of automatic adjustment
to the shifting element.

In this paper we propose a method that incorporates the trust region idea with the local stagewise Newton’s
method. This method possesses advantages of both the trust region idea and the stagewise Newton’s method, i.e.,
our proposed method has strong global and local convergence properties yet remains economical. Preliminary
numerical results are presented to illustrate the behavior of the proposed algorithm. We also collect in the Appendix
some DTOC problems that have appeared in the literature.

Keywords: discrete-time optimal control, stagewise Newton’s method, trust region method.

1. Introduction

Discrete-time optimal control (DTOC) problems arise in many practical applications includ-
ing multi-reservoir control problems [15], the treatment of polluted groundwater {3], and
inventory control [2]. In this paper we are concerned with the unconstrained discrete-time
optimal control problem,

N-1
min F (y,z) = > Li(i,2:) + Ly (yn)
i=1
(P)
subjectto  yit1 = Ti(yi,zi), 1=1,...,N =1
Y1 =Y
The vectorsy; € R™,1 =1,..., N are called state variables and the vectors z; € R"~,{ =
1,..., N — 1 are called control variables, ¢; is a constant vector,
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F = F(y,z):R”"NX””’(N‘l) — R

where y is a vector in R™" and z is a vector in R?=(V-1) {we put them in the matrix form,
ie,y=[y1,...,yn]and z = [z1,...,7TN_1]). We assume that

Ti(ys,z;): R™>*™ — R™, i=1,...,N -1

and L;,% = 1,..., N are all twice continuously differentiable functions. Throughout this
paper we denote n = n (N — 1), y; the i-th state variable, z; the i-th control variable, Yi, j
the j-th component of the i-th state variable, z; ; the j-th component of the i-th control
variable and T; ; the j-th component of the 4-th transition function.

Obviously, problem (P) is an optimization problem with a dynamic structure. Taking
advantage of this structure, and using the principle of optimality, Mayne [11] and Jacobson
and Mayne [7] propose a second order algorithm called the differential dynamic program-
ming (DDP) algorithm for solving (P).

It has been proven, see Murray and Yakowitz {15] for example, that the DDP al gorithm
is Jocally quadratically convergent. However, we note that most DDP-like algorithms do
not have a satisfactory global convergence strategy. For example, Liao and Shoemaker [8]
propose an “adaptive shift” procedure which guarantees global convergence. This procedure
is similar to the method proposed in Luenberger [10]: the smallest eigenvalue of each of
the stagewise Hessian matrices needs to be calculated. If the stagewise Hessian matrices
are large the adaptive shift procedure can be very expensive. Another disadvantage of this
kind procedure is that the value of the shifting parameter is not easy to choose.

In the next section we propose a new method for problem (P): this method has stron g global
convergence properties, local quadratic convergence and a remarkably low computational
cost per iteration. In section 3 numerical results are presented to illustrate the behavior of
our algorithm.

2. Description of the algorithm

In this section we describe our algorithm which combines the stagewise Newton’s method
of Pantoja [17] with the trust region method of Nocedal and Yuan [16].

2.1. The stagewise Newton’s method

Pantoja [17] proposes a modified DDP method for solving (P) which produces iterates
identical to those that Newton’s method would produce for problem (P):

Jnin f(z). (P)

Problem (P) is obtained by eliminating the state variables in (P) using the following pro-
cedure: we first get y = y(z) from the transition equation y; 11 = Ti(y;, z;), y1 = ¥ and
then set f(z) = F(y(z), z). Problem (P) is called the reduced problem and its objective
function f is called the reduced objective function. Pantoja’s algorithm is regarded as a
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stagewise Newton’s method. Unlike the conventional Newton’s method for (P) which re-
quires Q(NN3) operations per iteration! Pantoja’s algorithm needs only O(NN') operations
per iteration.

Pantoja [17] shows that the DTOC problem (P) can be transformed into the following
equivalent problem:

min F' (y',2) = Yy n,+1 T Ln(yn)
subjectto  yi,, =T;(yi,z:), i=1,...,N—1 {PP)
y1 =4
where

y:: [y;I-‘7y:’n"+1}T 6 RTL:,,""I’ Z = 1) “ .. 7N7
Ti(y;, i) = [Ti(yi, z) T vh 41 + Layirza))T, i=1,...,N 1

and g1 = (31, 0]".
In the following we denote n, := n, + 1, (f); the gradient of f with respect to x and

—1 the Jacobian of f with respect to z. Algorithm 1 is Pantoja’s algorithm for calculating
the Newton direction d = —H ~'g, where H is the Hessian of f(z) (we assume that H
is invertible).

