Part 5. Numerical Analysis

Newton's Method for Solving Systems of Equations

5.1 Note: A system of *n* equations in *n* variables given by

$$f_1(x_1, x_2, \dots, x_n) = 0$$
, $f_2(x_1, x_2, \dots, x_n) = 0$, \dots , $f_n(x_1, x_2, \dots, x_n) = 0$

where each function $f_k: U \subseteq \mathbb{R}^n \to \mathbb{R}$, can be written as a single equation F(x) = 0 where $F: U \subseteq \mathbb{R}^n \to \mathbb{R}^n$. A point $x = a \in \mathbb{R}^n$ is a **solution** when F(a) = 0. We can approximate a solution x = a to the equation F(x) = 0 numerically using the following method, which is called **Newton's method**, or the **Newton-Raphson method**. We start with an initial estimate $a_0 \cong a$. Having found an estimate a_k , we let a_{k+1} be the solution to the equation L(x) = 0 where L(x) is the linearization of F(x) at the point a_k . We have $L(x) = F(a_k) + DF(a_k)(x - a_k)$, so L(x) = 0 when $DF(a_k)(x - a_k) = -F(a_k)$, that is when $x = a_k - DF(a_k)^{-1}F(a_k)$. Thus a_{k+1} is obtained from a_k using the formula

$$a_{k+1} = a_k - DF(a_k)^{-1}F(a_k).$$

5.2 Exercise: Let $F(x,y) = \begin{pmatrix} x^2 - y^2 + x + 1 \\ 2xy + y \end{pmatrix}$. Find all $a = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$ such that F(a) = 0. Starting with $a_0 = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, find the first and second estimates $a_1 = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$ and $a_2 = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$ obtained using Newton's method.

Numerical Methods for Evaluating Definite Integrals

5.3 Definition: There are a number of methods that can be used to approximate the value of a definite integral $\int_a^b f(x) dx$, where $f:[a,b] \to \mathbb{R}$ is continuous (or piecewise continuous), and finding such an approximation is known as **numerical integration** or **numerical quadrature**. A **Newton-Cotes quadrature** rule is obtained by selecting points x_k with $a \le x_0 < x_1 < \cdots < x_n \le b$ and making the approximation

$$\int_{a}^{b} f(x) dx \cong I_{n}(f) = \int_{a}^{b} p(x) dx$$

where p(x) is the polynomial of degree at most n with $p(x_k) = f(x_k)$ for all $0 \le k \le n$. This polynomial is given by

$$p(x) = \sum_{k=0}^{n} f(x_k)g_k(x)$$
, where $g_k(x) = \frac{\prod_{i \neq k} (x - x_i)}{\prod_{i \neq k} (x_k - x_i)}$,

so the approximation rule is given by

$$\int_{a}^{b} f(x) dx = I_{n}(f) = \int_{a}^{b} \sum_{k=0}^{n} f(x_{k}) g_{k}(x) dx = \sum_{k=0}^{n} w_{k} f(x_{k}) \text{, where } w_{k} = \int_{a}^{b} g_{k}(x) dx.$$

The **closed Newton-Cotes quadrature** rule is obtained by choosing the points x_k to be evenly spaced with $a = x_0 < x_1 < \cdots < x_n = b$ (dividing the interval into n subintervals) so the points are given by $x_k = a + k \frac{b-a}{n}$. The **open Newton-cotes quadrature** rule is obtained by choosing the points $a < x_0 < x_1 < \cdots < x_n < b$ to be evenly spaced (dividing the interval into n + 2 subintervals), so the points x_k are given by $x_k = a + (k+1) \frac{b-a}{n+2}$. **Composite Newton-Cotes quadrature** involves first dividing the interval [a, b] into subintervals and then applying a Newton-Cotes quadrature rule in each subinterval.

