Chapter 9. The Seifert-Van Kampen Thheorem

The Seifert-Van Kampen Theorem

9.1 Note: Let $\alpha_1, \dots, \alpha_n$ be paths in a topological space X, with the endpoint of α_k equal to the initial point of α_{k+1} . Let $P = (x_0, x_1, \dots, x_n)$ and $Q = (y_0, y_1, \dots, y_n)$ be two partitions of the interval [0, 1]. Let β and γ be the paths in X which follow the paths $\alpha_1, \alpha_2, \dots, \alpha_n$ with $\beta(t) = \alpha_k \left(\frac{t-x_{k-1}}{x_k-x_{k-1}}\right)$ for $t \in [x_{k-1}, x_k]$ and $\gamma(t) = \alpha_k \left(\frac{t-y_{k-1}}{y_k-y_{k-1}}\right)$ for $t \in [y_{k-1}, y_k]$. Then we have $\beta \sim \gamma$: indeed a homotopy from β to γ in X is given by

$$F(s,t) = \alpha_k \left(\frac{t - ((1-s)x_{k-1} + sy_{k-1})}{((1-s)x_k + sy_k) - ((1-s)x_{k-1} + sy_{k-1})} \right) \text{ for } t \in \left[(1-s)x_{k-1} + sy_{k-1}, (1-s)x_k + sy_k \right].$$

- **9.2 Definition:** When $\alpha_1, \alpha_2, \dots, \alpha_n$ are paths in a topological space, with the endpoint of α_k equal to the endpoint of α_{k+1} , we shall write $\alpha_1\alpha_2\cdots\alpha_n$ to denote the path γ which follows the paths $\alpha_1, \dots, \alpha_n$ with $\gamma(t) = \alpha_k(nt (k-1))$ for $t \in \left[\frac{k-1}{n}, \frac{k}{n}\right]$, so that α_k is the path obtained by restricting $\gamma = \alpha_1\alpha_2\cdots\alpha_n$ to the interval $\left[\frac{k-1}{n}, \frac{k}{n}\right]$.
- **9.3 Note:** Suppose that $F:[a,b]\times[c,d]\to X$ is continuous, and let α_a and α_b , be the paths obtained by restricting F to the intervals $\{a\}\times[c,d]$ and $\{b\}\times[c,d]$, so for example α_a is given by $\alpha_a(t)=F\left(a,\frac{t-c}{d-c}\right)$, and let β_c and β_d be the paths obtained by restricting F to $[a,b]\times\{c\}$ and $[a,b]\times\{d\}$. Then we have $\alpha_a\beta_d\sim\beta_c\alpha_b$: Indeed a homotopy from $\alpha_a\beta_d$ to $\beta_c\alpha_b$ is given by

$$G(s,t) = \left\{ F((1-2t)(a,c) + 2t((1-s)(b,c) + s(a,d))) & \text{if } 0 \le t \le \frac{1}{2} \\ F((2-2t)((1-s)(b,c) + s(a,d)) + (2t-1)(b,d)) & \text{if } \frac{1}{2} \le t \le 1 \right\}.$$

9.4 Theorem: (The Seifert Van Kampen Theorem) Let X be a topological space with $a \in X$. Suppose that $X = \bigcup_{k \in K} U_k$ where each U_k is open in X with $a \in U_k$. Suppose that U_k , $U_k \cap U_\ell$ and $U_k \cap U_\ell \cap U_m$ are path-connected for all $k, \ell, m \in K$. Then

$$\pi_1(X,a) \cong \left(\underset{k \in K}{*} \pi_1(U_k,a) \right) / N$$

where N is the normal subgroup generated by elements of the form $[\omega]_k[\omega^{-1}]_\ell$ where ω is a loop at a in $U_k \cap U_\ell$ and $[\omega]_k \in \pi_1(U_k, a)$ and $[\omega]_\ell \in \pi_1(U_\ell, a)$.

Proof: Define $\phi: \underset{k \in K}{*} \pi_1(U_k, a) \to \pi_1(X, a)$ by

$$\phi([\sigma_1]_{\ell_1}[\sigma_2]_{\ell_2}\cdots[\sigma_n]_{\ell_n})=[\sigma_1\sigma_2\cdots\sigma_n]\in\pi_1(X,a)$$

where σ_i is a loop at a in U_{ℓ_i} , and $[\sigma_i]_{\ell_i} \in \pi_1(U_{\ell_i}, a)$. Verify, as an exercise, that ϕ is well-defined and ϕ is a group homomorphism.