Algorithm 1 [Pantoja’s stagewise Newton’s method [17]]

Step 1. Given the current control variable x; calculate the current state variable y’ via the
transition function 7"; calculate P = (Ln )y, 4, Q@ = (LN)yy, .G = Q.

Step 2. Perform backward recursion:
For i=N-1,...,1do

(i) Calculate A;, B;, C;, D; and E; according to

T T\ & ,

o () (2B +E oo
or\" aT' .

B; = oy. P ZG(T J)yft
aT!\" _(OT!

Ci:(a?) P(a >+ZG(T’ Voua,
T\

Di:<8$i) Q
oT!\"

5= (G) @
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(i1) Calculate:
a;=-C;7'D;
Bi=-C;'BT.

(iii) Update P, Q and G:

P —A; — 57 Cip;
Q«— E; + B;oy

oT\ "
G("<5y£> ¢

Step 3. Calculate the Newton direction. Let (6y); = 0.

End

For i=1,...,N —-1do

di =a; + Bi(6y):
o oT;
(0Y)iy1= B_yg(éy)i + -a‘—dz'-

7

End

At first glance it may be difficult to see the connection between Algorithm 1 and Newton’s
method. However, there is a clear relationship. As we shall see in the discussion in
section 2.3, if we linearize the transition functions and expand function F' up to second
order derivatives, then the outcome of the DDP procedure for this approximation model
is —H;'g where H = H; + Hj is a partition of H. (This partition is specified below
following (8).) Pantoja’s algorithm is a modification of the DDP algorithm so that the first
part of H (thatis, H;) can be included. Transforming (P) into (PP) makes aclear connection
between matrices {C;} and the Hessian of f (that is, H). It follows from Lemma 2.2 in
section 2.3 that

Cn-1=Hn_1,n-1

where Hy_1 n—1 is the (N — 1)-st diagonal block. If Cy_; is nonsingular then we can
use it as the pivot element and one step of Gaussian elimination zeroes the first N — 2
block-elements in the (/N — 1)-st block column. After this elimination, the matrix obtained
by eliminating the (/N — 1)-st block column and row is just the Hessian of function f at the
current point T where xn_; is replaced by

N-2
_ \ -1 _
IN-1 =IN-17F Z Jon1.2;,COn (35 — Z5).
j=1

This procedure is repeated recursively in the next step of Pantoja’s algorithm. It follows
from Lemma 2.2 again that Cy_» is the (N — 2)-nd diagonal block matrix of the matrix
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obtained from H by one step Gaussian elimination. This argument applies to all matrices
C;,i = N-1,...,1;thuswehavethat H = U L where U is an upper triangular block matrix
and L is a lower triangular block matrix with C; being its diagonal block matrices. The
proof of the equivalence of Algorithm 1 and Newton’s method can be found in Pantoja [17].

Returning to problem (P), we can define a procedure for calculating Newton’s step d =
—H™1g as follows: we first transform (P) into (PP) and then use Algorithm 1 to obtain d.
We denote this procedure by

d= newton({xi}, {(Li)xi y (Li)y“ (Li)z,-a:i ) (Li)z-;yi ’ (Li)yiyi }7
{(Ti)zﬂ (Ti)yi’ (Ti)fﬂ'i"ﬂi ’ (Ti)xiyi 3 (Ti)yiy-i })

or simply d = newton(z, L, T).
If we ignore the lower order terms the total number of operations per iteration of Pantoja’s
algorithm is the same as the DDP algorithm [8]:

N - (2113 + %ninz + 2ny,n2 + %ni) €))

2.2. A trust region method

The trust region method of Nocedal and Yuan [16] is actually an algorithm that employs
both trust region techniques and line searches. Consider an unconstrained minimization
problem of the form

2RI

A trust region method calculates a trial step by solving the subproblem

min ¢ (d) := (¢5)Td + %dTde
subject to IId]| < Ak, (subF)
where g*¥ = Vf(z*), Hy is an n x n symmetric matrix which is either the Hessian of f
or some approximation to it and Ag > 0 is a trust region radius. (Throughout this paper
we assume that H is the Hessian of f and || - || is the [2 norm.) Then, based on the ratio
between the actual reduction in the function and the predicted reduction, the step d¥—the
solution of (subP)—is either accepted or rejected and Hy and Ay are updated. A more
detailed description of the trust region method can be found, for example, in the book of
Fletcher [5].

