1: Let
$$F(x,y) = \begin{pmatrix} f(x,y) \\ g(x,y) \end{pmatrix}$$
 where $f(x,y) = x^2 + y^2 - 5$ and $g(x,y) = x^3 + y^3 - 2$.

- (a) Sketch the curves f(x,y) = 0 and g(x,y) = 0 on the same grid, and use your picture to approximate the coordinates of the points of intersection of the two curves (that is the points (x,y) such that $F(x,y) = \binom{0}{0}$).
- Solution: We have f(x,y) = 0 when $x^2 + y^2 = 5$, that is when (x,y) lie on the circle centred at (0,0) of radius 5. We have g(x,y) = 0 when $y^3 = 2 x^3$, that is when $y = \sqrt[3]{2 x^3}$, and we can sketch this curve by plotting points (with the help of a calculator). We sketch the two curves below. From the sketch it appears that there are two points of intersection with approximate coordinates (x,y) = (1.7, -0.4), (-1.4, 1.7).
- (b) Find a more accurate approximation for the coordinates of the lowest point of intersection as follows: Starting with $a_0 = \binom{x_0}{y_0} = \binom{2}{-1}$, carry out two iterations of Newton's method. Calculate the first iteration to find $a_1 = \binom{x_1}{y_1}$ by hand, expressing x_1 and y_1 as fractions, then carry out the second iteration to find $a_2 = \binom{x_2}{y_2}$ with the help a calculator (or computer).

Solution: We have $F\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x^2 + y^2 - 5 \\ x^3 + y^3 - 2 \end{pmatrix}$, $DF\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x & 2y \\ 3x^2 & 3y^2 \end{pmatrix}$, and $DF\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{6xy^2 - 6x^2y} \begin{pmatrix} 3y^2 & -2y \\ 3x^2 & 2x \end{pmatrix}$. Starting with $\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$, the first iteraration of Newton's metod gives

$$\binom{x_1}{y_1} = \binom{2}{-1} - DF\binom{2}{-1}^{-1}F\binom{2}{-1} = \binom{2}{-1} - \frac{1}{36}\binom{3}{-12} + \binom{3}{4}\binom{0}{5} = \binom{2}{-1} - \frac{1}{18}\binom{5}{10} = \frac{1}{18}\binom{31}{-28}.$$

Using a calculator, we have

$$\begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} \frac{31}{18} \\ -\frac{14}{9} \end{pmatrix} - \frac{1}{6(\frac{31}{18})(\frac{14}{9})^2 + 6(\frac{31}{18})^2(\frac{14}{9})} \begin{pmatrix} 3(\frac{14}{9})^2 & 2(\frac{14}{9}) \\ -3(\frac{31}{18})^2 & 2(\frac{31}{18}) \end{pmatrix} \begin{pmatrix} (\frac{31}{18})^2 + (\frac{14}{9})^2 - 5 \\ (\frac{31}{18})^3 - (\frac{14}{9})^3 - 2 \end{pmatrix} = \begin{pmatrix} \frac{28112}{16461} \\ -\frac{86087}{59472} \end{pmatrix}.$$

2: (a) Show that when n=2, the open Newton-Cotes rule is given by

$$I_2^o = \frac{b-a}{3} (2f(x_0) - f(x_1) + 2f(x_2))$$
, where $x_k = a + (k+1) \frac{b-a}{4}$.

Solution: For the interval [0,4] we take $x_0=1,\ x_1=2$ and $x_2=3,$ and we take $g_0(x)=\frac{(x-2)(x-3)}{(1-2)(1-3)}=\frac{1}{2}(x-2)(x-3),\ g_1(x)=\frac{(x-1)(x-3)}{(2-1)(2-3)}=-(x-1)(x-3)$ and $g_2(x)=\frac{(x-1)(x-2)}{(3-1)(3-2)}=\frac{1}{2}(x-1)(x-2),$ and we take $w_0=\int_0^4g_0(x)\,dx=\frac{1}{2}\int_0^4x^2-5x+6\,dx=\frac{1}{2}\left[\frac{1}{3}x^3-\frac{5}{2}x^2+6x\right]_0^4=2\left(\frac{16}{4}-10+6\right)=\frac{8}{3},$ $w_1=\int_0^4g_1(x)\,dx=-\int_0^4x^2-4x+3\,dx=-\left[\frac{1}{3}x^3-2x^2+3\right]_0^4=-4\left(\frac{16}{3}-8+3\right)=-\frac{4}{3},$ and $w_2=\int_0^4g_2(x)\,dx=\frac{1}{2}\int_0^4x^2-3x+2\,dx=\frac{1}{2}\left[\frac{1}{3}x^3-\frac{1}{2}x^2+2x\right]_0^4=2\left(\frac{16}{3}-6+2\right)=\frac{8}{3}.$

