Chapter 6. Homotopy, and The Fundamental Group

Homotopy and The Fundamental Group

6.1 Definition: Let X be a topological space and let $\alpha, \beta : [0,1] \to X$ be paths from a to b in X. An (endpoint-fixing) **homotopy** from α to β in X is a continuous map $F: [0,1] \times [0,1] \to X$ such that $F(0,t) = \alpha(t)$ and $F(1,t) = \beta(t)$ for all $t \in [0,1]$, and F(s,0) = a and F(s,1) = b for all $\in [0,1]$. Note that, in this case, for each $s \in [0,1]$ the map $f_s: [0,1] \to X$ given by $f_s(t) = F(s,t)$ is a path from a to b in X. We say that α is **homotopic** to β (or that α is **homotopy-equivalent** to β) in X, and we write $\alpha \sim \beta$ in X, when there exists a homotopy from α to β in X.

6.2 Theorem: Let X be a topological space, and let $a, b \in X$. Then homotopy-equivalence is an equivalence relation on the set of all paths from a to b in X.

Proof: Let α, β, γ be paths from a to b in X. Note that $\alpha \sim \alpha$: indeed the map $F: [0,l1] \times [0,1] \to X$ given by $F(s,t) = \alpha(t)$ is a homotopy from α to α in X. Note that if $\alpha \sim \beta$ then $\beta \sim \alpha$: indeed if F is a homotopy from α to β in X then the map $G: [0,1] \times [0,1] \to X$ given by G(s,t) = F(1-s,t) is a homotopy from β to α in X. Finally note that if $\alpha \sim \beta$ in X and $\beta \sim \gamma$ in X then $\alpha \sim \gamma$ in X: indeed, if F is a homotopy from α to β in X and G is a homotopy from β to γ in X, then the map $H: [0,1] \times [0,1] \to X$ given by

$$H(s,t) = \left\{ \begin{array}{l} F(2s,t) & \text{, if } 0 \le s \le \frac{1}{2} \\ G(2s-1,t) & \text{, if } \frac{1}{2} \le s \le 1 \end{array} \right\}$$

is a homotopy from α to γ in X.

6.3 Notation: Given a topological space X and a point $a \in X$, we denote the set of homotopy-equivalence classes of loops at a in X by $\pi_1(X, a)$, that is

$$\pi_1(X,a) = \big\{ [\alpha] \, \big| \, \alpha \text{ is a loop at } a \text{ in } X \big\} \text{ , where}$$
$$[\alpha] = \big\{ \beta \, \big| \, \beta \text{ is a loop at } a \text{ in } X \text{ with } \beta \sim \alpha \text{ in } X \big\}.$$

6.4 Notation: Let X be a topological space. When $a \in X$, we write κ_a to denote the **constant loop** at a given by

$$\kappa_a(t) = a$$

for all $t \in [0,1]$. When α is a path from a to b in X, we write α^{-1} to denote the **inverse** path from b to a in X given by

$$\alpha^{-1}(t) = \alpha(1-t).$$

When α is a path from a to b in X and β is a path from b to c in X, we write $\alpha\beta$ to denote the **product path** from a to c in X given by

$$(\alpha\beta)(t) = \left\{ \begin{array}{l} \alpha(2t) & \text{, if } 0 \le t \le \frac{1}{2} \\ \beta(2t-1) & \text{, if } \frac{1}{2} \le t \le 1 \end{array} \right\}$$

1

- **6.5 Theorem:** Let X be a topological space
- (1) When α and β are paths from a to b in X, if $\alpha \sim \beta$ in X then $\alpha^{-1} \sim \beta^{-1}$ in X.
- (2) When α and β are paths from a to b in X, and γ and δ are paths from b to c in X, if $\alpha \sim \gamma$ in X and $\beta \sim \delta$ in X then $\alpha \gamma \sim \beta \delta$ in X.
- (3) When α is a path from a to b in X, we have $\kappa_a \alpha \sim \alpha$ in X and $\alpha \kappa_b \sim \alpha$ in X.
- (4) When α is a path from a to b in X, we have $\alpha \alpha^{-1} \sim \kappa_a$ in X and $\alpha^{-1} \alpha \sim \kappa_b$ in X.
- (5) When α is a path from a to b in X and β is a path from b to c in X, and γ is a path from c to d in X, we have $(\alpha\beta)\gamma \sim \alpha(\beta\gamma)$ in X.