We claim that ϕ is surjective. Let $\gamma:[0,1]\to X$ be any loop at a in X. The sets $\gamma^{-1}(U_k)$ form an open cover of [0,1], which is compact. Choose a Lebesgue number $\lambda>0$ for this cover. Choose $n\in\mathbb{Z}^+$ large enough so that $\frac{1}{n}<\lambda$. Each interval $I_j=\left[\frac{j-1}{n},\frac{j}{n}\right]$ is contained in one of the open sets $\gamma^{-1}(U_k)$, say $I_j\subseteq\gamma^{-1}(U_{\ell_j})$, that is $\gamma(I_j)\subseteq U_{\ell_j}$. For $1\leq j\leq n$, let α_j be the path obtained by restricting γ to the interval I_j , that is let $\alpha_j(t)=\gamma\left(\frac{t}{n}+\frac{j-1}{n}\right)$. For $1\leq j\leq n-1$ we have $\frac{j}{n}\in I_j\cap I_{j+1}$ so that $\gamma\left(\frac{j}{n}\right)\in U_{\ell_j}\cap U_{\ell_{j+1}}$, which is path-connected, so we can choose a path ρ_j from a to $\gamma\left(\frac{j}{n}\right)$ in $U_{\ell_j}\cap U_{\ell_{j+1}}$. Also, let ρ_0 and ρ_n be the constant loop κ at a. For $1\leq j\leq n$, let $\sigma_j=\rho_{j-1}\alpha_j\rho_j^{-1}$, which is a loop at a in U_{ℓ_j} . We have $\gamma\sim\alpha_1\alpha_2\cdots\alpha_n\sim\rho_0\alpha_1\rho_1^{-1}$ $\rho_1\alpha_2\rho_2^{-1}\cdots\rho_{n-1}\alpha_n\rho_n^{-1}=\sigma_1\sigma_2\cdots\sigma_n$ so that $\phi\left([\sigma_1]_{\ell_1}[\sigma_2]_{\ell_2}\cdots[\sigma_n]_{\ell_n}=[\sigma_1\sigma_2\cdots\sigma_n]=[\gamma]$. Thus ϕ is surjective, as claimed.

Since ϕ is surjective, it follows from the First Isomorphism Theorem that

$$\pi_1(X, a) \cong \left(\underset{k \in K}{*} \pi_1(U_k, a) \right) / \operatorname{Ker} \phi.$$

We need to prove that $\operatorname{Ker} \phi = N$ where N is the normal subgroup generated by elements of the form $[\omega]_k[\omega^{-1}]_\ell$ where ω is a loop at a in $U_k \cap U_\ell$. Note that when ω is a loop at a in $U_k \cap U_\ell$ we have $\phi([\omega]_k[\omega^{-1}]_\ell) = [\omega\omega^{-1}] = [\kappa]$, which is the identity element in $\pi_1(X, a)$, so we have $N \subseteq \operatorname{Ker} \phi$.

It remains to show that $\operatorname{Ker} \phi \subseteq N$. For now, suppose that each quadruple intersection $U_k \cap U_\ell \cap U_m \cap U_n$ is path-connected, where $k,\ell,m,n \in K$. Later we shall show how to modify the proof so that it suffices to suppose that each triple intersection $U_k \cap U_\ell \cap U_m$ is path-connected. Let $[\sigma_1]_{\ell_1}[\sigma_2]_{\ell_2} \cdots [\sigma_n]_{\ell_n} \in \operatorname{Ker} \phi$, where each σ_j is a loop at a in U_{ℓ_j} with $\ell_j \in K$. This means that $\sigma_1 \sigma_2 \cdots \sigma_n \sim \kappa$ in X. Let $F:[0,1] \times [0,1] \to X$ be a homotopy from $\sigma_1 \sigma_2 \cdots \sigma_n$ to κ in X. The sets $F^{-1}(U_k)$ form an open cover of $[0,1] \times [0,1]$, which is compact. Choose a Lebesgue number $\lambda > 0$ for this open cover. Choose m to be a multiple of n which is large enough so that $\frac{1}{m} < \lambda$. Each square $I_{i,j} = \left[\frac{i-1}{m}, \frac{i}{m}\right] \times \left[\frac{j-1}{m}, \frac{j}{m}\right]$ is contained in one of the sets $F^{-1}(U_k)$, say $I_{i,j} \subseteq F^{-1}(U_{k_{i,j}})$, that is $F(I_{i,j}) \subseteq U_{k_{i,j}}$.

