Chapter 3. Connected, Path-Connected, and Compact Spaces

Connectedness and Connected Components

- **3.1 Definition:** Let X be a topological space. We say that two subsets $A, B \subseteq X$ separate X when $A \neq \emptyset$, $B \neq \emptyset$, $A \cap B = \emptyset$ and $A \cup B = X$. We say that X is **connected** when there do not exist two open sets in X which separate X. Equivalently (as you can verify) X is connected when \emptyset and X are the only two subsets of X which are both open and closed in X. We say that X is **disconnected** when it is not connected.
- **3.2 Exercise:** Prove that the connected subspaces of \mathbb{R} are the intervals (including \emptyset , 1-point sets, and \mathbb{R}), and the nonempty connected subspaces of \mathbb{Q} are the 1-point sets.
- **3.3 Theorem:** The image of a connected space under a continuous map is connected. In particular, if two spaces are homeomorphic and one is connected, then so is the other.

Proof: Let $f: X \to Y$ be a continuous map between topological spaces. Note that, by Theorem 1.35, $f: X \to f(X)$ is also continuous. Suppose that f(X) is disconnected. Choose disjoint nonempty open sets A and B in f(X) with $A \cup B = f(X)$. Then $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint nonempty open sets in X with $f^{-1}(A) \cup f^{-1}(B) = X$, so X is disconnected.

3.4 Lemma: Let X be a subspace of Y. Suppose that Y is disconnected and that A and B are open sets in Y which separate Y. If X is connected, then either $X \subseteq A$ or $X \subseteq B$.

Proof: Suppose that X is connected. Note that $A \cap X$ and $B \cap X$ are disjoint open sets in X. If both of the sets $A \cap X$ and $B \cap X$ were nonempty, then they would be open sets in X which separate X. Since X is connected, this is not possible, so either $A \cap X = \emptyset$ or $B \cap X = \emptyset$. If $A \cap X = \emptyset$ then we have $X = X \cap Y = X \cap (A \cup B) = (X \cap A) \cup (X \cap B) = X \cap B$ so that $X \subseteq B$. Similarly, if $B \cap X = \emptyset$ then $X \subseteq A$.

3.5 Theorem: Let $X = \bigcup_{k \in K} A_k$. If each A_k is a connected subspace of X and $\bigcap_{k \in K} A_k \neq \emptyset$ then X is connected.

Proof: Suppose that each A_k is connected with $p \in \bigcap_{k \in K} A_k$. Suppose, for a contradiction, that $X = \bigcup_{k \in K} A_k$ is disconnected. Choose open sets U and V in X which separate X. Note that p lies either in U or in V (but not both), say $p \in U$ (and $p \notin V$). Let $k \in K$ be arbitrary. Since A_k is connected, by the above lemma, either $A_k \subseteq U$, or $A_k \subseteq V$. Since $p \in A_k$ and $p \notin V$, we do not have $A_k \subseteq V$ so we must have $A_k \subseteq U$. Since $k \in K$ was arbitrary, we have $A_k \subseteq U$ for every $k \in K$, and hence $X = \bigcup_{k \in K} A_k \subseteq U$. But this contradicts the fact that U and V separate X, giving the desired contradiction.

3.6 Lemma: Let X be a subspace of Y and let A and B be subsets of X which separate X. Then A and B are open in X (so that X is disconnected) if and only if $\overline{A} \cap B = \emptyset$ and $\overline{B} \cap A = \emptyset$ (where \overline{A} and \overline{B} are the closures in Y).

Proof: Suppose that A and B are open in X Note that $A = B^c = X \setminus B$ is closed in X so we have $A = \operatorname{Cl}_X(A) = \overline{A} \cap X = \overline{A} \cap (A \cup B) = (\overline{A} \cap A) \cup (\overline{A} \cap B) = A \cup (\overline{A} \cap B)$ and hence $\overline{A} \cap B = \emptyset$. Similarly $\overline{B} \cap A = \emptyset$.