For the interval [a,b], we scale horizontally by $\frac{b-a}{4}$ and take $x_0 = a + \frac{1}{4}(b-a) = \frac{3a+b}{4}$, $x_1 = a + \frac{1}{2}(b-a) = \frac{a+b}{2}$ and $x_2 = a + \frac{3}{4}(b-a) = \frac{a+3b}{4}$, and we take $w_0 = w_2 = \frac{8}{3}\frac{b-a}{4} = \frac{2(b-a)}{3}$ and $w_1 = -\frac{4}{3}\frac{b-a}{4} = -\frac{b-a}{3}$, and we make the approximation

$$\int_a^b f(x) \, dx \cong I_2^o(f) = \tfrac{b-a}{3} \left(2f \left(\tfrac{3a+b}{4} \right) - f \left(\tfrac{a+b}{2} \right) + 2f \left(\tfrac{a+3b}{4} \right) \right).$$

(b) Show that when n = 4, the closed Newton-Cotes rule is given by

$$I_4^c = \frac{b-a}{90} \left(7f(x_0) + 32f(x_1) + 12f(x_2) + 32f(x_3) + 7f(x_4) \right)$$
, where $x_k = a + k \frac{b-a}{4}$.

Solution: We could solve this using the same method used in Part (a), but we choose to present a different solution. For the interval [-2,2] we take $x_0=-2, x_1=-1, x_2=0, x_3=1$ and $x_4=2$, and then we choose w_0, w_1, w_2, w_3, w_4 so that $\int_0^4 p(x) \, dx = \sum_{k=0}^w w_k p(x_k)$ for each of the polynomials $p(x) \in \{1, x, x^2, x^3, x^4\}$. Taking p(x)=1 gives the requirement $w_0+w_1+w_2+w_3+w_4=\int_{-2}^2 1 \, dx=4$ (1). Taking p(x)=x gives $-2w_0-w_1+w_3+2w_4=\int_{-2}^2 x \, dx=0$ (2). Taking $p(x)=x^2$ gives $4w_0+w_1+w_3+4w_4=\int_{-2}^2 x^2 \, dx=\frac{16}{3}$ (3). Taking $p(x)=x^3$ gives $-8w_0-w_1+w_3+8w_4=\int_{-2}^2 x^3 \, dx=0$ (4). Taking $p(x)=x^4$ gives the requirement $16w_0+w_1+w_3+16w_4=\int_{-2}^2 x^4 \, dx=\frac{64}{5}$ (5). We solve these 5 equations using linear algebra:

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & | & 4 \\ -2 & -1 & 0 & 1 & 2 & | & 0 \\ 4 & 1 & 0 & 1 & 4 & | & \frac{16}{3} \\ -8 & -1 & 0 & 1 & 8 & | & 0 \\ 16 & 1 & 0 & 1 & 16 & | & \frac{64}{5} \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & | & 4 \\ 0 & 1 & 2 & 3 & 4 & | & 8 \\ 0 & 3 & 4 & 3 & 0 & | & \frac{32}{3} \\ 0 & 7 & 8 & 9 & 16 & | & 32 \\ 0 & 15 & 16 & 15 & 0 & | & \frac{256}{5} \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 & -2 & -3 & | & -4 \\ 0 & 1 & 2 & 3 & 4 & | & 8 \\ 0 & 0 & 1 & 272 & | & 4 & | & 0 \\ 0 & 0 & 1 & 3 & 6 & | & \frac{20}{3} \\ 0 & 0 & 7 & 15 & 30 & | & \frac{172}{5} \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 & -1 & | & 0 \\ 0 & 1 & 0 & -1 & 0 & | & 0 \\ 0 & 0 & 1 & 2 & 2 & | & 4 \\ 0 & 0 & 0 & 1 & 4 & | & \frac{8}{3} \\ 0 & 0 & 0 & 6 & 12 & | & \frac{184}{15} \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 & -1 & | & 0 \\ 0 & 1 & 0 & -1 & | & 0 \\ 0 & 0 & 1 & 2 & 2 & | & 4 \\ 0 & 0 & 0 & 1 & 4 & | & \frac{8}{3} \\ 0 & 0 & 0 & 0 & 1 & | & \frac{14}{45} \\ 0 & 0 & 0 & 0 & 1 & | & \frac{14}{45} \\ 0 & 0 & 0 & 0 & 1 & | & \frac{14}{45} \\ 0 & 0 & 0 & 0 & 1 & | & \frac{14}{45} \\ 0 & 0 & 0 & 0 & 1 & | & \frac{14}{45} \\ 0 & 0 & 0 & 0 & 1 & | & \frac{14}{45} \\ 0 & 0 & 0 & 0 & 1 & | & \frac{14}{45} \\ 0 & 0 & 0 & 0 & 1 & | & \frac{14}{45} \\ 0 & 0 & 0 & 0 & 1 & | & \frac{14}{45} \\ 0 & 0 & 0 & 0 & 1 & | & \frac{14}{45} \\ \end{pmatrix}$$

Thus for the interval [-2,2] we take $w_0=w_4=\frac{14}{45}$ and $w_1=w_3=\frac{64}{45}$ and $w_2=\frac{24}{45}$. For the interval [a,b], we shift, and scale horizontally by $\frac{(b-a)}{4}$ and take $x_0=a$, $x_1=\frac{3a+b}{4}$, $x_2=\frac{a+b}{2}$, $x_3=\frac{a+3b}{4}$ and $x_4=b$, and we take $w_0=w_4=\frac{7}{90}(b-a)$, $w_1=w_3=\frac{32}{90}(b-a)$ and $w_2=\frac{12}{90}(b-a)$. Thus we make the approximation

$$\int_{a}^{b} f(x) dx \cong I_{4}^{c}(f) = \frac{b-a}{90} \left(7f(a) + 32f\left(\frac{3a+b}{4}\right) + 12f\left(\frac{a+b}{2}\right) + 32f\left(\frac{a+3b}{4}\right) + 7f(b) \right).$$

3: (a) Show that when n=3, the Gaussian quadrature rule on the interval [-1,1] is given by

$$\int_{-1}^{1} f(x) dx \cong I_3^g = \frac{5}{9} f\left(-\frac{\sqrt{3}}{\sqrt{5}}\right) + \frac{8}{9} f(0) + \frac{5}{9} f\left(\frac{\sqrt{3}}{\sqrt{5}}\right).$$

Solution: For the interval [-1,1], we need to choose x_1,x_2,x_3 and w_1,w_2,w_3 with $-1 \le x_1 < x_2 < x_3 \le 1$ such that for $p(x) \in \{1,x,x^2,x^3,x^4,x^5\}$ we have $\int_{-1}^1 p(x) \, dx = \sum_{k=1}^3 w_k p(x_k)$. Taking p(x) = 1 gives the requirement $w_1 + w_2 + w_3 = \int_{-1}^1 1 \, dx = 2$ (1). Taking $p(x) = x^2$ gives $w_1 x_1^2 + w_2 x_2^2 + w_3 x_3^2 = \int_{-1}^1 x^2 \, dx = \frac{2}{3}$ (2). Taking $p(x) = x^4$ gives the requirement $w_1 x_1^4 + w_2 x_2^4 + w_3 x_3^4 = \int_{-1}^1 x^4 \, dx = \frac{2}{5}$ (3). Using symmetry, we can assume that $-1 < x_1 < 0$, $x_2 = 0$ and $0 < x_3 < 1$ with $x_1 = -x_3$, and that $w_1 = w_3$. With these assumptions, the above three equations become $w_2 + 2w_3 = 2$ (1), $2w_3 x_3^2 = \frac{2}{3}$ (2) and $2w_3 x_3^4 = \frac{2}{3}$ (3). Divide both sides of (3) by the corresponding sides of (2) to get $x_3^2 = \frac{3}{5}$ so that $x_3 = \frac{\sqrt{3}}{\sqrt{5}}$. Then (2) gives $w_3 = \frac{1}{3x_3^2} = \frac{5}{9}$ and (1) gives $w_2 = 2 - w_3 = 2 - \frac{5}{9} = \frac{8}{9}$. Thus we have $x_1 = -\frac{\sqrt{3}}{\sqrt{5}}$, $x_2 = 0$ and $x_3 = \frac{\sqrt{3}}{\sqrt{5}}$ and $w_1 = w_3 = \frac{5}{9}$ and $w_2 = \frac{8}{9}$, as required.