Nocedal and Yuan [16] propose the following algorithm to solve (subP) approximately:

Algorithm [Algorithm 2.6 of Nocedal and Yuan [16]]

Step 1. Giveny > 1, € > 0, set XA := 0. If H is positive definite go to Step 2; else find
X e [0,)|H| + (1 + €)llgll/A] such that H + Al is positive definite, where I is the
identity matrix.
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Step 2. Factor H + Al = RT R, where R is upper triangular, and solve RT Rd = —g for d.

Step 3. If ||d|| < A stop; else solve RTq = d for g, and compute

dll® ylld)| -
::qllﬂﬂﬁ ! @)

=X+

go to Step 2.

The Nocedal-Yuan algorithm uses the Cholesky factorization of H + A\I; however, H
is not available in the DTOC setting. To overcome this difficulty, we note that factoring
H + M = RTR is not necessary: the update (2), which is based on Newton’s method
for equation

7 1
lld(M

where d(\) = —(H + M)~ g, is equivalent to

Il ~lldll —
aTd~ A

=0

>

A=)+

where d = —(H + M) 'gand d’ = (H + AI)~'d. We thus propose the following
algorithm to solve (subP).

Algorithm 2

Initialization. Giveny > 1,e>0anda ) € {0, ||[H|| + (1 + ¢€)||g||/A] such that H + AT
1s positive definite.

Until ||d|| < A, do

d=—(H+ M) g
d' = (H + M)~

ldll” vlldll —

/\<—/\+de, A

End

The following algorithm is based on Algorithm 3.1 of Nocedal and Yuan [16] in which
we use our modified algorithm to solve (subP).

Algorithm 3

Initialization. Given 2! and A; > 0, choose ¢1, ¢ such that 0 < ci;<land0 < ey < 1.
Setk =1.
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Until convergence do
(). Solve (subP) using Algorithm 2.
(ii). Calculate f(z* + d*).

If f(z* + d¥) > f(z*)

use a simple binary search to find 0 < s; < 1 such that f(z* + spd*) < f(z*) and
put F+1 = ok 4 spdk, Agyq = ||lz*H — F|;

else

set zF+1 = zF + d¥ and

Apr = A  ifprza
k+1 = Y ¢cpAr  otherwise

where

GRS (Gl
£ 6k (0) — o)

End if
Calculate g**+1;setk = k + 1.

End

2.3. Combining the trust region method and the stagewise Newton’s method

To carry out the trust region method with the Newton step d = newton(u, L, f) we need
the following:

(a) A way to detect if H + Al is positive definite, where I is the identity matrix, and a
procedure to finda A € [0, ||H|| + (1 +¢€)||g||/A] such that H + AT is positive definite.

(b) g: the gradient of f(x).
(c) d=—(H+ M) 'gandd = (H + X\I])"'d.
(d) ¢(d) =gTd+ 3d"Hd.

We show below that these quantities can be calculated in O(IN') operations.

We first consider (b). It turns out the g can be obtained efficiently by means of a
“backward” sequence of equations. The following procedure is essentially that of Dyer
and Mcreynolds [4]. We assume that g is in the matrix form, i.e., g = [g1,...,9~n-1],
g; € Rn’:,’i = 1,...,N—-1.
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Note that we can extend the definition of ftoalli=1,..., N:
fi = filyi,[ziy .. .yzN-a]),i=1,... )N =1
and fn := Lny(yn). (Thus f(z) = f1(y1,z).) Then we have
fi = fix1 + Li(ys, 1) 3)
Taking 5% on both sides of (3) yields

Ofi _ 0fis1 0Ti | OLi(yi i)