Suppose, conversely, that there exist disjoint nonempty sets $A, B \subseteq X$ with $A \cup B = X$ such that $\overline{A} \cap B = \emptyset$ and $\overline{B} \cap A = \emptyset$. Since $\overline{A} \cap B = \emptyset$, we have $\overline{A} \cap X = A$ so that $\operatorname{Cl}_X(A) = \overline{A} \cap X = A$ and hence A is closed. Similarly B is closed. Since X is the disjoint union of A and B, it follows that A and B are both open in X hence X is not connected.

3.7 Theorem: Let X be a topological space and let $A \subseteq X$. Suppose that $A \subseteq B \subseteq \overline{A}$. If A is connected, as a subspace of X, then so is B.

Proof: Suppose that A is connected, and suppose, for a contradiction, that B is disconnected. Let C and D be open sets in B which separate B. By Lemma 3.5, we have $\overline{C} \cap D = \emptyset$ and $\overline{D} \cap C = \emptyset$. Since A is connected, by Lemma 3.3, either $A \subseteq C$ or $A \subseteq D$. Say $A \subseteq C$. Then we have $B \subseteq \overline{A} \subseteq \overline{C}$. Since $D \subseteq B \subseteq \overline{C}$ and $\overline{C} \cap D = \emptyset$, we have $D = \emptyset$, which contradicts the fact that C and D separate B.

3.8 Theorem: The cartesian product of two connected spaces is connected.

Proof: Let X and Y be connected topological spaces. If $X = \emptyset$ or $Y = \emptyset$ then $X \times Y = \emptyset$, which is connected. Suppose that $X \neq \emptyset$ and $Y \neq \emptyset$. Choose $a \in X$ and $b \in Y$. Note that $X \times \{b\}$ is connected, since it is homeomorphic to X. Likewise, for each $x \in X$, the subspace $\{x\} \times Y$ is connected since it is homeomorphic to Y. Since $X \times \{b\}$ and $\{x\} \times Y$ are connected with $(x,b) \in (X \times \{b\}) \cap (\{x\} \times Y)$ it follows, from Theorem 3.5, that $(X \times \{b\}) \cup (\{x\} \times Y)$ is connected. Since $(X \times \{b\}) \cup (\{x\} \times Y)$ is connected for every $x \in X$ and $(a,b) \in \bigcap_{x \in X} (X \times \{b\}) \cup (\{x\} \times Y)$ it follows, again from Theorem 3.5, that $X \times Y = \bigcup_{x \in X} (X \times \{b\}) \cup (\{x\} \times Y)$ is connected.

3.9 Theorem: The cartesian product of an arbitrary set of connected spaces is connected using the product topology.

Proof: Let X_k be a connected topological space for each $k \in K$. If $X_k = \emptyset$ for some $k \in K$ then $\prod_{k \in K} X_k = \emptyset$. Suppose that $X_k \neq \emptyset$ for all $k \in K$. For each $k \in K$ choose $a_k \in X_k$ and let a be the element in $\prod_{k \in K} X_k$ given by $a(k) = a_k$ for all $k \in K$. Let \mathcal{F} be the set of all finite subsets of K. For each $J \in \mathcal{F}$, let $Y_J = \{y \in \prod_{k \in K} X_k \mid y_k = a_k \text{ for all } k \notin J\}$, using the subspace topology. We claim that $Y_J \cong \prod_{j \in J} X_j$. Define $f: Y_J \to \prod_{j \in J} X_j$ by $f(y)(j) = y_j$. This map is continuous because given U_j open in X_j for each $j \in J$, so that $\prod_{j \in J} U_j$ is a basic open set in $\prod_{j \in J} X_j$, and letting $U_k = X_k$ for all $k \in K \setminus J$, we have $f^{-1}(\prod_{j \in J} U_j) = \{y \in Y_J | y_j \in U_j \text{ for all } j \in J\} = \{y \in Y_J | y_k \in U_k \text{ for all } k \in K\} = (\prod_{k \in K} U_k) \cap Y_J$, which is a basic open set in Y_J (using the subspace topology). The inverse of f is the map $g = f^{-1}: \prod_{j \in J} X_j \to Y_J$ by $g(x)(k) = \{x_k \text{ if } k \notin J\}$. This map is continuous because given $I \in \mathcal{F}$ and given open sets U_k in X_k with $U_k = X_k$ for all $k \notin I$, so that the set $(\prod_{k \in K} U_k) \cap Y_J$ is a basic open set in Y_J , we have $g^{-1}((\prod_{k \in K} U_k) \cap Y_J) = \{x \in \prod_{j \in J} X_j | x_k \in U_k \text{ for all } k \in J \text{ and } a_k \in U_k \text{ for all } k \notin J\} = \{x \in \prod_{j \in J} X_j | x_k \in U_k \text{ for all } k \in J \text{ and } a_k \in U_k \text{ for all } k \notin J\} = \{x \in \prod_{j \in J} X_j | x_k \in U_k \text{ for all } k \in J \text{ and } a_k \in U_k \text{ for all } k \notin J\} = \{x \in \prod_{j \in J} X_j | x_k \in U_k \text{ for all } k \in J \text{ and } a_k \in U_k \text{ for all } k \notin J\}$ as claimed.