- **5.4 Exercise:** Show that when n=0, the open Newton-Cotes quadrature rule is the midpoint rule, and when n=1, the closed Newton-Cotes quadrature rule is the trapezoidal rule, and when n=2, the closed Newton-Cotes quadrature rule is Simpson's rule.
- **5.5 Exercise:** Show that when n = 1, the open Newton-Cotes rule is given by

$$I_1^o(f) = \frac{b-a}{2} (f(x_0) + f(x_1))$$
, where $x_k = a + (k+1)\frac{b-a}{3}$.

5.6 Exercise: Show that when n=3, the closed Newton-Cotes rule is given by

$$I_3^c(f) = \frac{b-a}{8} (f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3))$$
, where $x_k = a + k \frac{b-a}{3}$.

5.7 Definition: Given $n \in \mathbb{Z}^+$, the n^{th} Gaussian quadrature is given by

$$\int_{a}^{b} f(x) dx \cong I_{n}^{g}(f) = \sum_{k=1}^{n} w_{k} f(x_{k})$$

where the *n* points x_k with $a \le x_1 < x_2 < \cdots < x_n \le b$ and the weights w_1, w_2, \cdots, w_n are chosen such that

$$\int_a^b p(x) dx = \sum_{k=1}^n w_k p(x_k)$$

for all polynomials p(x) of degree less than 2n, or equivalently when p(x) is equal to each of the polynomials $1, x, x^2, \dots, x^{2n-1}$.

- **5.8 Exercise:** Show that when n=1, the Gaussian quadrature rule is the midpoint rule.
- **5.9 Exercise:** Show that when n = 2, the Gaussian quadrature on the interval [-1, 1] is given by

$$\int_{-1}^{1} f(x) \, dx \cong I_2^g(f) = f\left(-\frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right)$$

and that, on the general interval [a, b], it is given by

$$\int_{a}^{b} f(x) \, dx \cong I_{2}^{g}(f) = \frac{b-a}{2} \left(f\left(\frac{a+b}{2} - \frac{b-a}{2\sqrt{3}}\right) + f\left(\frac{a+b}{2} + \frac{b-a}{2\sqrt{3}}\right) \right).$$

5.10 Exercise: Approximate the value of $\ln 2$ by approximating the value of $\int_1^2 \frac{1}{x} dx$ using the trapezoidal rule, the midpoint rule, Simpson's rule, the open Newton-Cotes quadrature rule for n=1, the closed Newton-cotes quadrature rule for n=3, and the Gaussian quadrature rule for n=2.

Numerical Methods for Solving First Order IVPs

5.11 Note: Recall that we can approximate the solution y = y(x) to the IVP given by y' = f(x, y) with $y(x_0) = y_0$ using **Euler's method**: choose a small step size $h = \Delta x$, start at (x_0, y_0) then, having found (x_n, y_n) , let $x_{n+1} = x_n + h$ and $y_{n+1} = y_n + f(x_n, y_n)h$. Euler's method is related to the fact that the solution y = y(x) with $y(x_n) = y_n$ can be approximated by the linearization of y(x) at x_n , which is given by

$$L(x) = y(x_n) + y'(x_n)(x - x_n) = y_n + f(x_n, y_n)(x - x_n).$$

It follows that when h is small and $x_{n+1} = x_n + h$ we have

$$y(x_{n+1}) = y(x_n+h) \cong L(x_n+h) = y_n + f(x_n, y_n)h = y_{n+1}.$$

5.12 Definition: Let us use a similar argument to obtain a more accurate method, called the **second-order Taylor method**. When y = y(x) is a solution to the DE y' = f(x, y), we have y'(x) = f(x, y(x)) for all x so that, by the chain rule,

$$y''(x) = \frac{\partial f}{\partial x}(x, y(x)) + \frac{\partial f}{\partial y}(x, y(x))y'(x) = \frac{\partial f}{\partial x}(x, y(x)) + \frac{\partial f}{\partial y}(x, y(x))f(x, y(x)).$$