For $0 \le i, j \le m$, let $x_{i,k} = F\left(\frac{i}{m}, \frac{j}{m}\right)$. Note that $x_{i,0} = x_{i,m} = x_{m,j} = a$. For $0 \le i \le m$ and $1 \le j \le m$, let $\alpha_{i,j}$ be the path from $x_{i,j-1}$ to $x_{i,j}$ obtained by restricting F to the interval $\left\{\frac{i}{m}\right\} \times \left[\frac{j-1}{m}, \frac{j}{m}\right]$. For $1 \le i \le m$ and $0 \le j \le m$, let $\beta_{i,j}$ be the path from $x_{i-1,j}$ to $x_{i,j}$ obtained by restricting F to the interval $\left[\frac{i-1}{m}, \frac{i}{m}\right] \times \left\{\frac{j}{m}\right\}$. Recall that m is a multiple of n, say m = pn. Then we have $\sigma_1 = \alpha_{0,1}\alpha_{0,2}\cdots\alpha_{0,p}$ and $\sigma_2 = \alpha_{0,p+1}\alpha_{0,p+2}\cdots\alpha_{0,2p}$, and so on. Let $k_{0,1} = k_{0,2} = \cdots = k_{0,p} = \ell_1$ and $k_{0,p+1} = k_{0,p+2} = \cdots = k_{0,2p} = \ell_2$ and so on.

Note that (if j>0) $x_{i,j}$ lies in $U_{k_{i,j}}$ and (if i< m and j>0) in $U_{k_{i+1,j}}$ and (if j< m) in $U_{k_{i,j+1}}$ and (if i< m and j< m) in $U_{k_{i+1,j+1}}$. For $0 \le i < m$ and $1 \le j < m$, choose a path $\rho_{i,j}$ from a to $x_{i,j}$ which lies in all the relevant sets $U_{k_{i,j}}, U_{k_{i+1,j}}, U_{k_{i,j+1}}$ and $U_{k_{i+1,j+1}}$ (we can do this since quadruple intersections are path-connected). Also, noting that $x_{i,0}=x_{i,m}=x_{m,j}=a$, for all i,j, we choose $\rho_{i,0}=\rho_{i,m}=\rho_{m,j}=\kappa$, the constant loop at a. For $0 \le i \le m$ and $1 \le j \le m$, let $\sigma_{i,j}=\rho_{i,j-1}\alpha_{i,j}\rho_{i,j}^{-1}$. Note that $\sigma_{i,j}$ is a loop at a which lies in $U_{k_{i,j}}$ and (if i< m) in $U_{k_{i+1,j}}$, and that $\sigma_{m,j}=\kappa$. For $1 \le i \le m$ and $0 \le j \le m$, let $\tau_{i,j}=\rho_{i-1,j}\beta_{i,j}\rho_{i,j}^{-1}$. Note that $\tau_{i,j}$ is a loop at a which (if j>0) lies in $U_{k_{i,j}}$ and (if j< m) in $U_{k_{i,j+1}}$, and that $\tau_{i,0}=\tau_{m,0}=\kappa$.

For $0 \le i \le m$, let $u_i = [\sigma_{i,1}]_{k_{i,1}} [\sigma_{i,2}]_{k_{i,2}} \cdots [\sigma_{i,m}]_{k_{i,m}}$. Note that

$$[\sigma_1]_{\ell_1}[\sigma_2]_{\ell_2}\cdots[\sigma_n]_{\ell_n}=[\sigma_{0,1}]_{k_{0,1}}[\sigma_{0,2}]_{k_{0,2}}\cdots[\sigma_{0,m}]_{k_{0,m}}=u_0.$$

For $u,v\in \underset{k\in K}{*}\pi_1(U_k,a)$, write $u\equiv v$ to indicate that uN=vN. We shall complete the proof by showing that $u_0\equiv u_1\equiv\cdots\equiv u_m$ and noting that $u_m=0$ (the empty string in $\underset{k\in K}{*}\pi_1(U_k,a)$), so that $u_0\in N$. We do this using a sequence of steps, at each step using one of the following two observations. First, note that when ω is a loop at a in $U_k\cap U_\ell$, since $[\omega]_k[\omega^{-1}]_\ell\in N$, we have $[\omega]_\ell\equiv [\omega]_k[\omega^{-1}]_\ell[\omega]_\ell=[\omega]_k$. Second, note that by Note 6.3, in the set $U_{k_{i,j}}$ we have $\alpha_{i-1,j}\beta_{i,j}\sim\beta_{i,j-1}\alpha_{i,j}$ so that $\sigma_{i-1,j}\tau_{i,j}\sim\tau_{i,j-1}\sigma_{i,j}$, hence $\tau_{i,j-1}^{-1}\sigma_{i-1,j}\sim\sigma_{i,j}\tau_{i,j}^{-1}$, and so we have $[\tau_{i,j-1}^{-1}]_{k_{i,j}}[\sigma_{i-1,j}]_{k_{i,j}}=[\sigma_{i,j}]_{k_{i,j}}[\tau_{i,j}^{-1}]_{k_{i,j}}$.

