1: (a) Let \mathbb{R}_{cf} be the set \mathbb{R} using the co-finite topology. Determine whether \mathbb{R}_{cf} is first countable, whether it is second countable, whether it is Lindelöff, and whether it is separable.

Solution: We claim that \mathbb{R}_{cf} is not first countable, hence also not second countable. Suppose, for a contradiction, that \mathbb{R}_{cf} is first countable. Let $a \in \mathbb{R}$ and choose an (at most) countable set \mathcal{B} of open sets in \mathbb{R}_{cf} such that for every open U in \mathbb{R}_{cf} with $a \in U$ there exists $B \in \mathcal{B}$ with $a \in B \subseteq U$. Write $\mathcal{B} \setminus \{X\} = \{B_1, B_2, \cdots\}$. Since B_k^c is finite for every $k \geq 1$, the set $\bigcup_{k \geq 1} B_k^c$ is at most countable, so its complement $(\bigcup_{k \geq 1} B_k^c)^c = \bigcap_{k \geq 1} B$ is infinite. Choose $b \in \bigcap_{k \geq 1} B_k$ with $b \neq a$. Then $\{b\}^c$ is an open set in \mathbb{R}_{cf} with $a \in \{b\}^c$, but there is no element $B \in \mathcal{B}$ with $a \in B \subseteq \{b\}^c$.

We claim that \mathbb{R}_{cf} is compact, hence Lindelöff. Let \mathcal{S} be an open cover of \mathbb{R}_{cf} . Choose $U_0 \in \mathcal{S}$. If $U_0 = X$ then $\{U_0\}$ is a finite subcover of \mathcal{S} . Suppose that $U_0 \neq X$. Then U_0^c is finite, say $U_0 = \{a_1, a_2, \dots, a_n\}$. For each $k \in \{1, 2, \dots, n\}$, choose $U_k \in \mathcal{S}$ with $a_k \in U_k$. Then $\{U_0, U_1, \dots, U_k\}$ is a finite subcover of \mathcal{S} .

Finally, we claim that \mathbb{R}_{cf} is separable. Let $A \subseteq \mathbb{R}$ be any infinite, countable set. Since $A \subseteq \overline{A}$, it follows that \overline{A} is also infinite. Since \mathbb{R} is the only infinite closed set in \mathbb{R}_{cf} , we have $\overline{A} = \mathbb{R}$.

(b) Let \mathbb{R}_{ℓ} be the set \mathbb{R} using the lower limit topology. Prove that \mathbb{R} is Lindelöff.

Solution: Let S be an open cover of \mathbb{R}_{ℓ} . For each $a \in \mathbb{R}$ choose $U_a \in S$ with $a \in U_a$ then choose $b_a > a$ so that $[a,b_a) \subseteq U_a$. Note that $\{[a,b_a) \mid a \in \mathbb{R}\}$ is an open cover of \mathbb{R}_{ℓ} . Let $V = \bigcup_{a \in \mathbb{R}} (a,b_a)$. We claim that $V^c = \mathbb{R} \setminus V$ is (at most) countable. For each $a \in V^c$, choose $r_a \in (a,b_a) \cap \mathbb{Q}$. Define $f: V^c \to \mathbb{Q}$ by $f(a) = r_a$. Note that f is injective because if $a_1,a_2 \in V^c$ with $a_1 < a_2$ then we must have $r_{a_1} < r_{a_2}$ since otherwise we would have $a_1 < a_2 < r_{a_2} \le r_{a_1}$ so that $a_2 \in (a_1,r_{a_1}) \subseteq V$. Since $f: V^c \to \mathbb{Q}$ is injective, it follows that V^c is (at most) countable, as claimed.

Let \mathbb{R}_s be the set \mathbb{R} using its standard topology, and let V_s be the set V using the standard subspace topology in \mathbb{R}_s . Since \mathbb{R}_s is second countable, so is V_s , and hence V_s is Lindelöff. Since $\{(a,b_a) \mid a \in \mathbb{R}\}$ is an open cover of V_s , we can choose an (at most) countable subcover, so we can choose an (at most) countable set $C \subseteq \mathbb{R}$ so that $V = \bigcup \{(a,b_a) \mid a \in C\}$. It follows that $V \subseteq \bigcup \{[a,b_a) \mid a \in C\}$. On the other hand, V^c is (at most) countable, and of course $V^c \subseteq \bigcup \{[a,b_a) \mid a \in V^c\}$. Thus $\mathbb{R} = V \cup V^c = \bigcup \{[a,b_a) \mid a \in C \cup V^c\}$, and hence $\{U_a \mid a \in C \cup V^c\}$ is an (at most) countable subcover of S.

(c) Show that the Moore plane Γ is not Lindelöff.

Solution: Let U be the open upper half plane $U = \{(a,b) \mid b > 0\}$ and note that U is open in Γ (because given $(a,b) \in U$ we have $(a,b) \in B((a,b),b)$, which is a basic open set). For each $a \in \mathbb{R}$, let V_a be the basic open set $V_a = B((a,1),1) \cup \{(a,0)\}$. Then $S = \{V_a \mid a \in \mathbb{R}\} \cup \{U\}$ is an uncountable open cover of Γ which has no proper subcover (because the point (0,2) only lies in U and, for each $a \in \mathbb{R}$, the point (a,0) only lies in V_a).

2: (a) Show that the image of a separable space under a continuous map is separable and that the image of a Lindelöff space under a continuous map is Lindelöff.