Proof: The proof is left as an exercise.

- **6.6 Definition:** Let X be a topological space and let $a \in X$. By the above theorem, the set $\pi_1(X, a)$, of homotopy-equivalence classes of loops at a in X, is a group under the operation given by $[\alpha][\beta] = [\alpha\beta]$, with identity element $e = [\kappa_a]$ and with the inverse given by $[\alpha]^{-1} = [\alpha^{-1}]$. This group $\pi_1(X, a)$ is called the **fundamental group** of X at a.
- **6.7 Example:** When X is a convex set in a normed linear space and $a \in X$, we have $\pi_1(X, a) = \{e\}$ where $e = [\kappa_a]$. Indeed, for a loop α at a in X, the map $F : [0, 1] \times [0, 1] \to X$ given by $F(s, t) = \alpha(t) = s(a \alpha(t))$ is a homotopy from α to κ_a in X.

The Fundamental Group of the Circle

6.8 Theorem: Let X be a compact metric space and let S be an open cover of X. The there exists a number $\lambda > 0$, called a **Lebesgue number** for the open cover S, such that for every $a \in X$ the ball $B(a, \lambda)$ is contained in one of the sets in S.

Proof: The proof is left as an exercise (this is often proven in an analysis course).

6.9 Theorem: Let α be a path from a to b in \mathbb{C}^* . Choose $\theta_0 \in \mathbb{R}$ such that $a = |a|e^{i\theta_0}$. Then there exist unique continuous fuctions $r, \theta : [0,1] \to \mathbb{R}$, with r(t) > 0 for all t and $\theta(0) = \theta_0$, such that $\alpha(t) = r(t)e^{i\theta(t)}$ for all t. Moreover, if α is differentiable (or \mathcal{C}^1 or smooth) then so are r and θ .

Proof: Write $\alpha(t) = (x(t), y(t)) = x(t) + iy(t)$ where $x, y : [0, 1] \to \mathbb{R}$, and note that x and y are continuous (and indeed differentiable or \mathcal{C}^1 or smooth, if α is). It is clear that the map r must be given by $r(t) = |\alpha(t)| = \sqrt{x(t)^2 + y(t)^2}$ which is continuous (and differentiable, \mathcal{C}^1 , or smooth, if α is). Let us explain how to construct the map θ . Let $U_1 = \{x+iy \mid x>0\}$, $U_2 = \{x+iy \mid y>0\}$, $U_3 = \{x+iy \mid x<0\}$ and $U_4 = \{x+iy \mid y<0\}$ and, for k=1,2,3,4, define $\theta_k: U_k \to \mathbb{R}$ by $\theta_1(x,y) = \sin^{-1}\frac{y}{\sqrt{x^2+y^2}}$, $\theta_2(x,y) = \cos^{-1}\frac{x}{\sqrt{x^2+y^2}}$, $\theta_3(x,y) = \pi - \sin^{-1}\frac{y}{\sqrt{x^2+y^2}}$ and $\theta_4(x,y) = 2\pi - \cos^{-1}\frac{x}{\sqrt{x^2+y^2}}$. Note that when $\alpha(t) \in U_k$, we must have $\theta(t) = \theta(\alpha(t)) + 2\pi n_k$ for some $n_k = n_k(t) \in \mathbb{Z}$. In order that θ is continuous, the map $n_k(t)$ must be continuous. Since $n_k(t)$ takes values in the discrete set \mathbb{Z} , it must be locally constant (that is constant when t lies in an interval $I \subseteq [0,1]$ and $\alpha(t) \in U_k$ for all $t \in I$). The open sets $\alpha^{-1}(U_k)$ cover the interval [0,1]. Choose a Lebesgue number $\lambda > 0$ for this cover. Choose $\ell \in \mathbb{Z}^+$ large enough so that $\frac{1}{\ell} < \lambda$, and note that each subinterval $I_j = \begin{bmatrix} \frac{j-1}{\ell}, \frac{j}{\ell} \end{bmatrix}$ is contained in the open ball $B_j = B(x_j, \lambda)$ in [0,1], and B_j is contained in one of the four open sets $\alpha^{-1}(U_k)$, say $B_j \subseteq \alpha^{-1}(U_{k_j})$. It follows that (in order for the required continuous map $\theta(t)$ to exist) there must exist constants $n_j \in \mathbb{Z}$ such that when $t \in B_j$ we have $\theta(t) = \theta_{k_j}(\alpha(t)) + 2\pi n_j$.