8m1~ N 8yi+1 8$i 81}1‘ ) (4)
; Ofr _ 0f;i ing -9 sides ;
It is easy to check that 55, = 35 - laking By; ON both sides of (3) gives
0fi  Ofiy10T;  OL;(ys, x4
f. _ fit1 iy z(yzzv)‘ (5)
Oyi  Oyit1 Oy Oyi
Also we have
Oyn Oyn
Combining (3)—(6) we have the following algorithm for calculating the gradient g.
Algorithm g
Initialization. Givenz = {z;,...,2n_1],calculatey = {y1,...,yn]and gi—z = %.
For i=N-1,...,1do
Ofi _ 0fix1 0Ti | OLilyi,z:)
Oyi  Oyiv1 Oy Oy
0f1 _ Ofit1 @ 4 OLi(yi, z;)
0z; Oyiq1 Oz Ox;
NN
9i oz; )
End
We note that the total number of operations for Algorithm g is
N - (ng + nynm). (7

We now consider (a) and (c). The key to our approach is the following observation.

Lemma 2.1 H is positive definite if and only if C; is positive definite for all i = 1, . . .,
N -1
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Proof: According to Theorem 4.6 of Pantoja [17], if C; is positive definite for all 1 =
1,...,N — 1 then H is positive definite. On the other hand, if H is positive definite
then it follows from Theorem 4.5 of Pantoja [17] that C; is invertible for all ¢. Thus the
Gauss block-triangularization procedure in Pantoja [17] can be carried out. We thus have
H = UL where

Myy M2 -+ My
0 Myp -+ Myn_
U =
0 0 - Mny_i1n-1
and
C 0 e 0
Laa C, 0
L =
Ln-11 Ln-12 -+ Cn-1

where M; ; = I,j = 1,...,N — 1. Itis easy to check that H = UCU™ with C =
diag(C1,...,Cn—-1). Therefore C; is positive definite for all 7. O

To our knowledge, the observation that if H is positive definite then C; is positive definite
(for all 7) is a new one.

Lemma 2.1 provides us with a method to detect if H is positive definite: we just need
to check if each C; is positive definite. This can be done by attempting the Cholesky
factorization of C;,i =1,...,N — 1.

Now consider how to calculate (H + AI)~h where h is an arbitrary vector and H is the
Hessian of f at T. Consider augmenting F:

N—-

po-F4 z B 27 - 07— )]

1=1

A _ _
Loz + Sl = 317 (g + 17 (@i - )] + Lvtow)

I
gy
Lol -
| p—|

7

= L (yz, 1)+LN(yN)
1

I

3

In the following we show that if d® is the output of procedure newton for the problem
with F@ as the objective function, i.e., d* = newton(z,L*,T), then d* = —(H*)"1g% =
(H + AI)~!h. We need a technical result first.
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Lemma 2.2 The gradient and Hessian, g and H respectively, can be written,

T
o= |1, (;%) VF,

Oy T
H=11 (£>

N—-1 ny

+ Z Z [(VF)yi,j 'V:zcacTi,j]a

i=1 j=1

I
VzF{Qy
oz

where I is the n by n identity matrix, %g is the Jacobian of y with respected to = and is
an nyN by n matrix and (VF)y, . is the component of the gradient of F corresponding to

Yi,j- The block rows of —g}j can be calculated via the recursive formula:

Oyi1 0Ty  OT; Oy;
or Oz oy; Oz

where

aﬂ::[m.”()aﬂ

—,0,...,0
8$ ’ 78:1:7:7) b 7

with the boundary condition

% =0¢c Rn,,x'n,.t(N—l).
oz
Proof: By direct calculation. 0

Lemma2.3 Let f* = f%(x) bethe objective function reduced from F®, H® be the Hessian
of f* evaluated at T and g° be the gradient of f° evaluated at . Then, H* = H + \I and
g® = —h.

Proof: It follows from Lemma 2.2 that

T T
e - |n () 1(z)
oz oz
a_ a _ oy \"

On the other hand, by Lemma 2.2,

) T I N-1 ny
= [I’ (51;113‘) :lVQFa [Q*’J + : [(;VFa)yi,j 'V?a':xT‘iJ]

. VFe = VF+ Xz — 1) — (g + h).