Using the above two observations, repeatedly, gives

$$u_{i-1} = [\sigma_{i-1,1}]_{k_{i-1,1}} [\sigma_{i-1,2}]_{k_{i-1,2}} [\sigma_{i-1,3}]_{k_{i-1,3}} \cdots [\sigma_{i-1,m}]_{k_{i-1,m}}$$

$$= [\tau_{i,0}^{-1}]_{k_{i,0}} [\sigma_{i-1,1}]_{k_{i-1,1}} [\sigma_{i-1,2}]_{k_{i-1,2}} [\sigma_{i-1,3}]_{k_{i-1,3}} \cdots [\sigma_{i-1,m}]_{k_{i-1,m}}$$

$$\equiv [\tau_{i,0}^{-1}]_{k_{i,1}} [\sigma_{i-1,1}]_{k_{i,1}} [\sigma_{i-1,2}]_{k_{i-1,2}} [\sigma_{i-1,3}]_{k_{i-1,3}} \cdots [\sigma_{i-1,m}]_{k_{i-1,m}}$$

$$= [\sigma_{i,1}]_{k_{i,1}} [\tau_{i,1}^{-1}]_{k_{i,1}} [\sigma_{i-1,2}]_{k_{i-1,2}} [\sigma_{i-1,3}]_{k_{i-1,3}} \cdots [\sigma_{i-1,m}]_{k_{i-1,m}}$$

$$\equiv [\sigma_{i,1}]_{k_{i,1}} [\tau_{i,1}^{-1}]_{k_{i,2}} [\sigma_{i-1,2}]_{k_{i,2}} [\sigma_{i-1,3}]_{k_{i-1,3}} \cdots [\sigma_{i-1,m}]_{k_{i-1,m}}$$

$$= [\sigma_{i,1}]_{k_{i,1}} [\sigma_{i,2}]_{k_{i,2}} [\tau_{i,2}^{-1}]_{k_{i,2}} [\sigma_{i-1,3}]_{k_{i-1,3}} \cdots [\sigma_{i-1,m}]_{k_{i-1,m}}$$

$$\vdots$$

$$= [\sigma_{i,1}]_{k_{i,1}} [\sigma_{i,2}]_{k_{i,2}} \cdots [\sigma_{i,m-1}]_{k_{i,m-1}} [\tau_{i,m-1}^{-1}]_{k_{i,m-1}} [\sigma_{i-1,m}]_{k_{i-1,m}}$$

$$\equiv [\sigma_{i,1}]_{k_{i,1}} [\sigma_{i,2}]_{k_{i,2}} \cdots [\sigma_{i,m-1}]_{k_{i,m-1}} [\sigma_{i,m}]_{k_{i,m}} [\tau_{i,m}^{-1}]_{k_{i,m}}$$

$$= [\sigma_{i,1}]_{k_{i,1}} [\sigma_{i,2}]_{k_{i,2}} \cdots [\sigma_{i,m-1}]_{k_{i,m-1}} [\sigma_{i,m}]_{k_{i,m}} [\tau_{i,m}^{-1}]_{k_{i,m}}$$

$$= [\sigma_{i,1}]_{k_{i,1}} [\sigma_{i,2}]_{k_{i,2}} \cdots [\sigma_{i,m-1}]_{k_{i,m-1}} [\sigma_{i,m}]_{k_{i,m}} = u_{i+1}.$$

Thus $[\sigma_1]_{\ell_1}\cdots[\sigma_n]_{\ell_n}\equiv u_1\equiv u_m=[\sigma_{m,1}]_{k_{m,1}}\cdots[\sigma_{m,m}]_{k_{m,m}}=0$ since each $\sigma_{m,j}=\kappa$. This proves that $[\sigma_1]_{\ell_1}[\sigma_2]_{\ell_2}\cdots[\sigma_n]_{\ell_n}\in N$ and hence $\operatorname{Ker}\phi\subseteq N$, as required.