Finally we note that the constants n_j can be determined, in a unique way, so that the resulting map $\theta(t)$ is continuous with $\theta(0) = \theta_0$: indeed the value of n_1 is uniquely determined so that $\theta_{k_1}(\alpha(0)) + 2\pi n_1 = \theta(0) = \theta_0$, then the value of n_2 is uniquely determined so that $\theta_{k_2}(\alpha(\frac{1}{\ell})) + 2\pi n_2 = \theta(\frac{1}{\ell}) = \theta_{k_1}(\alpha(\frac{1}{\ell})) + 2\pi n_1$, then the value of n_3 is uniquely determined so that $\theta_{k_3}(\alpha(\frac{2}{\ell})) + 2\pi n_3 = \theta(\frac{2}{\ell}) = \theta_{k_2}(\alpha(\frac{2}{\ell})) + 2\pi n_2$, and so on. The values n_j are uniquely determined, and the resulting map $\theta: [0,1] \to \mathbb{R}$ given by $\theta(t) = \theta_{k_j}(\alpha(t)) + 2\pi n_j$ when $t \in I_j$ (or when $t \in B_j$) is continuous (by the Glueing Lemma). Moreover, we note that if α is differentiable (or \mathcal{C}^1 or smooth) then so is θ .

6.10 Definition: Let α be a path in $\mathbb{C} \setminus \{a\}$ from b to c. Given $\theta_0 \in \mathbb{R}$ such that $b = a + |b - a|e^{i\theta_0}$, since the path given by $\beta(t) = \alpha(t) - a$ is a path in \mathbb{C}^* from b - a to c - a, it follows from the above theorem that there exist unique continuous maps $r, \theta : [0, 1] \to \mathbb{R}$ with $\theta(0) = \theta_0$ and with r(t) > 0 for all t, such that $\alpha(t) = a + r(t)e^{i\theta(t)}$. This expression for α is called the **polar representation** of α about a (with initial angle θ_0). We define the **winding number** of α about a to be

wind
$$(\alpha, a) = \frac{\theta(1) - \theta(0)}{2\pi}$$
.

Note that this does not depend on the choice of θ_0 : indeed, if $\alpha(t) = a + r(t)e^{i\phi(t)}$ with $\phi(0) = \phi_0 = \theta_0 + 2\pi k$, then since $a + re^{i\theta(t)} = a + r(t)e^{i(\theta(t) + 2\pi k)}$ for all t, we have $\phi(t) = \theta(t) + 2\pi k$ for all t (by the uniqueness of the polar representation with initial angle ϕ_0), so that $\phi(1) - \phi(0) = \theta(1) - \theta(0)$. Also note that in the case that α is a loop at b in $\mathbb{C} \setminus \{a\}$, we have wind $(\alpha, a) \in \mathbb{Z}$.