Thus

"VF—g—h=—h.

oz
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(e [5 3)) 2]
Z Z (VF)y., - V2T
ViF [ ]+AI+NY‘I§: [(VF),, , ;. 5]

1=1 j=1
—H+)\I. O

s
;—-

Therefore (H + AI)~!h can be calculated by applying the procedure newton to (P) with
F being replaced by F°. We note that the total number of operations needed for this
calculation is the same as (1):

7 1
N - (an + 5”5”1 + 2nyni + g’ﬂi) 8)

It is clear that this method can be used to calculate the vectors —(H + A\I)~!g and (H +
AI)~1d, both of which are needed in (c).
Now we consider (d). Note that H = H; + Hy with

N-1 ny
Hy = Z Z[(VF)yi,j ’ vizTi,j]
i=1 j=1
oy T 1
Hy, = |I, <—> VZF[B ]
|: ox st

Consider the following DTOC problem:

N-1
min Fy (z,d) == > _[(Li)7.2: + (L)T,di] + (Ln)y 2w

1=1

. oT; oT;
subject to Zi41 = wi(zi,di) = 8—yizi + 8_$1d1
1 .
+ Ed?(Ti)ziIidi, 1= ].,...,N—' 1 (Pl)

z1 :0,

where d? (T})z,z,d; is an ny-vector whose j-th component is dT(T; j)ziz:di- Let f1(d)
be the reduced function. Then obviously, f1(d) is a quadratic function. Using Lemma 2.2
simple calculations lead to:

f1(0) =0

V£(0) = [I, (%)T} .VF, =

V2£,(0) = {I (?—>T
"\ od
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-1 Ny

(VF)y,, V2,Ti;] = Hy

i=1 j=1

Therefore
fi(d) = gTd + %dTHld

which can be calculated via (P1) using (ignoring the lower order terms)
N - (nyni)

operations.
We now consider another DTOC problem:

N-1
1
min F (zad) = 5 ( Z [Z'LT(Li)yiyi zi + QZg(Li)ymidi + dzT(Li):rwidi]>

i=1
1
+ 5‘2]’1\;(LN)yNyN ZN
T; oT; )
subject to zZig1 = Wiz, d;) == Z_ini —a—;:;di, i=1,...,N -1 (Po)
-zt =0.

Let f2(d) be the reduced function which is also a quadratic function. Using Lemma 2.2

we have
f2(0)=0
Vf2(0)=0
[ 702\T] I
V2 f2(0)= |1, (-—) VQFQ[ ]
\ad) | oz
[ roy\T| [T
L ] 81
Hence,

fa(d) = %dTHQd
which can be calculated via (P2) using
N - (nz + nyng + ni)
operations. Putting them together, the value of ¢(d) = fi1{d) + f2(d) can be calculated

in two forward recursive sweeps and the total number of operations is (ignoring the lower
order terms):

N - (nyn2). )
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1t then follows from (1), (8) and (9)—ignore the operations for calculating the gradient (7)
which is regarded as a lower order term—that the total number of operations per simple-
iteration, i.e., no shifting or line search is needed, is

21
N - (6713 + ?ninz + Tnyn2 + ni)

Finally, we propose a procedure to finda A € (0, || H|| + (1 +¢€){/g]|/A) such that H + \I
is positive definite.

Algorithm )\
Initialization. Take A = ||g||/A and let 6A = (||g||/A)/2.

Until H + Al is positive definite do

A= A+6A

End

Note: checking if H + Al is positive definite can be carried out by checking if all
C;,i=1,...,N — 1 are positive definite during the procedure newton.
For this algorithm we have

Lemma2.4 IfH isnot positive definite then Algorithm X terminates inat most [ (2A||H||) /
llglll + 1 steps.

Proof: If H is not positive definite, then it follows from Lemma 2.3 of Nocedal and
Yuan [16] that the solution of (subP) is on the boundary, i.e., if d* is a solution of (subP)
then ||d*|| = A, and there is a A* such that H + A*[ is a positive semi-definite and
0 < X < ||H|| + |lgll/A. Therefore for any given € > 0 H + Al is positive definite for
any A € (| H|| +lgll/A, |H|| + (1 +€)ligll/A). Hence, Algorithm A terminates in at most
[2AIHI)/Ilgl + 1 steps. 0

Our algorithm is the trust region method of Nocedal and Yuan [16] tailored to the DTOC
setting by adapting the efficient stagewise Newton idea due to Pantoja [17]. Clearly, the
convergence properties of the Nocedal-Yuan method carry over here.