Since J is finite, and each X_j is connected, the space $\prod_{j\in J} X_j$ is connected by the previous theorem (and by induction), and hence $Y_J = g(\prod_{j\in J} X_j)$ is connected by Theorem. 3.3. Since Y_J is connected for every $J\in \mathcal{F}$, and since $a\in Y_J$ for all $J\in \mathcal{F}$, it follows from Theorem 3.5 that $\bigcup_{J\in \mathcal{F}} Y_J$ is connected. Finally, we note that $\overline{\bigcup_{J\in \mathcal{F}} Y_J} = \prod_{k\in K} X_k$: indeed, given $I\in \mathcal{F}$ and given open sets $U_k\subseteq X_k$ with $U_k=X_k$ for all $k\notin I$, so that $\prod_{k\in K} U_k$ is a basic open set in $\prod_{k\in K} X_k$, we have $\emptyset\neq\prod_{k\in K} U_k\cap Y_I\subseteq \prod_{k\in K} X_k\cap\bigcup_{J\in \mathcal{F}} Y_J$. Since $\bigcup_{J\in \mathcal{F}} Y_J$ is connected, and $\prod_{k\in K} X_k=\overline{\bigcup_{J\in \mathcal{F}} Y_J}$, it follows that $\prod_{k\in K} X_k$ is connected by Theorem 3.7.

- **3.10 Example:** The result of the above theorem does not necessarily hold when $\prod_{k \in K} X_k$ uses the box topology. For example you can verify that in the space \mathbb{R}^{ω} using the box topology, the sets $U = \{x \in \mathbb{R}^{\omega} | \|x\|_{\infty} < \infty\}$ and $V = \{x \in \mathbb{R}^{\infty} | \|x\|_{\infty} = \infty\}$ are open sets which separate $\prod_{k \in K} X_k$.
- **3.11 Definition:** Let X be a topological space. Define a relation \sim on X by setting $x \sim y$ if and only if there exists a connected subspace of X which contains both x and y. We note that \sim is an equivalence relation on X: indeed, given $x, y, z \in X$, we have $x \sim x$ because $\{x\}$ is connected, and if $x \sim y$ then clearly $y \sim x$, and if $x \sim y$ and $y \sim z$ then we can choose connected spaces $A, B \subseteq X$ with $x, y \in A$ and $y, z \in B$ and then, by Theorem 3.5, since $y \in A \cap B$ it follows that $A \cup B$ is connected, and we have $x, z \in A \cup B$. The equivalence classes under this equivalence relation are called the **connected components** of X. Note that if X is connected then the only connected component of X is X itself.
- **3.12 Theorem:** The connected components of a topological space X are connected, and every non-empty connected subspace of X is contained in exactly one of the connected components.

Proof: We claim that every nonempty connected subspace of X is contained in exactly one connected component. Let A be a nonempty connected subspace of X. Let $a \in A$. Let C be the equivalence class of a, that is $C = [a] = \{x \in X \mid x \sim a\}$ and note that $A \cap C \neq \emptyset$ since $a \in A \cap C$. Let D be any equivalence class with $A \cap D \neq \emptyset$. Choose $b \in A \cap D$. Since A is connected with $a \in A$ and $b \in A$ we have $a \sim b$ so that C = [a] = [b] = D. Thus A intersects with exactly one connected component, namely C. Since the connected components (being equivalence classes) cover X, it follows that $A \subseteq C$.