6.11 Note: Recall that when a continuous (or piecewise continuous) map $f:[0,1] \to \mathbb{C}$ is given by f(t) = (x(t), y(t)) = x(t) + i y(t) with $x, y:[0,1] \to \mathbb{R}$, we define the **integral** $\int_0^1 f$ to be given by $\int_0^1 f = \int_0^1 f(t) dt = \int_0^1 x(t) dt + i \int_0^1 y(t) dt$.

Also recall that when α is a \mathcal{C}^1 (or a continuous and piecewise \mathcal{C}^1) path in an open

Also recall that when α is a \mathcal{C}^1 (or a continuous and piecewise \mathcal{C}^1) path in an open set U in \mathbb{C} , and f is a continuous map $f:U\subseteq\mathbb{C}\to\mathbb{C}$, we define the **path integral** $\int_{\alpha} f$ to be $\int_{\alpha} f = \int_{\alpha} f(z) dz = \int_{0}^{1} f(\alpha(t))\alpha'(t) dt$.

6.12 Theorem: Let α be a \mathcal{C}^1 (or a continuous and piecewise \mathcal{C}^1) path from b to c in $\mathbb{C} \setminus \{a\}$. Choose $\theta_0 \in \mathbb{R}$ such that $b-a=|b-a|e^{i\theta_0}$. Let $\alpha(t)=a+r(t)e^{i\theta(t)}$ be the polar representation of α about a. Then

$$\int_{\Omega} \frac{dz}{z-a} = \ln \frac{r(1)}{r(0)} + i \left(\theta(1) - \theta(0)\right) = \ln \frac{|b-a|}{|c-a|} + 2\pi i \operatorname{wind}(\alpha, a).$$

Proof: The proof is a straightforward calculation: we have

$$\int_{\alpha} \frac{dz}{z-a} = \int_{t=0}^{1} \frac{\alpha'(t) dt}{\alpha(t) - a} = \int_{t=0}^{1} \frac{r'(t)e^{i\theta(t)} + r(t)e^{i\theta(t)} \cdot i\theta'(t)}{r(t)e^{i\theta(t)}} dt$$
$$= \int_{t=0}^{1} \frac{r'(t)}{r(t)} + i\theta'(t) dt = \left[\ln r(t) + i\theta(t)\right]_{0}^{1} = \ln \frac{r(1)}{r(0)} + i(\theta(1) - \theta(0)).$$

6.13 Theorem: We have $\pi_1(\mathbb{C}^*, 1) = \langle [\sigma] \rangle \cong \mathbb{Z}$ and $\pi_1(\mathbb{S}^1, 1) = \langle [\sigma] \rangle \cong \mathbb{Z}$, where $\sigma : [0, 1] \to \mathbb{S}^1 \subseteq \mathbb{C}^*$ is the loop at 1 given by $\sigma(t) = e^{i \, 2\pi t}$.

Proof: We give the proof for \mathbb{C}^* (the proof for \mathbb{S}^1 is identical but with r(t) = 1 for all t). Let α be a loop at 1 in \mathbb{C}^* . Let $\alpha(t) = r(t)e^{i\theta(t)}$ be the polar representation of α about 0 with the initial angle $\theta(0) = 0$. Let $n = \text{wind}(\alpha, 0)$. Let $\tau_n : [0, 1] \to \mathbb{S}^1 \subseteq \mathbb{C}^*$ be the loop given by $\tau_n(t) = e^{i 2\pi nt}$, and note that $\text{wind}(\tau_n, 0) = n$. Then we have $\alpha \sim \tau_n$ in \mathbb{C}^* : indeed the map $F : [0, 1] \times [0, 1] \to \mathbb{C}^*$ given by

$$F(s,t) = \left(r(t) + s(1 - r(t))\right) e^{i(\theta(t) + s(2\pi nt - \theta(t)))}$$

is a homotopy from α to τ_n in \mathbb{C}^* (we used a straight-line homotopy in the (r,θ) plane with $(r,\theta) \in \mathbb{R}^+ \times \mathbb{R}$, which is convex). This shows that every loop α at 1 in \mathbb{C}^* with wind $(\alpha,0) = n$ is homotopic to τ_n in \mathbb{C}^* .