(b) Find the Gaussian quadrature rule, for n = 3, on the interval [a, b].

Solution: For the interval [a,b], we shift and scale horizontally by $\frac{b-a}{2}$ to get $x_1 = \frac{a+b}{2} - \frac{\sqrt{3}(b-a)}{2\sqrt{5}}$, $x_2 = \frac{a+b}{2}$ and $x_3 = \frac{a+b}{2} + \frac{\sqrt{3}(b-a)}{2\sqrt{5}}$, and $w_1 = w_3 = \frac{5}{18}(b-a)$ and $w_2 = \frac{4}{9}(b-a)$. Thus we obtain the quadrature rule $\int_a^b f(x) \, dx \cong I_3^g(f) = \frac{b-a}{18} \left(5f\left(\frac{a+b}{2} - \frac{\sqrt{3}(b-a)}{2\sqrt{5}}\right) + 8f\left(\frac{a+b}{2}\right) + 5f\left(\frac{a+b}{2} + \frac{\sqrt{3}(b-a)}{2\sqrt{5}}\right) \right).$

4: Approximate the value of $\ln 2 = \int_1^2 \frac{1}{x} dx$ using the open Newton-Cotes rule for n=2, using the closed Newton-Cotes rule for n=4, and using the Gaussian quadrature rule for n=3.

Solution: For the function $f(x) = \frac{1}{x}$ on the interval [1,2], we have

$$\begin{split} I_2^o(f) &= \frac{1}{3} \left(2f \left(\frac{5}{4} \right) - f \left(\frac{3}{2} \right) + 2f \left(\frac{7}{4} \right) \right) = \frac{1}{3} \left(\frac{8}{5} - \frac{2}{3} + \frac{8}{7} \right) = \frac{218}{315}, \\ I_4^c(f) &= \frac{1}{90} \left(7f(1) + 32f \left(\frac{5}{4} \right) + 12f \left(\frac{3}{2} \right) + 32f \left(\frac{7}{4} \right) + 7f(2) \right) = \frac{1}{90} \left(7 + \frac{128}{5} + 8 + \frac{128}{7} + \frac{7}{2} \right) = \frac{4367}{6300}, \\ I_3^g(f) &= \frac{1}{18} \left(5f \left(\frac{3}{2} - \frac{\sqrt{3}}{2\sqrt{5}} \right) + 8f \left(\frac{3}{2} \right) + 5f \left(\frac{3}{2} + \frac{\sqrt{3}}{2\sqrt{5}} \right) \right) = \frac{1}{18} \left(5f \left(\frac{3\sqrt{5} - 3}{2\sqrt{5}} \right) + 8f \left(\frac{3}{2} \right) + 5f \left(\frac{3\sqrt{5} + \sqrt{3}}{2\sqrt{5}} \right) \right) \\ &= \frac{1}{18} \left(\frac{10\sqrt{5}}{3\sqrt{5} - \sqrt{3}} + \frac{16}{3} + \frac{10\sqrt{5}}{3\sqrt{5} + \sqrt{3}} \right) = \frac{1}{18} \left(\frac{10\sqrt{5}(3\sqrt{5} + \sqrt{3})}{42} + \frac{16}{3} + \frac{10\sqrt{5}(3\sqrt{5} - \sqrt{3})}{42} \right) \\ &= \frac{1}{18} \left(\frac{16}{3} + \frac{300}{42} \right) = \frac{1}{18} \cdot \frac{16 \cdot 7 + 150}{21} = \frac{131}{189}. \end{split}$$