We claim that each connected component of X is connected. Let C be a connected component and let $a \in C$ so that $C = [a] = \{x \in X \mid x \sim a\}$. For each $x \in C$, since $x \sim a$ we can choose a connected set A_x in X with $a, x \in A$. By the previous claim, since A_x is connected with $a \in A_x \cap C$, it follows that $A_x \subseteq C$. Since $x \in A_x \subseteq C$ for all $x \in C$, we have $C = \bigcup_{x \in C} A_x$. This is connected by Theorem 3.5, since each A_x is connected and $a \in \bigcap_{x \in C} A_x$.

- **3.13 Note:** The connected components of a topological space are closed: indeed if C is a connected component of X then, by the above theorem, C is a maximal connected set in X, and by Theorem 3.7, \overline{C} is a connected connected set with $C \subseteq \overline{C}$, and hence $\overline{C} = C$.
- **3.14 Example:** Since \mathbb{R} is connected, it has only one connected component, namely \mathbb{R} . The one-point sets are the connected components of \mathbb{Q} .

Path-Connectedness and Path-Components

3.15 Definition: Let X be a topological space and let $a, b \in X$. A (continuous) **path** from a to b in X is a continuous map $\alpha : [0,1] \to X$ with $\alpha(0) = a$ and $\alpha(1) = b$. A **loop** at a in X is a path from a to a in X. We say that X is **path-connected** when for every $a, b \in X$ there exists a path from a to b in X.

3.16 Theorem: The image of a path-connected space under a continuous map is path-connected. In particular, if $X \cong Y$ and X is path-connected, then so is Y.

Proof: Let $f: X \to Y$ be continuous and suppose X is path connected. Let $c, d \in f(X)$. Choose $a, b \in X$ such that f(a) = c and f(b) = d. Let α be a path in X from a to b. Then $\beta = f \circ \alpha$ is a path in Y from c to d.

3.17 Theorem: Every path-connected topological space is connected.

Proof: Let X be a path-connected topological space. Suppose, for a contradiction, that X is not connected. Choose nonempty disjoint open sets U and V in X which separate X (meaning that $X = U \cup V$). Choose $a \in U$ and $b \in V$. Let $\alpha : [0,1] \to X$ be a path from a to b in X. Then $\alpha^{-1}(U)$ and $\alpha^{-1}(V)$ are nonempty disjoint open sets in [0,1] which separate [0,1]. This is not possible since [0,1] is connected.

- **3.18 Example:** Every **convex set** in a normed linear space is path-connected, hence connected. Indeed if X is a convex set then, given $a, b \in X$, the map $\alpha : [0, 1] \to X$ given by $\alpha(t) = a + t(b a)$ is a path from a to b in X (α takes values in X because X is convex).
- **3.19 Theorem:** Let X be a topological space. The relation \sim on X, given by $a \sim b$ when there exists a path from a to b in X, is an equivalence relation on X, which we call path-equivalence.

Proof: We have $a \sim a$ because the constant path $\kappa = \kappa_a : [0,1] \to X$, given by $\kappa(t) = a$ for all t, is a path from a to a in X. Note that if $a \sim b$ then $b \sim a$: indeed if α is a path from a to b in X then the map $\beta = \alpha^{-1} : [0,1] \to X$ given by $\beta(t) = \alpha(1-t)$ is a path from a to a in a. Finally, note that if $a \sim b$ and a in a in a is a path from a to a in a and a is a path from a to a in a and a is a path from a to a in a

- **3.20 Definition:** Let X be a topological space. The equivalence classes under the path-equivalence relation on X are called the **path-components** of X.
- **3.21 Theorem:** The path components of a topological space X are the maximal path-connected subspaces of X: indeed each path-component of X is path-connected, and every nonempty path-connected subset of X is contained in exactly one of the path-components.