Also note that, for two loops α, β at 1 in \mathbb{C}^* with wind $(\alpha, 0) = n$ and wind $(\beta, 0) = m$, we have wind $(\alpha\beta, 0) = n + m$: indeed for $\alpha(t) = r(t)e^{i\theta(t)}$ and $\beta(t) = s(t)e^{i\phi(t)}$ with $\theta(0) = \phi(t) = 0$ and $\theta(1) = n$ and $\phi(t) = m$, then the polar representation of $\alpha\beta$ about 0 with initial angle 0 is given by $(\alpha\beta)(t) = R(t)e^{i\Psi(t)}$ where

$$R(t) = \left\{ \begin{array}{l} r(2t) & \text{, if } 0 \le t \le \frac{1}{2} \\ s(2t-1) & \text{, if } \frac{1}{2} \le t \le 1 \end{array} \right\} \text{ and } \Phi(t) = \left\{ \begin{array}{l} \theta(2t) & \text{, if } 0 \le t \le \frac{1}{2} \\ 2\pi n + \phi(2t-1) & \text{, if } \frac{1}{2} \le t \le 1 \end{array} \right\}$$

and we have $\Psi(1) = 2\pi n + 2\pi m$.

In particular, if we write $\sigma^1 = \sigma$ and $\sigma^n = \sigma^{n-1}\sigma$, so that for example $\sigma^4 = \sigma^3\sigma = (\sigma^2\sigma)\sigma = ((\sigma\sigma)\sigma)\sigma$, then wind $(\sigma^n,0) = n$. Thus, when α is any loop at 1 in \mathbb{C}^* with wind $(\alpha,0) = n$, we have $\alpha \sim \tau_n \sim \sigma^n$, and hence $[\alpha] = [\sigma]^n$ in $\pi_1(\mathbb{C}^*,1)$. This proves that $\pi_1(\mathbb{C}^*,1) = \langle [\sigma] \rangle$ (the cyclic group generated by $[\sigma]$).

It remains to show that when $n \neq m$ we have $\sigma^n \not\sim \sigma^m$ (so that the cyclic group $\langle [\sigma] \rangle$ is infinite). This follows directly from Cauchy's Theorem for Paths, from complex analysis, which states that when α and β are two \mathcal{C}^1 (or continuous and piecewise \mathcal{C}^1) paths in an open set U in \mathbb{C} , and $f: U \subseteq \mathbb{C} \to \mathbb{C}$ is holomorphic in U, if $\alpha \sim \beta$ in U then $\int_{\alpha} f = \int_{\beta} f$. It follows that if $\sigma^n \sim \sigma^m$, or equivalently if $\tau_n \sim \tau_m$, then $n = \frac{1}{2\pi i} \int_{\tau_n} \frac{dz}{z} = \frac{1}{2\pi i} \int_{\tau_m} \frac{dz}{z} = m$.

For those students who have not seen Cauchy's Theorem for Paths, we briefly describe an alternate method for proving that if $\alpha \sim \beta$ in \mathbb{C}^* then wind $(\alpha,0) \neq \text{wind}(\beta,0)$. Let α and β be paths from a to b in \mathbb{C}^* . Suppose that $\alpha \sim \beta$ in \mathbb{C}^* and let $F:[0,1] \times [0,1] \to \mathbb{C}^*$ be a homotopy from α to β in \mathbb{C}^* . By imitating the proof of Theorem 6.9, one can show that, given a choice of $\theta_0 \in \mathbb{R}$ such that $a = |a|e^{i\theta_0}$, there exist unique continuous functions $r, \theta: [0,1] \to \mathbb{R}$, with r(s,t) > 0 for all s,t and $\theta(0,0) = \theta_0$, such that $F(s,t) = r(s,t)e^{i\theta(s,t)}$ for all s,t (we will provide the details of this proof later, in a more general context, when we discuss homotopy lifting for covering spaces). Since $\theta(s,0)$ is continuous and takes values in \mathbb{Z} , it is constant, so we have $\theta(1,0) = \theta(0,0) = \theta_0$, and since $\theta(s,1)$ is continuous and takes values in \mathbb{Z} , it is constant, so we have $\theta(1,1) = \theta(0,1)$. It follows that

