- 1: Find the Fourier series for the 2π -periodic function $f: \mathbb{R} \to \mathbb{R}$ given by f(x) = x when $-\pi \le x < \pi$, then use Parseval's Identity to show that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.
- **2:** Let $f: \mathbb{R} \to \mathbb{R}$ be the function of period 4 given by f(x) = 1 for $-1 \le x < 1$ and f(x) = 0 for $1 \le x < 3$. Find the Fourier series for f, then evaluate at x = 0 to find $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$.
- **3:** Let $f: \mathbb{R} \to \mathbb{R}$ be the 2π -periodic function with $f(x) = x^3 \pi^2 x$ for $-\pi \le x \le \pi$. Find the Fourier series for f, then evaluate at $x = \frac{\pi}{2}$ to find $\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^3}$.
- **4:** Use Fourier series to solve the ODE 4x'' + x = f(t), for x = x(t), where $f : \mathbb{R} \to \mathbb{R}$ is the 2π -periodic function given by $f(t) = t^2$ for $-\pi \le t \le \pi$.