When y = y(x) is the solution with $y(x_n) = y_n$, we have $y'(x_n) = f(x_n, y_n)$ and

$$y''(x_n) = \frac{\partial f}{\partial x}(x_n, y_n) + \frac{\partial f}{\partial y}(x_n, y_n) f(x_n, y_n),$$

so the second Taylor polynomial of y(x) at $x = x_n$ is given by

$$T_{2}(x) = y(x_{n}) + y'(x_{n})(x - x_{n}) + \frac{1}{2}y''(x_{n})(x - x_{n})^{2}$$

$$= y_{n} + f(x_{n}, y_{n})(x - x_{n}) + \frac{1}{2} \left(\frac{\partial f}{\partial x}(x_{n}, y_{n}) + \frac{\partial f}{\partial y}(x_{n}, y_{n}) f(x_{n}, y_{n}) \right) (x - x_{n})^{2}$$

$$T_{2}(x_{n} + h) = y_{n} + f(x_{n}, y_{n})h + \frac{1}{2} \left(\frac{\partial f}{\partial x}(x_{n}, y_{n}) + \frac{\partial f}{\partial y}(x_{n}, y_{n}) f(x_{n}, y_{n}) \right) h^{2}.$$

Thus we approximate the solution y=y(x) to the IVP given by y'=f(x,y) with $y(x_0)=y_0$ as follows: choose a small step size $h=\Delta x$, start at the point (x_0,y_0) then, having found (x_n,y_n) , let $x_{n+1}=x_n+h$ and

$$y_{n+1} = y_n + f(x_n, y_n)h + \frac{1}{2} \left(\frac{\partial f}{\partial x}(x_n, y_n) + \frac{\partial f}{\partial y}(x_n, y_n) f(x_n, y_n) \right) h^2.$$

5.13 Definition: A second-order Runga-Kutta method for solving y' = f(x, y) with $y(x_0) = y_0$, is a method in which we choose a small step size $h = \Delta x$, we start at (x_0, y_0) then, having found (x_n, y_n) we let $x_{n+1} = x_n + h$ and we let y_{n+1} be obtained using a formula of the form $y_{n+1} = y_n + r m_1 h + s m_2 h$

where

$$m_1 = f(x_n, y_n)$$

 $m_2 = f((x_n, y_n) + t(h, m_1 h))$

for some $r, s, t \in \mathbb{R}$ with r + s = 1 and $0 \le t \le 1$.

- **5.14 Example:** When r=1 and s=0 we obtain Euler's method. When r=0 and s=1 and $t=\frac{1}{2}$, the resulting method is called the **modified Euler**, or **midpoint method**. When $r=s=\frac{1}{2}$ and t=1, the resulting method is called the **Heun method**. When $r=\frac{1}{4}$ and $s=\frac{3}{4}$ and $t=\frac{2}{3}$, the resulting method is called the **optimal RK2 method**.
- **5.15 Definition:** The classical fourth-order Runga-Kutta method, also called the **RK4 method**, for solving y' = f(x, y) with $y(x_0) = y_0$ is performed as follows: We choose a small step size $h = \Delta x$, we start at (x_0, y_0) then, having found (x_n, y_n) , we let $x_{n+1} = x_n + h$ and

where

$$y_{n+1} = y_n + \frac{1}{6}(m_1 + 2m_2 + 2m_3 + m_4) h$$

$$m_1 = f(x_n, y_n)$$

$$m_2 = f((x_n, y_n) + \frac{1}{2}(h, m_1 h))$$

$$m_3 = f((x_n, y_n) + \frac{1}{2}(h, m_2 h))$$

$$m_4 = f((x_n, y_n) + (h, m_3 h)).$$

5.16 Exercise: Consider the IVP given by $y' = 1 + \frac{y}{x}$ with y(1) = 1. Find the exact solution y = y(x) and the exact value of y(2). Approximate the value of y(2) using Euler's method with $h = \frac{1}{4}$, then again using the second-order Taylor method with $h = \frac{1}{2}$, then again using RK4 with h = 1.