wind
$$(\beta, 0) = \frac{\theta(1,1) - \theta(1,0)}{2\pi} = \frac{\theta(0,1) - \theta(0,0)}{2\pi} = \text{wind}(\alpha, 0).$$

Basic Properties

- **6.14 Note:** When X is path-connected and P is the path-component of X which contains the point $a \in X$, we have $\pi_1(X, a) = \pi_1(P, a)$. Indeed, every loop α at a in X also lies in P, and when α and β are homotopic loops at a in X, every homotopy F from α to β in X takes values in P so that it is also a homotopy from α to β in P.
- **6.15 Note:** When γ is a path from a to b in X, the map $\phi_{\gamma}: \pi_1(X, a) \to \pi_1(X, b)$ given by $\phi_{\gamma}([\alpha]) = [\gamma^{-1}\alpha\gamma]$ is a well-defined group isomorphism: It is well-defined because for loops α, β at a in X, if $\alpha \sim \beta$ then $\gamma^{-1}\alpha\gamma \sim \gamma^{-1}\beta\gamma$ in X. It is a group homomorphism because for loops α, β at a in X, we have $\gamma^{-1}\alpha\beta\gamma \sim \gamma^{-1}\alpha\gamma\gamma^{-1}\beta\gamma$ in X. It is bijective because it has an inverse $\phi_{\gamma}^{-1} = \phi_{\gamma^{-1}}: \pi_1(X, b) \to \pi_1(X, a)$ which is given by $\phi_{\gamma^{-1}}([\beta]) = \gamma\beta\gamma^{-1}$.
- **6.16 Notation:** When X is path-connected and $a \in X$, it is fairly common to write $\pi_1(X, a)$ simply as $\pi_1(X)$.
- **6.17 Definition:** A based topological space (or a pointed topological space) is a pair (X, a) where X is a topological space and $a \in X$ (the point a is called the base **point**). A (continuous) **map of based spaces** $f: (X, a) \to (Y, b)$ is a continuous map $f: X \to Y$ with f(a) = b. A **homeomorphism** from $(X, a) \to (Y, b)$ is a continuous map $f: (X, a) \to (Y, b)$ with a continuous inverse map $f^{-1}: (Y, b) \to (X, a)$. We say that (X, a) is **homeomorphic** to (Y, b), and write $(X, a) \cong (Y, b)$, when there exists a homeomorphism $f: (X, a) \to (Y, b)$.
- **6.18 Definition:** Given a map $f:(X,a) \to (Y,b)$ of based spaces, we define the **induced** group homomorphism $f_*: \pi_1(X,a) \to \pi_1(Y,b)$ by $f_*([\alpha]) = [f \circ \alpha]$. Note that f_* is well-defined because, for loops α and β at a in X, if F is a homotopy from α to β in X then $G = f \circ F$ is a homotopy from $f \circ \alpha$ to $f \circ \beta$ in Y. Also note that f_* is a group homomorphism because, for loops α and β at a in X, we have $f \circ (\alpha\beta) = (f \circ \alpha)(f \circ \beta)$.
- **6.19 Note:** Note that $id_* = id$, meaning that when $id : (X, a) \to (X, a)$ is the identity map (given by id(x) = x for all $x \in X$, the induced map $id_* : \pi_1(X, a) \to \pi_1(X, a)$ is also the identity map. Also note that when $f : (X, a) \to (Y, b)$ and $g : (Y, b) \to (Z, c)$ we have $(g \circ f)_* = g_* \circ f_*$ because $(g \circ f) \circ \alpha = g \circ (f \circ \alpha)$ for all loops α at a in X.
- **6.20 Remark:** The above note can be summarized by saying the we have a (covariant) functor F, from the category of based topological spaces to the category of groups, given by $F(X, a) = \pi_1(X, a)$ with $F(f) = f_*$ when $f: (X, a) \to (Y, b)$.
- **6.21 Theorem:** When $(X, a) \cong (Y, b)$ we have $\pi_1(X, a) \cong \pi_1(Y, b)$.

