Chapter 7. Homotopy Invariance and Retracts

Homotopic Maps and Spaces

- **7.1 Definition:** Let $f, g: (X, a) \to (Y, b)$ be continuous maps of based topological spaces. A **homotopy** from f to g relative to a, is a continuous map $F: [0, 1] \times X \to Y$ such that F(0, x) = f(x) and F(1, x) = g(x) for all $x \in X$, and F(s, a) = b for all $s \in [0, 1]$. When such a homotopy exists, we say that f is **homotopic** to g (relative to g), and we write $f \sim g$ (rel g). Verify, as an exercise, that this is an equivalence relation.
- **7.2 Theorem:** Let $f, g: (X, a) \to (Y, b)$ be continuous maps of based topological spaces. Suppose that $f \sim g$ (rel a). Then $f_* = g_* : \pi_1(X, a) \to \pi_1(Y, b)$.

Proof: If $\alpha:[0,1] \to X$ is a loop at a in X, and $F:[0,1] \times X \to Y$ is a homotopy from f to g relative to a, then the map $G:[0,1] \times [0,1] \to Y$ given by $G(s,t) = F(s,\alpha(t))$ is an (endpoint-fixing) homotopy from $f \circ \alpha$ to $g \circ \alpha$, so we have $f_*(\alpha) = [f \circ \alpha] = [g \circ \alpha] = g_*(\alpha)$.

7.3 Corollary: Let $f:(X,a) \to (Y,b)$ and $g:(Y,b) \to (X,a)$ be continuous maps of based topological spaces. Suppose that $g \circ f \sim \operatorname{id}_X$ (rel a) and $f \circ g \sim \operatorname{id}_Y$ (rel b). Then f_* and g_* are inverses of each other, so we have $\pi_1(X,a) \cong \pi_1(Y,b)$.

Proof: We have $g_* \circ f_* = (g \circ f)_* = (\mathrm{id}_X)_* = \mathrm{id}_{\pi_1(X,a)}$ and similarly $f_* \circ g_* = \mathrm{id}_{\pi_1(Y,b)}$ so that f_* and g_* are inverses of each other.

- **7.4 Definition:** Let (X, a) and (Y, b) be based topological spaces. When there exist continuous maps $f: (X, a) \to (Y, b)$ and $g: (Y, b) \to (X, a)$ such that $g \circ f \sim \operatorname{id}_X$ (rel a) and $f \circ g \sim \operatorname{id}_Y$ (rel b), we say that the based spaces (X, a) and (Y, b) are **homotopic**, and we write $(X, a) \sim (Y, b)$. You can verify, if you want, that this is an equivalence relation (on the class of based topological spaces). By the above corollary, when $(X, a) \sim (Y, b)$ we have $\pi_1(X, a) \cong \pi_1(Y, b)$.
- **7.5 Definition:** Let $f, g: X \to Y$ be continuous maps of topological spaces. A (free) **homotopy** from f to g is a continuous map $F: [0,1] \times X \to Y$ such that F(0,x) = f(x) and F(1,x) = g(x) for all $x \in X$. When such a homotopy exists, we say that f is (freely) **homotopic** to g and we write $f \sim g$. You can verify that this is an equivalence relation.
- **7.6 Note:** Let $f, g: X \to Y$ be continuous, and let $a \in X$. Note that if $f \sim g$ then, f(a) and g(a) lie in the same path-component of Y: indeed if $F: [0,1] \times X \to Y$ is a homotopy from f to g, then g: $[0,1] \to Y$ given by $[0,1] \to Y$ given $[0,1] \to Y$ given by $[0,1] \to Y$ given by $[0,1] \to Y$ given $[0,1] \to Y$ given [0,1
- **7.7 Theorem:** Let $f, g: X \to Y$ be continuous maps of topological spaces. Suppose that $f \sim g$ (freely) and let $F: [0,1] \times X \to Y$ be a (free) homotopy from f to g. Let $a \in X$ and let γ be the path from $f(a) \to g(a)$ in Y given by $\gamma(s) = F(s,a)$. Then $g_* = \phi_{\gamma} \circ f_*$ and $f_* = \phi_{\gamma^{-1}} \circ g_*$.

Proof: Let α be a loop at a in X. Then the map $G:[0,1]\times[0,1]\to Y$ given by

$$G(s,t) = \left\{ \begin{array}{ll} \gamma(4t) & \text{if } 0 \le s \le 1 \,,\, 0 \le t \le \frac{s}{4} \\ F\left(s \,,\, \alpha\left(\frac{4t-s}{4-3s}\right)\right) & \text{if } 0 \le s \le 1 \,,\, \frac{s}{4} \le t \le \frac{2-s}{2} \\ \gamma(2-2t) & \text{if } 0 \le s \le 1 \,,\, \frac{2-s}{2} \le t \le 1 \end{array} \right\}$$

is a homotopy from $f \circ \alpha$ to $(\gamma(g \circ \alpha))\gamma^{-1}$ in Y so that $f_*([\alpha]) = [f \circ \alpha] = (\gamma(g \circ \alpha)\gamma^{-1}] = \phi_{\gamma}([g \circ \alpha]) = \phi_{\gamma}(g_*([\alpha])) = (\phi_{\gamma} \circ g_*)([\alpha])$. Thus $f_* = \phi_{\gamma_{-1}} \circ g_*$, hence also $g_* = \phi_{\gamma} \circ f_*$ (since $\phi_{\gamma^{-1}} = (\phi_{\gamma})^{-1}$).