5: The third order Taylor method for approximating the solution to y' = f(x, y) with $y(x_0) = y_0$ is performed by choosing a step size $h = \Delta x$, starting with (x_0, y_0) and then, after having found (x_k, y_k) , letting $x_{k+1} = x_k + h$ and letting y_{k+1} be given by

$$y_{k+1} = y(x_k) + y'(x_k)h + \frac{1}{2}y''(x_k)h^2 + \frac{1}{6}y'''(x_k)h^3$$

where y = y(x) is the solution to the given DE with $y(x_k) = y_k$.

(a) Recall that when y = y(x) is a solution to the DE y' = f(x, y) we have y' = f and $y'' = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} f$. Show that we also have

$$y''' = \frac{\partial^2 f}{\partial x^2} + 2 \frac{\partial^2 f}{\partial x \partial y} f + \frac{\partial^2 f}{\partial y^2} f^2 + \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} + \left(\frac{\partial f}{\partial y}\right)^2 f.$$

Solution: Recall that when y=y(x) is a solution to the DE we have y'(x)=f(x,y(x)) and hence we have $y''(x)=\frac{d}{dt}f(x,y(x))=\frac{\partial f}{\partial x}(x,y(x))+\frac{\partial f}{\partial y}(x,y(x))y'(x)=\frac{d}{dt}f(x,y(x))=\frac{\partial f}{\partial x}(x,y(x))+\frac{\partial f}{\partial y}(x,y(x))f(x,y(x)).$ Use the chain rule again to get

$$\begin{split} y'''(x) &= \frac{d}{dt} \left(\frac{\partial f}{\partial x}(x,y(x)) + \frac{\partial f}{\partial y}(x,y(x)) f(x,y(x)) \right) \\ &= \frac{d}{dt} \frac{\partial f}{\partial x}(x,y(x)) + \left(\frac{d}{dt} \frac{\partial f}{\partial y}(x,y(x)) \right) f(x,y(x)) + \frac{\partial f}{\partial y}(x,y(x)) \frac{d}{dt} f(x,y(x)) \\ &= \left(\frac{\partial^2 f}{\partial x^2}(x,y(x)) + \frac{\partial^2 f}{\partial x \partial y}(x,y(x)) y'(x) \right) + \left(\frac{\partial^2 f}{\partial x \partial y}(x,y(x) + \frac{\partial^2 f}{\partial y^2}(x,y)) y'(x) \right) f(x,y(x)) \\ &\quad + \frac{\partial f}{\partial y}(x,y(x)) \left(\frac{\partial f}{\partial x}(x,y(x)) + \frac{\partial f}{\partial y}(x,f(x)) y'(x) \right) \\ &= \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial x \partial y} f + \frac{\partial f}{\partial y} \frac{\partial f}{\partial x} + \left(\frac{\partial^2 f}{\partial x \partial y} + \frac{\partial^2 f}{\partial y^2} f + \frac{\partial f}{\partial y} \frac{\partial f}{\partial x} \right) y' \\ &= \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial x \partial y} f + \frac{\partial f}{\partial y} \frac{\partial f}{\partial x} + \left(\frac{\partial^2 f}{\partial x \partial y} + \frac{\partial^2 f}{\partial y^2} f + \frac{\partial f}{\partial y} \frac{\partial f}{\partial x} \right) f \\ &= \frac{\partial^2 f}{\partial x^2} + 2 \frac{\partial^2 f}{\partial x \partial y} f + \frac{\partial^2 f}{\partial y^2} f^2 + \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} + \left(\frac{\partial f}{\partial y} \right)^2 f. \end{split}$$

(b) Apply the third-order Taylor method using the step size $h = \frac{1}{2}$ to approximate the value of y(2) when y = y(x) is the solution to the IVP given by $y' = 1 + \frac{y}{x}$ with y(1) = 1.