Proof: This is immediate from the above note: indeed when $f:(X,a) \to (Y,b)$ is a homeomorphism with inverse $g = f^{-1}:(Y,b) \to (X,a)$, we have $g \circ f = \operatorname{id}$ and $f \circ g = \operatorname{id}$, and hence $g_* \circ f_* = (g \circ f)_* = \operatorname{id}_* = \operatorname{id}$ and $f_* \circ g_* = (f \circ g)_* = \operatorname{id}_* = \operatorname{id}$, so that f_* is invertible with inverse $g_* = (f_*)^{-1}$.

6.22 Theorem: $\pi_1(X \times Y, (a, b)) \cong \pi_1(X, a) \times \pi_1(Y, b)$.

Proof: Let $p: X \times Y \to X$ and $q: X \times Y \to Y$ be the projection maps. Since every loop γ at (a,b) in $X \times Y$ is of the form $\gamma(t) = (\alpha(t), \beta(t))$ where $\alpha = p \circ \gamma$ (which is a loop at a in X) and $\beta = q \circ \gamma$ (which is a loop at b in Y), the map $\phi: \pi_1(X \times Y, (a,b)) \to \pi_1(X,a) \times \pi_1(Y,b)$ given by $\phi([\gamma]) = ([p \circ \gamma], [q \circ \gamma]) = (p_*([\gamma]), q_*([\gamma]))$ is a surjective group homorphism, and ϕ is injective because if F is a homotopy from α to κ_a in X and G is a homotopy from β to κ_b in Y, then (F, G) is a homotopy from (α, β) to $\kappa_{(a,b)}$ in $X \times Y$.