Theorem 2.5 Assume that f: R™ — R is twice continuously differentiable on the level

set Q = {z: f(z) < f{z°)} and the sequence {z*} be generated by our algorithm. If Q is
a compact set and V2 f is bounded on 2, then:

1. The sequence z* satisfies

lim inf ||g¥|| = 0.
k—o0
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Table 1. Numerical results for problem 1 (ny, = 4,n, = 2).

n N Iter Feva F* lgll

0 10 10 10 7.3594539E — 02 3.3180E — 10
50 9 9 2.2994188E — 01 5.1724E — 07

1/200 10 10 10 7.5313313E — 02 6.1530E — 10
50 9 9 2.3950010E — 01 7.9095E — 07

1/20 10 8 9 9.8483463E — 02 3.0286E — 07
50 9 9 3.8293257E — 01 5.0803E — 08

1/2 10 7 7 3.1230671E — 01 4.4406E — 10
50 7 7 1.7218828E + 00 44103E — 09

1 10 6 6 4.1425647E — 01 2.1047E - 07
50 6 6 2.3208717E + 00 1.9211E — 07

2. If f is convex it follows that

. k —
Jim lg"[} = 0.

3. Ifz* converges to a point * such that V? f(x*) is positive definite, the rate of conver-
gence is quadratic.

Proof: See Nocedal and Yuan {16]. 0

We note that it follows from Theorem 4.14 of Moré {12] that if, in addition to the as-
sumptions of Theorem 2.5, f is bounded below on 2 and V f is uniformly continuous then
we have limy_, o, ||g%|| = 0.

3. Numerical results

We tested our algorithm with the problems collected in the Appendix. Our algorithm was
written in MATLAB and all runs were performed on a SUN Sparcstation. We take v = 1.05
and € > 0.5 in Algorithm 2 and ¢; = 0.1 and c3 = 0.5 in Algorithm 3. The line search
algorithm in Algorithm 3 is carried out so that

f(zF+1) < f(2*) + 0.0001(zF ! — £F)T gk,

The convergence criterion is ||g|| < 1078.

For problem 1 we take ny = 4, n; = 2 and p = 0,1/200,1/20,1/2,1. The larger p,
the more nonlinear the transition functions. For each p we choose N = 10 and V = 50.
The initial point is z! = 0. The numerical results are presented in Table 1.

The numerical results for problem 2 are presented in Table 2. This problem is very
nonlinear. The initial point is ! = 0.

Numerical results for problems 3-5 are presented in Table 3. We take s = 1/N in
problem 3. The initial point for problem 5 is ! = e where e is the ali-one vector.



AN EFFICIENT TRUST REGION METHOD H1

Tuble 2. Numerical results for problem 2 (ny = 4,n; = 2).

N Iter Feva F* llgll

10 13 13 4.8598254E — 01 5.3958E — 08

20 12 12 4.8621209E — 01 1.1622E — 07

30 15 16 4.8644162E — 01 3.1724E — 07

40 15 16 4.8667115E — 01 8.1564E — 08

50 15 16 4.8690068E — 01 2.0792E — 08

Table 3. Numerical results for problem 3-5.

Problem N Iter Feva F* Hall

Prob. 3 10 17 27 2.2459038E + 02 3.5404E — 07

100 19 29 2.3428772E + 02 4.1082E — 08

500 25 36 2.3508445E + 02 5.6098E — 07

1000 27 33 2.3518341E + 02 435233E - 07

Prob. 4 10 14 14 3.7508235E + 00 8.6445E — 11
100 12 12 2.9473466E + 00 2.3395E — 07

500 25 25 2.8828510E + 00 1.5253E — 09

1000 35 35 2.8748904E + 00 1.1013E — 11

Prob. 5 10 4 4 1.4519006E + 00 8.9753E — 08
100 9 9 1.5325863E + 00 4.0516E — 10

500 17 17 1.5347290E + 00 3.5983E — 11

1000 23 23 1.5349460E + 00 1.2683E — 11

Tuble 4. Numerical results for problem 6.