Solution: Let P be a path-component of X, say $a \in P$ so that $P = [a] = \{x \in X \mid x \sim a\}$. Then P is path-connected because if $b, c \in P$ then we have $b \sim a$ and $c \sim a$, and hence $b \sim c$. Now let S be any path-connected subset of X. Suppose that S intersects two path-components, say P and Q, of X. Choose $p \in P \cap S$ and $q \in Q \cap S$. Since $p, q \in S$ and S is path-connected, we have $p \sim q$. Since $p \sim q$ we have P = [p] = [q] = Q.

- **3.22 Note:** In a topological space X, since each path-component is path-connected, hence connected, it is contained in one of the connected components of X. It follows that each connected component of X is the (disjoint) union of the path-components which it contains.
- **3.23 Exercise:** Let $A = \{(x, \sin \frac{1}{x}) \mid x > 0\}$. The closure \overline{A} of A in \mathbb{R}^2 is called the **topologist's sine curve**. Note that $\overline{A} = A \cup B$ where $B = \{(0, y) \mid y \in [-1, 1]\}$. Show that \overline{A} is connected but not path-connected, and the sets A and B are the path-components.

Compactness

- **3.24 Definition:** Let X be a topological space. For a set S of subsets of X, we say that S covers X when $\bigcup S = X$. An **open cover** of X is a set S of open sets which covers X. When S is an open cover of X, a **subcover** of S is a subset $R \subseteq S$ with $\bigcup R = X$. We say that X is **compact** when every open cover of X has a finite subcover. Equivalently, X is compact when it has the property that if K is a set, and U_k is an open set in X for each $k \in K$, and $\bigcup_{k \in K} U_k = X$, then there is a finite subset $L \subseteq K$ such that $\bigcup_{k \in L} U_k = X$.
- **3.25 Theorem:** (The Heine-Borel Theorem) A subspace of \mathbb{R}^n is compact if and only if it is closed and bounded.

Proof: We omit the proof. This theorem is proven in a real analysis course.

3.26 Theorem: The image of a compact space under a continuous map is compact. In particular, if $X \cong Y$ and X is compact, then so is Y.

Proof: Let $f: X \to Y$ be continuous and suppose X is compact. By restricting the codomain, the map $f: X \to f(X)$ is also continuous. Let \mathcal{T} be an open cover of f(X). Then the set $\mathcal{S} = \{f^{-1}(V) \mid V \in \mathcal{T}\}$ is an open cover of X. Since X is compact, \mathcal{S} has a finite subcover, so we can choose $V_1, V_2, \dots, V_n \in \mathcal{T}$ such that $X = \bigcup_{k=1}^n f^{-1}(V_k)$. Then $f(X) = \bigcup_{k=1}^n V_k$ so that $\{V_1, V_2, \dots, V_n\}$ is a finite subcover of \mathcal{T} .

3.27 Theorem: Let X be a subspace of Y. Then X is compact if and only if for every set \mathcal{T} of open sets in Y with $X \subseteq \bigcup \mathcal{T}$ there exists a finite set $\mathcal{Q} \subseteq \mathcal{T}$ such that $X \subseteq \bigcup \mathcal{Q}$.

Proof: Suppose that X is compact. Let \mathcal{T} be a set of open sets in Y such that $X \subseteq \bigcup \mathcal{T}$. Let $\mathcal{S} = \{V \cap X \mid V \in \mathcal{T}\}$. Then \mathcal{S} is an open cover of X. Since X is compact, we can choose $V_1, \dots, V_n \in \mathcal{T}$ such that $X = \bigcup_{k=1}^n (V_k \cap X)$. Since $X = \bigcup_{k=1}^n (V_k \cap X) = (\bigcup_{k=1}^n V_k) \cap X$ we have $X \subseteq \bigcup_{k=1}^n V_k$.