- **6.23 Corollary:** $\pi_1(\mathbb{T}^n) \cong \mathbb{Z}^n$.
- **6.24 Definition:** Let $f, g: (X, a) \to (Y, b)$ be continuous maps of based topological spaces. A **homotopy** from f to g relative to a, is a continuous map $F: [0,1] \times X \to Y$ such that F(0,x) = f(x) and F(1,x) = g(x) for all $x \in X$, and F(s,a) = b for all $s \in [0,1]$. When such a homotopy exists, we say that f is **homotopic** to g (relative to g), and we write $f \sim g$ (rel g). Verify, as an exercise, that this is an equivalence relation.
- **6.25 Theorem:** Let $f, g: (X, a) \to (Y, b)$ be continuous maps of based topological spaces. Suppose that $f \sim g$ (rel a). Then $f_* = g_* : \pi_1(X, a) \to \pi_1(Y, b)$.
- Proof: If $\alpha:[0,1] \to X$ is a loop at a in X, and $F:[0,1] \times X \to Y$ is a homotopy from f to g relative to a, then the map $G:[0,1] \times [0,1] \to Y$ given by $G(s,t) = F(s,\alpha(t))$ is an (endpoint-fixing) homotopy from $f \circ \alpha$ to $g \circ \alpha$, so we have $f_*(\alpha) = [f \circ \alpha] = [g \circ \alpha] = g_*(\alpha)$.
- **6.26 Corollary:** Let $f:(X,a) \to (Y,b)$ and $g:(Y,b) \to (X,a)$ be continuous maps of based topological spaces. Suppose that $g \circ f \sim \operatorname{id}_X$ (rel a) and $f \circ g \sim \operatorname{id}_Y$ (rel b). Then f_* and g_* are inverses of each other, so we have $\pi_1(X,a) \cong \pi_1(Y,b)$.
- **6.27 Definition:** Let (X, a) and (Y, b) be based topological spaces. When there exist continuous maps $f: (X, a) \to (Y, b)$ and $g: (Y, b) \to (X, a)$ such that $g \circ f \sim \operatorname{id}_X$ (rel a) and $f \circ g \sim \operatorname{id}_Y$ (rel b), we say that the based spaces (X, a) and (Y, b) are **homotopic**, and we write $(X, a) \sim (Y, b)$. You can verify, if you want, that this is an equivalence relation (on the class of based topological spaces). By the above corollary, when $(X, a) \sim (Y, b)$ we have $\pi_1(X, a) \cong \pi_1(Y, b)$.
- **6.28 Definition:** Let $f, g: X \to Y$ be continuous maps of topological spaces, let $A \subseteq X$, and suppose that f(a) = g(a) for all $a \in A$. A **homotopy** from f to g, relative to A, is a continuous map $F: [0,1] \times X \to Y$ such that F(0,x) = f(x) and F(1,x) = g(x) for all $x \in X$, and F(s,a) = f(a) = g(a) for all $s \in [0,1]$ and all $a \in A$. When such a homotopy exists, we say that f is **homotopic** to g relative to g, and we write $g \in G(x)$ note that when $g \in G(x)$ if $g \in G(x)$ then $g \in G(x)$ to $g \in G(x)$ then $g \in$
- **6.29 Definition:** Let X be a topological space, let $A \subseteq X$, and let $i: A \to X$ be the inclusion map. A **retraction** from X to A is a continuous map $f: X \to A$ such that f(a) = a for all $a \in A$, or equivalently, such that $f \circ i = \mathrm{id}_A$. When such a retraction exists, we say that A is a **retract** of X. A **strong deformation retraction** from X to A is a continuous map $f: X \to A$ such that $f \circ i = \mathrm{id}_A$ and $i \circ f \sim \mathrm{id}_X$ (rel A). When such a strong deformation retraction exists, we say that A is a **strong deformation retract** of X. Note that every strong deformation retract is also a retract.
- **6.30 Example:** The origin $\{0\}$ is a strong deformation retract of \mathbb{R}^n . The sphere \mathbb{S}^{n-1} is a strong deformation retract of $\mathbb{R}^n \setminus \{0\}$. When p is the north pole $p = (0, \dots, 0, 1) \in \mathbb{S}^n$, the one-point set $\{-p\}$ is a strong deformation retract of the punctured sphere $\mathbb{S}^n \setminus \{p\}$ (which is homeomorphic, via stereographic projection, to \mathbb{R}^n). Also, \mathbb{S}^{n-1} is a strong deformation retract of $\mathbb{S}^n \setminus \{\pm p\}$ (which is homeomorphic, via stereographic projection, to $\mathbb{R}^n \setminus \{0\}$). The **figure eight space** $E = C \cup (-C)$, where C is the circle $(x-1)^2 + y^2 = 1$, is a strong deformation retract of $\mathbb{R}^2 \setminus \{\pm (1,0)\}$.
- **6.31 Note:** When $f: X \to A$ is a retraction and $a \in A$, we have $f \circ i = \mathrm{id}_A$ so that $f_* \circ i_* = \mathrm{id}_{\pi_1(X,a)}$, hence $f_* : \pi_1(X,a) \to \pi_1(A,a)$ is surjective and $i_* : \pi_1(A,a) \to \pi_1(X,a)$ is injective. When $f: X \to A$ is a strong deformation retraction, since $f \circ i = \mathrm{id}_A$ and $i \circ f \sim \mathrm{id}_X$ (rel a), we have $(X,a) \sim (A,a)$ and the maps $f_* : \pi_1(X,a) \to \pi_1(A,a)$ and $i_* : \pi_1(A,a) \to \pi_1(X,a)$ are inverses of one another.