- 1: By counting vertices and determining orientation, determine the topological type (the homeomorphism class) of the polygons with edges identified in pairs according to the following words.
 - (a) $a b c a^{-1} d e b d^{-1} c e^{-1}$
 - (b) $a b c a^{-1} d^{-1} c^{-1} e b^{-1} d f e^{-1} f^{-1}$.
 - (c) $a_1 a_2 \cdots a_n a_1^{-1} a_2^{-1} \cdots a_n^{-1}$
- **2:** (a) Determine the topological type of the space obtained from the disjoint union of four squares with edges identified in pairs according to the words abcd, efgh, aceg and bdfh.
 - (b) Two disjoint closed squares are chosen on a sphere, their interiors are removed, and then the edges of one are identified with the edges of the other according to a b c d (listed clockwise, from the outside) on the first and a d b c (again listed clockwise) on the second. Determine the topological type of the resulting surface.
 - (c) Carry out the cut-and-paste algorithm to determine the topological type of the octagon with its edges identified in pairs according to the word $a\,b\,c\,a^{-1}d\,b^{-1}d\,c$.
- **3:** (a) Prove that $(\mathbb{R}^3 \setminus \{0\})/\mathbb{R}^* \cong \mathbb{S}^2/\{\pm 1\} \cong D^2/\sim$ where D^2 is the closed unit disc $D^2 = \{z \in \mathbb{C} \mid ||z|| \le 1\}$ and for $z, w \in D^2$ we have $z \sim w$ if and only if z = w or (||z|| = 1 and w = -z).
 - (b) Prove that $D^2/\sim\cong I^2/\approx\cong T^2$ where D^2 is the closed unit disc $D^2=\left\{z\in\mathbb{C}\ \middle|\ \|z\|\le1\right\}$ and for $z,w\in D^2$ with z=x+iy and w=u+iv, we have $z\sim w$ if and only if z=w or $(\|z\|=1\,,\,xy\ge0$ and $w=-i\,\overline{z})$ or $(\|z\|=1\,,\,xy\le0$ and $w=i\,\overline{z})$ or $(z\in\{\pm1,\pm i\}$ and $w\in\{\pm1,\pm i\})$, and I^2 is the closed solid unit square $I^2=\left\{(x,y)\in\mathbb{R}^2\ \middle|\ 0\le x\le 1\,,\ 0\le y\le 1\right\}$ and for $(x,y),(u,v)\in I^2$ we have $(x,y)\approx (u,v)$ if and only if $x-u\in\{0,\pm1\}$ and $y-v\in\{0,\pm1\}$, and where $T^2=\left\{(x,y,z)\in\mathbb{R}^3\ \middle|\ 16\,(x^2+y^2)=(x^2+y^2+z^2+3)^2\right\}\subseteq\mathbb{R}^3.$
- 4: (a) Let X be a normal topological space and let $S = \{U_1, U_2, \dots, U_\ell\}$ be a finite open cover of X. Prove that there exists a set $\{\rho_1, \rho_2, \dots, \rho_\ell\}$ of continuous functions $\rho_k : X \to [0, 1]$ with $\sum_{k=1}^{\ell} \rho_k(x) = 1$ for all $x \in X$ such that $\rho_k^{-1}([0, 1]) \subseteq U_k$ for all indices k (such a set of functions is called a **partition of unity**, subordinate to the cover). Hint: show that there is an open cover $\{V_1, \dots, V_\ell\}$ with $\overline{V}_k \subseteq U_k$, use Urysohn's Lemma to obtain suitable functions $f_k : X \to [0, 1]$, and let $\rho_k = f_k / \sum_{i=1}^{\ell} f_i$.
 - (b) Let X be a compact n-manifold. Prove that X is homeomorphic to a subspace of \mathbb{R}^m for some $m \in \mathbb{Z}^+$. Hint: cover X by coordinate neighbourhoods U_1, \dots, U_ℓ with homeomorphisms $\phi_k : U_k \subseteq X \to \phi_k(U_k) \subseteq \mathbb{R}^n$, let $\rho_k : X \to [0,1]$ be as in Part (a), then define $f : X \to \mathbb{R}^{\ell+\ell n}$ by $f = (\rho_1, \dots, \rho_\ell, \rho_1 \phi_1, \dots, \rho_\ell \phi_\ell)$.