Solution: For y(x) = f(x, y(x)) with $f(x, y) = 1 + \frac{y}{x}$, we have $\frac{\partial f}{\partial x} = -\frac{y}{x^2}$, $\frac{\partial f}{\partial y} = \frac{1}{x}$, $\frac{\partial^2 f}{\partial x^2} = \frac{2y}{x^3}$, $\frac{\partial^2 f}{\partial x \partial y} = -\frac{1}{x^2}$ and $\frac{\partial^2 f}{\partial y^2} = 0$ so that

$$y'(x) = f = 1 + \frac{y}{x}$$

$$y''(x) = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} f = -\frac{y}{x^2} + \frac{1}{x} (1 + \frac{y}{x}) = \frac{1}{x}$$

$$y'''(x) = \frac{\partial^2 f}{\partial x^2} + 2 \frac{\partial^2 f}{\partial x \partial y} f + \frac{\partial^2 f}{\partial y^2} f^2 + \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} + (\frac{\partial f}{\partial y})^2 f$$

$$= \frac{2y}{x^3} + 2(-\frac{1}{x^2})(1 + \frac{y}{x}) + 0 + (-\frac{y}{x^2})(\frac{1}{x}) + (\frac{1}{x})^2 (1 + \frac{y}{x})$$

$$= \frac{2y}{x^3} - \frac{2}{x^2} - \frac{2y}{x^3} - \frac{y}{x^3} + \frac{1}{x^2} + \frac{y}{x^3} = -\frac{1}{x^2}.$$

We remark that it is easier to calculate y'''(x) directly from $y''(x) = \frac{1}{x}$ without using the formula obtained in Part (a). Using the 3rd-order Taylor method with $h = \frac{1}{2}$, we start with $(x_0, y_0) = (1, 1)$ then, having found (x_k, y_k) we let $x_{k+1} = x_k + h = x_k + \frac{1}{2}$ and

$$y_{k+1} = y_k + y'(x_k)h + \frac{1}{2}y''(x_k)h^2 + \frac{1}{6}y'''(x_k)h^3 = y_k + \frac{1}{2}\left(1 + \frac{y_k}{x_k}\right) + \frac{1}{8}\frac{1}{x_k} - \frac{1}{48}\frac{1}{x_r^2}.$$

We obtain

with
$$y(2) \cong y_2 = \frac{101}{48} + \frac{173}{144} + \frac{6}{101} - \frac{48}{101^2} = \frac{1234007}{367236} \cong 3.36.$$

6: Consider the IVP given by $y' = \frac{x}{y}$ with y(0) = 1. Find the exact solution y = y(x) and the exact value of y(1). Then, approximate the value of y(1) several times: use Euler's method with step size $h = \frac{1}{4}$, use the second-order Taylor method with $h = \frac{1}{2}$, use Heun's method with $h = \frac{1}{2}$, and use RK4 with h = 1.

Solution: Let $f(x,y) = \frac{x}{y}$. The given DE is separable as we can write it as $y \, dy = x \, dx$. Integrate both sides to get $\frac{1}{2}y^2 = \frac{1}{2}x^2 + c$, that is $y^2 = x^2 + 2c$. To get y(0) = 1 we need 2c = 1, so the solution is given by $y^2 = x^2 + 1$. Since we want y(0) = 1 > 0, we take $y = \sqrt{x^2 + 1}$. In particular, we have $y(1) = \sqrt{2}$.

To apply Euler's method with $h = \frac{1}{4}$, we start with $(x_0, y_0) = (0, 1)$ then, having found (x_k, y_k) , we let $x_{k+1} = x + k + h = x_k + \frac{1}{4}$ and we let $y_{k+1} = y_k + y'(x_k)h = y_k + \frac{1}{4}f(x_k, y_k) = y_k + \frac{1}{4}\frac{x_k}{y_k}$. We obtain

with $y(1) \cong y_4 = \frac{321}{272} + \frac{51}{321} = \frac{38971}{29104} \cong 1.3390$