Suppose, conversely, that for every set \mathcal{T} of open sets in Y with $X \subseteq \bigcup \mathcal{T}$ there is a finite subset $\mathcal{Q} \subseteq \mathcal{T}$ such that $X \subseteq \bigcup \mathcal{Q}$. Let \mathcal{S} be a set of open sets in X with $X = \bigcup \mathcal{S}$. For each $U \in \mathcal{S}$, since U is open in X we can choose an open set V_U in Y such that $U = V_U \cap X$. Let $\mathcal{T} = \{V_U \mid U \in \mathcal{S}\}$. Choose a finite subset $\{V_{U_1}, V_{U_2}, \dots, V_{U_n}\}$ of \mathcal{T} such that $X \subseteq \bigcup_{k=1}^n V_{U_k}$. Then we have $\bigcup_{k=1}^n U_k = \bigcup_{k=1}^n (V_{U_k} \cap X) = (\bigcup_{k=1}^n V_{U_k}) \cap X = X$ so that $\{U_1, U_2, \dots, U_n\}$ is a finite subcover of \mathcal{S} .

3.28 Theorem: Every closed subspace of a compact space is compact.

Proof: Let X be a closed subspace of the compact space Y. Let \mathcal{T} be a set of open sets in Y such that $X \subseteq \bigcup \mathcal{T}$. Then $\mathcal{T} \cup \{X^c\}$ is an open cover of Y, where $X^c = Y \setminus X$. Since Y is compact, we can choose $V_1, V_2, \dots, V_n \in \mathcal{T}$ such that $V_1 \cup V_2 \cup \dots \cup V_n \cup X^c = Y$. It follows that $X \subseteq V_1 \cup V_2 \cup \dots \cup V_n$. Thus X is compact by Theorem 3.27.

3.29 Theorem: Every compact subspace of a Hausdorff space is closed.

Proof: Let X be a compact subspace of the Hausdorff space Y. To show that X is closed in Y, we show that for every $b \in X^c = Y \setminus X$ there exists an open set V in Y with $b \in V \subseteq X^c$. Let $b \in X^c$. For each $a \in X$, since Y is Hausdorff we can choose disjoint open sets U_a and V_a in Y with $a \in U_a$ and $b \in V_a$. Since $X \subseteq \bigcup_{a \in X} U_a$ and X is compact, by Theorem 3.27 we can choose $a_1, a_2, \dots, a_n \in X$ such that $X \subseteq \bigcup_{k=1}^n U_{a_k}$. Let $U = \bigcup_{k=1}^n U_{a_k}$ and $V = \bigcap_{k=1}^n V_{a_k}$. Note that U and V are open in Y with $X \subseteq U$ and $v \in V$. Also note that $v \in V$ are disjoint because, for $v \in V$, if $v \in V = \bigcup_{k=1}^n U_{a_k}$ then we can choose an index $v \in V$ such that $v \in V$ and then $v \notin V$ and hence $v \notin V$ and $v \in V$. Since $v \in V$ and $v \in V$ and $v \in V$ are found an open set $v \in V$ in $v \in V$ with $v \in V$ as required.

3.30 Theorem: If X is compact and Y is Hausdorff and $f: X \to Y$ is continuous and bijective, then the inverse of f is also continuous, so that f is a homeomorphism.

Proof: Let X be compact, let Y be Hausdorff, let $f: X \to Y$ be continuous and bijective, and let $g = f^{-1}: Y \to X$. Let U be an open set in X. Then U^c is closed in X, where $U^c = X \setminus U$. By Theorem 3.26, since U^c is closed in X and X is compact, it follows that U^c is compact. By Theorem 3.25, since U^c is compact and f is continuous, it follows that $f(U^c)$ is compact. Since f is bijective, we have $f(U^c) = f(U)^c = Y \setminus f(U)$. By Theorem 3.27, since $f(U)^c$ is compact and f is Hausdorff, it follows that $f(U)^c$ is closed in f0, and hence $f(U)^c = f(U)^c$ 1 is open in $f(U)^c$ 2. Thus $f(U)^c$ 3 is continuous, as required.