This completes the proof, under the assumption that quadruple intersections are path-connected. We can modify the proof so that only triple intersections need to be path-connected as follows. Rather than partitioning the domain of F into the squares $I_{i,j} = \left[\frac{i-1}{m}, \frac{i}{m}\right] \times \left[\frac{j-1}{m}, \frac{j}{m}\right]$, which sometimes meet four squares at a vertex, we can partition the domain of F into squares and rectangles $R_{i,j}$ with at most three meeting at each vertex: when i is even, let $R_{i,j} = I_{i,j}$, when i is odd, move the horizontal edges up by $\frac{1}{3m}$ letting $R_{i,1} = \left[\frac{i-1}{m}, \frac{i}{m}\right] \times \left[0, \frac{4}{3m}\right]$ and $R_{i,j} = I_{i,j} + \left(0, \frac{1}{3m}\right)$ for 1 < j < m, and $R_{i,m} = \left[\frac{i-1}{m}, \frac{i}{m}\right] \times \left[\frac{m-1}{m} + \frac{1}{3m}, 1\right]$. Note that the largest rectangles have sides of length $\frac{1}{m}$ and $\frac{4}{3m}$, hence their diameter is $\frac{5}{3m} < \frac{2}{m} < 2\lambda$, so they lie in an open ball of radius λ , and hence they lie in one of the open sets $F^{-1}(U_k)$, $k \in K$. Thus we can repeat the same argument used above to show that $\ker \phi \subseteq N$, and we only need to assume that triple intersections are path-connected.

9.5 Corollary: Let X be a topological space with $a \in X$. Suppose that $X = U \cup V$ where U and V are open in X with $a \in U \cap V$. Suppose that U, V and $U \cap V$ are path-connected. Then

$$\pi_1(X,a) \cong \left(\pi_1(U,a) * \pi_1(V,a)\right)/N$$

where N is the normal subgroup generated by elements of the form $[\omega]_U[\omega^{-1}]_V$ and $[\omega]_V[\omega^{-1}]_U$, where ω is a loop at a in $U \cap V$. Also, we have the following two particular cases:

- (1) If $\pi_1(U \cap V) = 0$ then $\pi_1(X, a) \cong \pi_1(U, a) * \pi_1(V, a)$.
- (2) If $\pi_1(V, a) = 0$ then $\pi_1(X, a) \cong \pi_1(U, a)/N$ where N is the normal subgroup generated by elements of the form $[\omega]_U$ where ω is a loop at a in $U \cap V$.
- **9.6 Example:** Note that when $n \geq 2$ we have $\pi_1(\mathbb{S}^n) = 0$: Indeed, let $1 = (1, 0, \dots, 0)$ and $p = (0, \dots, 0, 1)$, and take $U = \mathbb{S}^n \setminus \{p\}$ and $V = \mathbb{S}^n \setminus \{-p\}$. Then, using stereographic projection, we have $U \cong \mathbb{R}^n$ so that $\pi_1(U, 1) = 0$ and $V \cong \mathbb{R}^n$ so that $\pi_1(V, 1) = 0$, and $U \cap V \cong \mathbb{R}^2 \setminus \{0\}$ which is path-connected, and hence $\pi_1(X, 1) = 0$ by the Seifert Van Kampen Theorem.

- **9.7 Definition:** For based topological spaces (X_k, a_k) , where K is a nonempty set, the wedge product $\bigwedge_{k \in K} (X_k, a_k)$ is the quotient space of the disjoint union $\bigsqcup_{k \in K} X_k$ under the equivalence relation which identifies all the basepoints. The equivance class containing the basepoints is the basepoint of the wedge product.
- **9.8 Example:** The finite wedge product of circles $\bigwedge_{k=1}^n(\mathbb{S}^1,1)$ is homeomorphic to the n-loop space, which is the union of the images of the loops $\alpha_k(t) = (\sin \pi t)e^{i\,2\pi(k+t)/n}$ for $1 \le k \le n$, and also to the **shrinking wedge of** n **circles**, which is the union of the images of the loops $\alpha_k(t) = \frac{1}{k}(\sin \pi t)e^{i\,\pi t}$ for $1 \le k \le n$.

