SYDE Advanced Math 2, Practice Problem Set 5

- 1: The following ODEs are examples of Sturm-Liouville boundary value problems involving a parameter k. In each case, non-zero solutions only occur for certain values of k, which are called eigenvalues and the corresponding solutions are called eigenfunctions.
 - (a) Find the possible values of $k \in \mathbb{R}$ and the non-zero solutions the ODE u'' = ku for u = u(x) satisfying the boundary conditions u'(0) = 0 and u(1) = 0.
 - (b) Find the possible values of $k \in \mathbb{R}$ and the non-zero solutions to the ODE $x^2u'' + xu' + ku = 0$ satisfying the boundary conditions u(1) = 0 and u(4) = 0.
- **2:** Solve the wave equation $\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x}^2$ for u = u(x,t) with $0 \le x \le 4$ and $t \ge 0$, satisfying the fixed endpoint condition u(0,t) = u(4,t) = 0 for all $t \ge 0$ and the initial conditions u(x,0) = 0 and $\frac{\partial u}{\partial t}(x,0) = 2 \sin \frac{\pi x}{4}$ for $0 \le x \le 4$.
- 3: Solve the heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ for u = u(x,t) with $0 \le x \le \ell$ and $t \ge 0$ satisfying the fixed endpoint temperature condition u(0,t) = 0 and $u(\ell,t) = 0$ for all $t \ge 0$ and the initial condition u(x,0) = f(x) for all $0 \le x \le \ell$ where f(x) is given by f(x) = 0 for $0 \le x < \frac{1}{4}\ell$, f(x) = 1 for $\frac{1}{4} < x < \frac{3\ell}{4}$ and f(x) = 0 for $\frac{3\ell}{4} < x \le \ell$ (with $f\left(\frac{\ell}{4}\right) = f\left(\frac{3\ell}{4}\right) = \frac{1}{2}$ so that f(x) is equal to the sum of its Fourier series).
- **4:** Solve the heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ for u = u(x,t) with $0 \le x \le \ell$ and $t \ge 0$ satisfying the insulated ends condition $\frac{\partial u}{\partial x}(0,t) = 0$ and $\frac{\partial u}{\partial x}(\ell,t) = 0$ for all $t \ge 0$ and the initial condition u(x,0) = f(x) for all $0 \le x \le \ell$ where f(x) is given by f(x) = 1 for $0 < x < \frac{2\ell}{3}$ and f(x) = 3 for $\frac{2\ell}{3} < x < \ell$ (with $f(0) = f(\frac{2\ell}{3}) = f(1) = 2$).
- **5:** Solve Dirichlet's problem, that is solve Laplace's equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, for u = u(x,y) on the square $0 \le x \le 1$, $0 \le y \le 1$ satisfying the boundary conditions u(x,0) = x and u(x,1) = x for $0 \le x \le 1$, and $u(0,y) = \sin \pi y$ and $u(1,y) = 1 \sin \pi y$ for $0 \le y \le 1$.
- **6:** Consider Laplace's equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial u^2} = 0$.
 - (a) Change to polar coordinates by letting $x=r\cos\theta$ and $y=r\sin\theta$. Use the Chain Rule to calculate $\frac{\partial u}{\partial r}$ and $\frac{\partial^2 u}{\partial r^2}$, and $\frac{\partial^2 u}{\partial \theta}$ and $\frac{\partial^2 u}{\partial \theta^2}$, and hence show that Laplace's equation, for $u=u(r,\theta)=u(x(r,\theta),y(r,\theta))$, becomes

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0.$$

(b) Find a solution u=u(x,y) to Laplace's equation $\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=0$ in the annulus given by $1\leq x^2+y^2\leq 2$ satisfying the boundary conditions u(x,y)=6 when $x^2+y^2=1$ and u(x,y)=10 when $x^2+y^2=2$.