3.31 Example: Show that no two of the spaces (0,1), (0,1] and [0,1] are homeomorphic.

Solution: Since [0,1] is compact while (0,1) and (0,1] are not, we see that [0,1] cannot be homeomorphic either to (0,1) or to (0,1]. Also note that $(0,1] \setminus \{1\}$ is connected while $(0,1) \setminus \{p\}$ is not connected for any $p \in (0,1)$, and so it follows that (0,1] cannot be homeomorphic to (0,1). Indeed if $f:(0,1] \to (0,1)$ was a homeomorphism with p = f(0) then the map $f:(0,1] \setminus \{0\} \to (0,1) \setminus \{p\}$ would also be a homeomorphism.

3.32 Example: Show that no two of the spaces \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{S}^1 and \mathbb{S}^2 are homeomorphic.

Solution: Since \mathbb{S}^1 and \mathbb{S}^2 are compact while \mathbb{R}^1 and \mathbb{R}^2 are not, neither \mathbb{S}^1 nor \mathbb{S}^2 can be homeomorphic to either \mathbb{R}^1 or \mathbb{R}^2 . Since $\mathbb{R}^2 \setminus \{(0,0)\}$ is connected while $\mathbb{R} \setminus \{x\}$ is not connected for any $x \in \mathbb{R}$, it follows that \mathbb{R}^2 is not homeomorphic to \mathbb{R}^1 . Since $\mathbb{S}^2 \setminus \{(0,0,1)\} \cong \mathbb{R}^2$, and $\mathbb{S}^1 \setminus \{x\} \cong \mathbb{R}^1$ for any $x \in \mathbb{S}^1$ (under the composite of a rotation with the stereographic projection), and since \mathbb{R}^2 is not homeomorphic to \mathbb{R}^1 , it follows that \mathbb{S}^2 is not homeomorphic to \mathbb{S}^1 .

- **3.33 Theorem:** Let X and Y be topological spaces.
- (1) If X and Y are connected then so is $X \times Y$.
- (2) If X and Y are path-connected then so is $X \times Y$.
- (3) If X and Y are compact then so is $X \times Y$.

Proof: The proof is left as an exercise.

- **3.34 Theorem:** Let \sim be an equivalence relation on a topological space X.
- (1) If X is connected then so is X/\sim .
- (2) If X is path-connected then so is X/\sim .
- (3) If X is compact then so is X/\sim .

Proof: The proof is left as an exercise.

- **3.35 Definition:** Let X be an ordered set. For $A \subseteq X$ and $b \in X$, we say that b is an **upper bound** for A in X when $b \ge x$ for every $x \in A$, and we say that b is the **supremum** (or the **least upper bound**) of A in X when b is an upper bound for A in X and $b \le c$ for every upper bound c of A in X. Note that when A has a supremum in X, the supremum is unique, and we denote it by $\sup X$. We say that X has the **supremum property** (or the **least upper bound property**) when every nonempty subset of X which has an upper bound in X also has a supremum in X.
- **3.36 Theorem:** Let X be an ordered set with the supremum property. Let $a, b \in X$ with a < b. Then the interval [a, b] is compact.

Proof: We leave the proof as an exercise.

3.37 Theorem: Let X be a topological space. Then X is compact if and only if X has the finite intersection property on closed sets: for every set T of closed sets in X, if every finite subset of T has non-empty intersection, then T has non-empty intersection.

Proof: Suppose that X is compact. Let T be a set of closed sets in X. Suppose that T has empty intersection, that is suppose $\bigcap_{A \in T} A = \emptyset$. Then $\bigcup_{A \in T} A^c = X$ so the set $S = \{A^c | A \in T\}$ is an open cover for X. Since X is compact, we can choose a finite subcover, say $\{A_1^c, \dots, A_n^c\}$ of S for S. Then we have $A_1 \cap A_2 \cap \dots \cap A_n = \emptyset$, showing that some finite subset of S has empty intersection.

Suppose, conversely, that X has the finite intersection property on closed sets. Let S be an open cover of X. Let $T = \{U^c \mid U \in S\}$. Since $\bigcup S = X$ we have $\bigcap T = (\bigcup S)^c = \emptyset$. Since X has the finite intersection on closed sets, there exists a finite subset of T with empty intersection. so we can choose $U_1, U_2, \cdots U_n \in S$ such that $U_1^c \cap \cdots \cap U_n^c = \emptyset$. It follows that $U_1 \cup \cdots \cup U_n = X$, so S has a finite subcover.