To apply the 2nd-order Taylor method with $h = \frac{1}{2}$, we start with $(x_0, y_0) = (0, 1)$ and, having found (x_k, y_k) we let $x_{k+1} = x_k + h = x_k + \frac{1}{2}$ and

$$y_{k+1} = y_k + y'(x_k)h + \frac{1}{2}y''(x_k)h^2 = y_k + \frac{1}{2}f(x_k, y_k) + \frac{1}{8}\left(\frac{\partial f}{\partial x}(x_k, y_k) + \frac{\partial f}{\partial y}(x_k, y_k)f(x_k, y_k)\right)$$
$$= y_k + \frac{1}{2}\frac{x_k}{y_k} + \frac{1}{8}\left(\frac{1}{y_k} - \frac{x_k}{y_k^2}\frac{x_k}{y_k}\right) = y_k + \frac{1}{2}\frac{x_k}{y_k} + \frac{1}{8}\frac{y_k^2 - x_k^2}{y_k^2}.$$

We obtain

with $y(1) \cong y_2 = \frac{9}{8} + \frac{2}{9} + \frac{65}{729} = \frac{8377}{5832} \cong 1.4364$.

To apply Heun's method with $h = \frac{1}{2}$, we start with $(x_0, y_0) = (0, 1)$ and, having found (x_k, y_k) we let $x_{k+1} = x_k + h = x_k + \frac{1}{2}$ and $y_{k+1} = y_k + \frac{1}{2}(w_1 + w_2)h = y_k + \frac{1}{4}(w_1 + w_2)$ where $w_1 = f(x_k, y_k)$ and $w_2 = f((x_k, y_k) + (h, w_1, h))$. At the first step we take $x_1 = x_0 + h = 0 + \frac{1}{2} = \frac{1}{2}$ and

$$m_1 = f(x_0, y_0) = f(0, 1) = \frac{0}{1} = 0,$$

 $m_2 = f((x_0, y_0) + (h, m_1 h)) = f((0, 1) + (\frac{1}{2}, 0)) = f(\frac{1}{2}, 1) = \frac{1}{2}, \text{ and}$
 $y_1 = y_0 + \frac{1}{4}(m_1 + m_2) = 1 + \frac{1}{4}(0 + \frac{1}{2}) = \frac{9}{8}.$

At the second step, we take $x_2 = x_1 + h = \frac{1}{2} + \frac{1}{2} = 1$ and

$$m_1 = f(x_1, y_1) = f\left(\frac{1}{2}, \frac{9}{8}\right) = \frac{1}{2} \cdot \frac{8}{9} = \frac{4}{9} ,$$

$$m_2 = f\left((x_1, y_1) + (h, m_1 h)\right) = f\left(\left(\frac{1}{2}, \frac{9}{8}\right) + \left(\frac{1}{2}, \frac{2}{9}\right)\right) = f\left(1, \frac{97}{72}\right) = \frac{72}{97} , \text{ and}$$

$$y(1) \cong y_2 = y_1 + \frac{1}{4}(m_1 + m_2) = \frac{9}{8} + \left(\frac{1}{9} + \frac{18}{97}\right) = \frac{9929}{6984} \cong 1.4217$$

To apply RK4 with h = 1, we start with $(x_0, y_0) = (0, 1)$ and let

$$x_1 = x_0 + h = 0 + 1 = 1$$

$$m_1 = f(x_0, y_0) = f(0, 1) = 0,$$

$$m_2 = f\left((x_0, y_0) + \frac{1}{2}(h, m_1 h)\right) = f\left((0, 1) + \frac{1}{2}(1, 0)\right) = f\left(\frac{1}{2}, 1\right) = \frac{1}{2},$$

$$m_3 = f\left((x_0, y_0) + \frac{1}{2}(h, m_2 h)\right) = f\left((0, 1) + \frac{1}{2}(1, \frac{1}{2})\right) = f\left(\frac{1}{2}, \frac{5}{4}\right) = \frac{2}{5},$$

$$m_4 = f\left((x_0, y_0) + (h, m_3 h)\right) = f\left((0, 1) + (1, \frac{2}{5})\right) = f\left(1, \frac{7}{5}\right) = \frac{5}{7}, \text{ and}$$

$$y(1) \cong y_1 = y_0 + \frac{1}{6}\left(m_1 + 2m_2 + 2m_3 + m_4\right) = 1 + \frac{1}{6}\left(0 + 1 + \frac{4}{5} + \frac{5}{7}\right) = \frac{149}{105} \cong 1.4190.$$