 The countable wedge of circles $\bigwedge_{k=1}^{\infty}(\mathbb{S}^1,1)$, by contrast, is not homeomorphic to the

The countable wedge of circles $\bigwedge_{k=1}^{\infty}(\mathbb{S}^1,1)$, by contrast, is not homeomorphic to the countable **shrinking wedge of circles**, which is the union of the images of the loops $\alpha_k(t) = \frac{1}{k}(\sin \pi t)e^{i\pi t}$ for $k \in \mathbb{Z}^+$. One way to see this is to note that the countable wedge of circles is locally simply connected, but the countable shrinking wedge of circles is not.

- **9.9 Example:** Show that $\pi_1(\bigwedge_{k=1}^n(\mathbb{S}^1,1)) = \langle \alpha_1, \dots, \alpha_n \rangle \cong *_{k=1}^n \mathbb{Z}$ where α_k is the loop which goes once around the k^{th} circle $S_k = \mathbb{S}^1$.
- **9.10 Example:** Let G be a finite connected graph (consisting of a finite set of vertices and a finite set of edges), and let a be a vertex of G. Let T be a maximal tree in G (that is a maximal subgraph which contains no cycles). Let E_1, \dots, E_n be the edges in G which do not lie in T (so for each k, the graph $T \cup E_k$ contains a cycle). For each k, let α_k be a loop in $G \cup E_k$ which follows a path γ along T from a to an endpoint of E_k , then follows a cycle in $T \cup E_k$, then follows γ^{-1} back to a. Show that $\pi_1(G, a) \cong \langle \alpha_1, \dots, \alpha_n \rangle \cong \#_{k=1}^n \mathbb{Z}$.
- **9.11 Example:** Recall that $(\mathbb{T}^2)^{\#g}$ is homeomorphic to the quotient space $T_g^2 = D/\sim$ where D is the closed unit disc and \sim is the equivalence relation which identifies points on the boundary $S = \partial D$ according to the word $\alpha_1 \beta_1 \alpha_1^{-1} \beta_1^{-1} \alpha_2 \beta_2 \alpha_2^{-1} \beta_2^{-1} \cdots \alpha_g \beta_g \alpha_g^{-1} \beta_g^{-1}$. Show that $\pi_1(T_g^2, 1) = \langle \alpha_1, \beta_1, \alpha_2, \beta_2, \cdots, \alpha_g \beta_g \, | \, \alpha_1 \beta_1 \alpha_1^{-1} \beta_1^{-1} \alpha_2 \beta_2 \alpha_2^{-1} \beta_2^{-1} \cdots \alpha_g \beta_g \alpha_g^{-1} \beta_g^{-1} \rangle$. Also recall that $(\mathbb{P}^2)^{\#h} \cong P_h^2 = D/\sim$ where \sim identifies points on $S = \partial D$ according to $\alpha_1^2 \alpha_2^2 \cdots \alpha_h^2$. Show that $\pi_1(P_h^2, 1) = \langle \alpha_1, \alpha_2, \cdots, \alpha_h \, | \, \alpha_1^2 \alpha_2^2 \cdots \alpha_h^2 \rangle$. Deduce that $Ab(\pi_1(T_g^2)) \cong \mathbb{Z}^{2g}$ and $Ab(\pi_1(P_h^2)) \cong \mathbb{Z}^{h-1} \times \mathbb{Z}_2$.
- **9.12 Example:** Show that given any group of the form $G \cong \langle \alpha_1, \dots, \alpha_n \mid w_1, \dots, w_\ell \rangle$, we can construct a based topological space (X, a) with $\pi_1(X, a) \cong G$ as follows. Let (W, a) be the wedge product of n circles, and let α_k be the loop at a which goes once around the k^{th} circle $S_k = \mathbb{S}^1$. Let X be the quotient space of the disjoint union of W with ℓ closed discs D_1, D_2, \dots, D_ℓ under the equivalence relation which identifies points on the boundary of the circle $T_i = \partial D_i$ with points on W according to word w_i .
- **9.13 Definition:** A (finite) **CW complex** is a topological space X which is obtained as follows: We begin with a finite discrete set of points X^0 . Having constructed X^{k-1} , we let X^k be the quotient space of the disjoint union of X^{k-1} with finitely many closed k-balls D_1, D_2, \dots, D_ℓ , under the equivalence relation which identifies points on the boundary $S_j = \partial D_j$ with points on X^{k-1} in accordance with a continuous map $f_j: S_j \to X^{k-1}$. Eventually the construction ends with $X = X^n$. The space X^k is called the k skeleton of X.
- **9.14 Remark:** The fundamental group of a CW complex is equal to the fundamental group of its 2-skeleton.