n (N —1) Iter (Feva) F* tN tp tn/iter tp/iter
10 9 1.9804145E + 01 7.9E - 09 14 5.1 0.16 0.57
20 13 6.2495269E + 01 5.0E — 07 7.7 19.2 0.60 1.48
30 17 1.1903301E + 02 1.7E - 07 239 40.6 141 2.39
40 21 1.8589622E + 02 43E - 10 60.0 70.1 2.86 334
50 24 2.6111329E + 02 1.7E — 07 1242 1014 5.18 423
70 30 4.3184514E + 02 7.1E - 07 434.1 186.4 14.47 6.21
90 36 6.2461932E + 02 6.2E — 08 1,225.2 301.9 34.03 8.39

100 39 7.2798132E + 02 6.6E — 10 1,892.6 361.2 48.53 9.26

Problem 6 is the DTOC form of the so-called “sum of exponentials” problem [14]. We

solve it using both our algorithm and the conventional method-using the Hessian explicitly
in the trust region algorithm. Results are presented in Table 4 where ¢ {tp) is the cpu
time (in seconds) for the conventional Newton’s method (our method). It is obviously from
the last 2 columns that the cpu time per iteration for our algorithm is a linear function of
N while it is a cubic function of N for the conventional method. Hence if a nonlinear
optimization problem with a dense Hessian matrix can be transformed into the DTOC form
it can yield an enormous reduction in computational cost.
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4. Concluding remarks

We have proposed a trust region method for the unconstrained DTOC problem. Our method
possesses advantages of both the trust region method and the stagewise Newton’s method.
It has strong convergence properties yet remains economical.

There are other trust region algorithms, such as those proposed in Moré and Sorensen [13]
and Gay [6], which have stronger convergence properties. In the Nocedal-Yuan algorithm
the subproblem (subP) is not solved very accurately: it only guarantees that

¢r(d*) < Bmin{gx(d): d = pg*, ||d|| < Ak}, |d¥]| < A

where 3 is some positive constant. In the Moré-Sorensen and Gay’s algorithms the sub-
problem (subP) is solved more accurately; i.e.,

¢r(d*) < frmin{ge(d): ld]| < Ax}, |ld*|| < B2,

for some positive constants $; and 32. Therefore, the Moré-Sorensen and Gay’s algorithms
possess stronger convergence properties [12]: if {z*} is bounded then there is a limit point
x* which satisfies the first and second order necessary conditions; if V2 f(z*) is nonsingular
for some limit point z* then V2 f (z*) is positive definite and {z* } converges to z*. However
both the Moré-Sorensen algorithm and Gay’s algorithm assume that the explicit Hessian is
available which is not the case for most discrete-time optimal control problems.

Another algorithm, in the trust region camp, is the dogleg algorithm of Powell [19]. We
note that the mechanisms for the dogleg algorithm and the Nocedal-Yuan algorithm are
different. For the dogleg algorithm the search direction is the improved steepest descent
direction with the help of Newton’s direction and is not expected to be the solution of the
subproblem (subP); while for the Nocedal-Yuan algorithm the search direction is based on
Newton’s method for equation

0% 1

A Ao

where v > 1 is some constant and d()\) = —(H + M)~ !g. Therefore, if ~ is near 1, it is
the solution to the subproblem (subP) except for the “hard case.” To compare the dogleg
algorithm with the Nocedal-Yuan algorithm numerically we solve our test problems using
the dogleg algorithm. Our numerical experiments show that the Nocedal-Yuan algorithm
performs better. We present in Table 5 the results for problems 3-5 using the dogleg
algorithm to highlight the behavior of this algorithm for the DTOC problems.

Another popular method for solving DTOC problems is the DDP method. Both the DDP
and the stagewise Newton methods are locally quadratically convergent. We note that the
stagewise Newton method is independent of the transition functions as long as they give the
same function f, while the DDP method depends on the transition functions. Sometimes
the DDP performs better for (P) by solving the corresponding DTOC problem (P) if the
transition functions are chosen properly, but it seems that there are no general rules to follow.
It would be of interest to generalize our approach to the DDP method.
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Tuble 5. Numerical results for problem 3-5 using the dogleg algorithm.
Problem N Iter Feva F* llgll
Prob. 3 10 101 101 2.2459038E + 02 8.9568E — 07
100 124 124 2.3428772E + 02 8.8156E — 07
500 90 90 2.3508445E + 02 7.8271E — 07
1000 96 96 2.3518341E + 02 9.7264E — 07
Prob. 4 10 18 18 3.7508235E + 00 2.5192E —-07
100 12 12 2.9473466E + 00 1.6331E — 08
500 20 20 2.8828510E + 00 3.7078E — 07
1000 27 27 2.8748904E + 00 2.7201E — 07
Prob. 5 10 16 16 1.4519006E + 00 6.7223E — 07
100 21 21 1.5325863E + 00 7.1019E — 07
500 33 33 1.5347290E + 00 9.9071E — 07
1000 34 34 1.5349460E + 00 9.1366E — 07