3.38 Theorem: (Tychanoff's Theorem) The product of any indexed set of compact spaces is compact, using the product topology.

Proof: Let X_k be compact for each $k \in K$. We shall prove that $\prod X_k$ has the finite intersection property on closed sets. Let T be a set of closed sets in $\prod X_k$ such that every finite subset of T has non-empty intersection. We need to show that $\bigcap T \neq \emptyset$. By Zorn's Lemma, we can choose a maximal set S of subsets of $\prod X_k$ with $T \subseteq S$ such that every finite subset of S has non-empty intersection (let R be the set of all such sets S and note that for every chain C in R we have $\bigcup C \in R$). Note that the maximality of S implies that S is closed under finite intersection (since if $A_1, \dots, A_n \in S$ then every intersection of a finite subset of $S \cup \{A_1 \cap \dots \cap A_n\}$ is also an intersection of a finite subset of S).

We shall show that $\bigcap \{\overline{A} \mid A \in S\} \neq \emptyset$, hence $\bigcap T \neq \emptyset$ since if $A \in T$ then $A = \overline{A} \in S$. Let $k \in K$. Note that finite subsets of $\{p_k(A) \mid A \in S\}$ have non-empty intersection (because if $A_1, \dots, A_n \in S$ then $p_k(A_1) \cap \dots \cap p_k(A_n) = p_k(A_1 \cap \dots \cap A_n) \neq \emptyset$), and hence finite subsets of $\{\overline{p_k(A)} \mid A \in S\}$ also have nonempty intersection. Since X_k is compact, so X_k has the finite intersection property on closed sets, it follows that $\bigcap \{\overline{p_k(A)} \mid A \in S\} \neq \emptyset$, so we can choose $a_k \in X_k$ such that $a_k \in \overline{p_k(A)}$ for every $A \in S$. We do this for each $k \in K$, that is for each $k \in K$ we choose $a_k \in X_k$ with $a_k \in \overline{p_k(A)}$ for every $A \in S$, then we let $a = (a_k)_{k \in K} \in \prod_{k \in K} X_k$.

We claim that $a \in \overline{A}$ for every $A \in S$. Let $\underline{k} \in K$. Let U_k be an open set in X_k with $a_k \in U_k$. Then for every $A \in S$, we have $a_k \in \overline{p_k(A)} \cap U_k$ so that $\overline{p_k(A)} \cap U_k \neq \emptyset$ hence $\underline{p_k(A)} \cap U_k \neq \emptyset$ (if we had $p_k(A) \cap U_k = \emptyset$ then $p_k(A) \subseteq U_k^c$ hence $\overline{p_k(A)} \subseteq U_k^c$ so that $\overline{p_k(A)} \cap U_k = \emptyset$). For each $A \in S$, since $p_k(A) \cap U_k \neq \emptyset$, we can choose $b \in A$ such that $p_k(b) \in U_k$, that is $b \in p_k^{-1}(U_k)$, and hence $p_k^{-1}(U_k) \cap A \neq \emptyset$. Since S is closed under finite intersection and $p_k^{-1}(U_k) \cap A \neq \emptyset$ for every $A \in S$, the maximality of S implies that $p_k^{-1}(U_k) \in S$. Let S be any basic open set in S with S with S is open with S is open with S is open with S is open with S is closed under finite intersection, we have

 $V = \{(x_k)_{k \in K} \mid x_k \in U_k \text{ for all } k \in F\} = \bigcap_{k \in F} p_k^{-1}(U_k) \in S.$

Since $V \in S$ and every finite subset of S has non-empty intersection, we have $A \cap V \neq \emptyset$ for all $A \in S$. Given $A \in S$, since $A \cap V \neq \emptyset$ for every basic open set V in $\prod X_k$ with $a \in V$, it follows that $a \in \overline{A}$. Thus $a \in \overline{A}$ for all $A \in S$, so $\bigcap \{\overline{A} \mid A \in S\} \neq \emptyset$, as required.