7.8 Theorem: Let $f: X \to Y$ and $g: Y \to X$ be continuous maps of topological spaces. Suppose that $g \circ f \sim \operatorname{id}_X$ and $f \circ g \sim \operatorname{id}_Y$. Then $\pi_1(X, a) \cong \pi_1(Y, f(a))$.

Proof: Let F be a (free) homotopy from $g \circ f$ to id_X and let G be a (free) homotopy from $f \circ g$ to id_Y . Let $a \in X$, let $b = f(a) \in Y$, let $c = g(b) \in X$ and let $d = f(c) \in Y$. Let γ be the path in X from c to a given by $\gamma(s) = F(s,a)$, and let δ be the path in Y from d to b given by $\delta(s) = G(s,b)$. Write f_* for the induced homomorphism $f_*: \pi_1(X,a) \to \pi_1(Y,b)$, write g_* for the induced homomorphism $g_*: \pi_1(Y,b) \to \pi_1(X,c)$, and write f'_* for the induced homomorphism $f'_*: \pi_1(X,c) \to \pi_1(Y,d)$. By the above theorem, $g_* \circ f_* = (g \circ f)_* = \phi_{\gamma^{-1}} \circ \mathrm{id}_{\pi_1(X,a)} = \phi_{\gamma^{-1}}$ so that $g_* \circ f_* \circ \phi_{\gamma} = \mathrm{id}_{\pi_1(X,c)}$. Since the map $g_*: \pi_1(Y,b) \to \pi_1(X,c)$ has a right inverse, it is surjective. Similarly, by the above theorem, we have $f'_* \circ g_* = (f \circ g)_* = \phi_{\delta^{-1}}$ so that $\phi_{\delta} \circ f'_* \circ g_* = \mathrm{id}_{\pi_1(Y,b)}$. Since g_* has a left inverse, it is injective. Since g_* is surjective and injective, it is bijective (with $(g_*)^{-1} = f_* \circ \phi_{\gamma} = \phi_{\delta} \circ f'_*$). Since $g_* \circ f_* = \phi_{\gamma^{-1}}$ and g_* and $\phi_{\gamma^{-1}}$ are both bijective, it follows that f_* is bijective (with $(f_*)^{-1} = \phi_{\gamma} \circ g_*$).

7.9 Definition: Let X and Y be topological spaces. When there exist continuous maps $f: X \to Y$ and $g: Y \to X$ such that $g \circ f \sim \operatorname{id}_X$ and $f \circ g \sim \operatorname{id}_Y$, we say that X is (freely) **homotopic** to Y, and we write $X \sim Y$. You can verify, as an exercise, that this is an equivalence relation (on the class of topological spaces). By the above theorem, when $X \sim Y$ we have $\pi_1(X, a) \cong \pi_1(Y, b)$ where b is any point in Y which lies in the same path component as f(a).

Retracts and Deformation Retracts

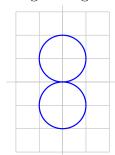
- **7.10 Definition:** Let $f, g: X \to Y$ be continuous maps of topological spaces, let $A \subseteq X$, and suppose that f(a) = g(a) for all $a \in A$. A **homotopy** from f to g, relative to A, is a continuous map $F: [0,1] \to X \to Y$ such that F(0,x) = f(x) and F(1,x) = g(x) for all $x \in X$, and F(s,a) = f(a) = g(a) for all $s \in [0,1]$ and all $a \in A$. When such a homotopy exists, we say that f is **homotopic** to g relative to g, and we write g (rel g).
- **7.11 Remark:** For continuous maps $f, g: X \to Y$, a free homotopy from f to g is the same thing as a homotopy from f to g relative to the set $A = \emptyset$, and if f(a) = g(a) then a homotopy from f to g relative to a is the same thing as a homotopy from f to g relative to the set $A = \{a\}$. For (continuous) paths $\alpha, \beta: [0,1] \to X$ from a to b in X, an (endpoint-fixing) homotopy of paths from α to β in X is the same thing as a homotopy from α to β relative to the set $A = \{0,1\}$.
- **7.12 Definition:** Let X be a topological space, let $A \subseteq X$, and let $i: A \to X$ be the inclusion map. A **retraction** from X to A is a continuous map $f: X \to A$ such that f(a) = a for all $a \in A$, or equivalently, such that $f \circ i = \mathrm{id}_A$. When such a retraction exists, we say that A is a **retract** of X. A **deformation retraction** from X to A is continuous map $f: X \to A$ such that $f \circ i = \mathrm{id}_A$ and $i \circ f \sim \mathrm{id}_X$ (freely). When such a deformation retraction exists, we say that A is a **deformation retract** of X. A **strong deformation retraction** from X to A is a continuous map $f: X \to A$ such that $f \circ i = \mathrm{id}_A$ and $i \circ f \sim \mathrm{id}_X$ (rel A). When such a strong deformation retraction exists, we say that A is a **strong deformation retract** of X. Note that every strong deformation retract is also a deformation retract, and every deformation retract is also a retract.