We also would like to point out that although the DDP method requires less computation
than the stagewise Newton method during each iteration, Pantoja [17] provides an example
showing that the stagewise Newton method gives the exact solution in one iteration while
DDP only provides an iterative solution.

Finally, while our work makes use of the dynamic structure in series, Ralph [20] and
Wright [21] propose some parallel algorithms for DTOC problems that explore the dynamic

structure in parallel.

Appendix

We collect some test problems in this section.

Problem 1. {9]

N-1 My 1 4 N 1 4 Ty 1 4
mlnF::; ;(yi’j+2> +;—2<xi’j+§> +;<?JN,j+Z>

yi-}—l:Ti(yi,xi)y ’izl,...,N—l

where
Ti(yi, z:) = Ay + Bz + (y] Czi)e,i =1, ... N -1,
y1 = 0,and A € R™>™ given by:
0.5 ifi=j

(A); ;=4 025 if j=i+1
—0.25 if j=1i-1;
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B € R™*"= given by:

i—j
B); = ——;
(B)is = o

C € R™*™= given by:

1+

C); ;= ;
( )1,3 ,Uny_l_nx

e is the all-one vector in R™v.

Problem 2. [9]
= A
Yi+1 = Ti(yi,xi), ] = 1,.. .,N -1
where
Ti(yi, x;) = sin(y;) + C - W(x;)

and C € R™v*"™= given by

1+ . :
C; ;= , 1=1,...,n;7=1,...,m.
7 2n, J
W(z;) = (sin(z;,1), .. .,sin(z;,,))T. The initial state is given by
J o
= 5 = 17 y
Y1,5 2n, J Y

The initial point is z! = 0.

Note: this problem is the modification of that in [22] where the single loss function is
given by

L) = exp(of?) | sin® (122 4 .

Problem 3. [1] (ny = 2n, = 1)
g N-l .
minF::g ;(y£1Qyi+1 + Rzx;)
Yi+1 = [_i ﬂyi + [(;] z,t=1,...,N —1.




AN EFFICIENT TRUST REGION METHOD 65

where R = 6 and
2 0
-0 3
s € (0,1) and y; = (15,5)7. The initial point is ! = 0.

Problem 4. [18](ny = 2n; = 1)

N-1

. 5h 5h
min Fi= (Gl + 5hat ) + 50 Y (Il + ) + 5wl
i=2 =
— A Y 1) — (s )
Yiel1 = Vi + 5h |:(1 (yz,2) )((yyl,ll)) (yz.,Q) + x; — 1’ o ,N -1

where h = 1/N and y; = (0,1)7. The initial point is z! = 0.
Problem 5. [18] (ny = 1nz = 1)

N-1
min F:=h Z (y? + 22)

=1
Yi+1 =yi+h(yi2_xi)7 1:17"'7N_1

where h = 1/N and y; = 1. The initial point is z! = e.
Problem 6. [14] (ny = 1nz = 1)

N-1 1 1
o L L exn(e N2 4 ()2
mmF.—; [2(y1+€kp($z)) + 2($z) ]
yi+1:yi+exp(xi), ’izl,...,N—l

where y; = 0. The initial point is ; = 0.

Note: this is the DTOC formulation of the so-called “Sum of exponentials:”
1 1 :
f(z) = Z [;(%‘)2 T3 (Z eXp(%’)) :|
i=1 L7 =1

with n = N — 1. There are some other nonlinear optimization problems in [14] that
can be reduced to the DTOC form.
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Notes

1.

We denote by p = Q(q) if there are 0 < ¢; < ¢3 such that €19 < p < caq.
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