7.13 Note: When $f: X \to A$ is a retraction and $a \in A$, we have $f \circ i = \mathrm{id}_A$ so that $f_* \circ i_* = \mathrm{id}_{\pi_1(X,a)}$, hence $f_*: \pi_1(X,a) \to \pi_1(A,a)$ is surjective and $i_*: \pi_1(A,a) \to \pi_i(X,a)$ is injective. When $f: X \to A$ is a deformation retraction (or a strong deformation retraction), since $f \circ i = \mathrm{id}_A$ and $i \circ f \sim \mathrm{id}_X$, it follows that for all $a \in A$, we have $\pi_1(X,a) \cong \pi_1(A,a)$, indeed the maps $f_*: \pi_1(X,a) \to \pi_1(A,a)$ and $i_*: \pi_1(A,a) \to \pi_1(X,a)$ are inverses of each other.

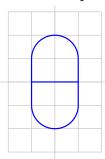
7.14 Example: The origin $\{0\}$ is a strong deformation retract of \mathbb{R}^n . The sphere \mathbb{S}^{n-1} is a strong deformation retract of $\mathbb{R}^n \setminus \{0\}$. When p is the north pole $p = (0, \dots, 0, 1) \in \mathbb{S}^n$, the one-point set $\{-p\}$ is a strong deformation retract of the punctured sphere $\mathbb{S}^n \setminus \{p\}$ (which is homeomorphic, via stereographic projection, to \mathbb{R}^n). Also, \mathbb{S}^{n-1} is a strong deformation retract of $\mathbb{S}^n \setminus \{\pm p\}$ (which is homeomorphic, via stereographic projection, to $\mathbb{R}^n \setminus \{0\}$).

7.15 Example: The figure eight space 8 and the theta space Θ , as shown, are both strong deformation retracts of $\mathbb{C}\setminus\{\pm i\}$, hence $8\sim\Theta$. But note that $8\not\cong\Theta$ because $8\setminus\{0\}$ is disconnected but $\Theta\setminus\{p\}$ is path-connected, hence connected, for all $p\in\theta$.

The Figure Eight Space 8



The Theta Space Θ



7.16 Exercise: Let *X* be the **comb space** $X = \bigcup_{n=1}^{\infty} ([0,1] \times \{\frac{1}{n}\}) \cup (\{0\} \times [0,1]) \cup ([0,1] \times \{0\})$.

Show that $\{(0,0)\}$ is a strong deformation retract of X and that $\{(1,0)\}$ is a deformation retract, but not a strong deformation retract, of X.

7.17 Example: The set $\{1\}$ is a retract of \mathbb{S}^1 , but not a deformation retract (since $\pi_1(\{1\},1)$ is not isomorphic to $\pi_1(\mathbb{S}^1,1)$). The boundary circle \mathbb{S}^1 is not a retract of the closed unit disc $D^2 = \overline{B}(0,1)$ since $\pi_1(\mathbb{S}^1,1) \cong \mathbb{Z}$ but $\pi_1(D^2,1) = 0$, so the map $i_*: \pi_1(\mathbb{S}^1,1) \to \pi_1(D^2,1)$ is not injective.

7.18 Definition: Let X be a topological space. We say that X is **simply connected** when X is path connected and $\pi_1(X,a) = 0$ for some (hence for any) $a \in X$. We say that X is **contractible** when X is homotopic to a 1-point set or, equivalently, when for some (hence for every) $a \in X$, the set $\{a\}$ is a deformation retract of X. Note that every contractible space is simply connected.

Applications

7.19 Theorem: (The Fundamental Theorem of Algebra) Every non-constant polynomial in $\mathbb{C}[x]$ has a root in \mathbb{C} .

Proof: I may include a proof later.

7.20 Theorem: (The Brouwer Fixed Point Theorem) Let D be the closed unit disc in \mathbb{R}^2 . Every continuous map $f: D \to D$ has a fixed point.

Proof: I may include a proof later.

7.21 Theorem: (The Borsuk-Ulam Theorem) For every continuous map $f: \mathbb{S}^2 \to \mathbb{R}^2$, there is a point $x \in \mathbb{S}^2$ such that f(-x) = f(x).

Proof: I may include a proof later.

7.22 Theorem: (The Lusternik-Schirelmann Theorem) Suppose that $\mathbb{S}^2 = A_1 \cup A_2 \cup A_3$ where each set A_k is closed in \mathbb{S}^2 . Then one of the sets A_k contains a pair of antipodal points $\pm x$.

Proof: I may include a proof later.