Solution: Let $f: X \to Y$ be a continuous map between topological spaces. Suppose that X is separable. Let A be an (at most) countable dense subset of X. Let $B = f(A) = \{f(a) \mid a \in A\}$, and note that B is also (at most) countable. Let V be any open set in f(X). Then $f^{-1}(V)$ is open in X. Since A is dense in X, we have $f^{-1}(V) \cap A \neq \emptyset$. We can choose $x \in f^{-1}(V) \cap A$, and then $f(x) \in V \cap f(A) = V \cap B$ so that $V \cap B \neq \emptyset$. Since $V \cap B \neq \emptyset$ for every open set V in f(X), it follows that B is dense in f(X).

Now suppose that X is Lindelöff. Let \mathcal{T} be an open cover of f(X). Let $\mathcal{S} = \{f^{-1}(V) \mid V \in \mathcal{S}\}$ and note that \mathcal{S} is an open cover of X. Since X is Lindelöff, \mathcal{S} has an (at most) countable subcover, so we can choose V_1, V_2, \cdots in \mathcal{T} such that $X = \bigcup_{k \geq 1} f^{-1}(V_k)$. It follows that $f(X) = \bigcup_{k \geq 1} V_k$ so that $\{V_1, V_2, \cdots\}$ is an (at most) countable subcover of \mathcal{T} .

(b) Show that the image under a continuous map of a first or second countable space need not be first or second countable.

Solution: Let \mathbb{R}_s be the set \mathbb{R} using its standard topology and let \mathbb{R}_{cf} be the set \mathbb{R} using the cofinite topology. The identity map $I: \mathbb{R}_s \to \mathbb{R}_{cf}$ is continuous since, if A is a proper closed subset of \mathbb{R}_{cf} , then A is finite, and $I^{-1}(A) = A$, and finite sets are closed in \mathbb{R}_s . Athough I is continuous, and \mathbb{R}_s is second countable (hence also first countable), the image $I(\mathbb{R}_s) = \mathbb{R}_{cf}$ is not first countable (hence also not second countable) by Problem 1(a).

(c) A map $f: X \to Y$ between topological spaces is called **open** when f(U) is open in Y for every open set U in X. Show that the image of a first countable space under an open continuous map is first countable, and the image of a second countable space under an open continuous map is second countable.

Solution: Let $f: X \to Y$ be open and continuous. Note that when we restrict the codomain of f, the resulting map $f: X \to f(X)$ is also continuous and open: it is continuous by Theorem 1.35, and it is open since when U is open in X, f(U) is open in Y and $f(U) \subseteq f(X)$ so that $f(U) = f(U) \cap f(X)$, which is open in f(X) using the subspace topology.

Suppose that X is first countable. Let $b \in f(X)$. Choose $a \in X$ such that f(a) = b. Since X is first countable, we can choose an (at most) countable local basis \mathcal{B} for X at a (meaning that for every open set U in X with $a \in U$ there exists $B \in \mathcal{B}$ with $a \in B \subseteq U$). Let $\mathcal{C} = \{f(B) \mid B \in \mathcal{B}\}$ and note that \mathcal{C} is at most countable (because the map $F: \mathcal{B} \to \mathcal{C}$ given by F(B) = f(B) is surjective), and that each element C = f(B) is open in f(X) because the map $f: X \to f(X)$ is open. We claim that \mathcal{C} is a local basis for f(X) at b. Let V be an open set in f(X) with $b \in V$. Let $U = f^{-1}(V)$, and note that U is open in X since $f: X \to f(X)$ is continuous, and that $a \in U = f^{-1}(V)$ because $f(a) = b \in V$. Since \mathcal{B} is a local basis for X at a, we can choose $B \in \mathcal{B}$ such that $a \in B \subseteq U$. Let $C = f(B) \in \mathcal{C}$. Then we have $b = f(a) \in f(B) = C$ and $C = f(B) \subseteq f(U) = V$. Thus \mathcal{C} is a local basis for Y at b, as claimed.

The proof for second countability is similar. Suppose that X is second countable and let \mathcal{B} be an (at most) countable basis for the topology on X. Let $\mathcal{C} = \{f(B) \mid B \in \mathcal{B}\}$. Note that \mathcal{C} is at most countable (because $F: \mathcal{B} \to \mathcal{C}$ given by F(B) = f(B) is surjective) and that each element $C = f(B) \in \mathcal{C}$ is open in f(X) (because the map $f: X \to f(X)$ is open). We claim that \mathcal{C} is a basis for the topology on f(X) (using the subspace topology in Y). Let V be an open set in f(X) and let $b \in V$. Choose $a \in X$ such that f(a) = b. Let $U = f^{-1}(V)$ and note that $a \in U$ (since $f(a) = b \in V$) and U is open in X (since the map $f: X \to f(X)$ is continuous). Since \mathcal{B} is a basis for the topology on X, we can choose $B \in \mathcal{B}$ such that $a \in B \subseteq U$. Let $C = f(B) \in \mathcal{C}$. Since $a \in B$ we have $b = f(a) \in f(B) = C$ and since $B \subseteq U$ we have $C = f(B) \subseteq f(U) = V$. Thus \mathcal{C} is a basis for the topology on f(X), as claimed.

3: (a) A topological space X is **locally compact** when for every $a \in X$ there is a compact subspace K of X and an open set U in X with $a \in U \subseteq K$. Show that every locally compact Hausdorff space is regular.

Solution: Let X be a locally compact Hausdorff space. Let $a \in X$ and let B be a closed set in X with $a \notin B$. Since X is locally compact, we can choose a compact set K in X and an open set W in X with $a \in W \subseteq K$. Since B is closed in X, $B \cap K$ is closed in K. Since $B \cap K$ is closed in K and K is compact, it follows that $B \cap K$ is compact. For each $b \in B \cap K$, since X is Hausdorff we can choose disjoint open sets U_b and V_b in X with $A \in U_b$ and $A \subseteq V_b$. The set $A \cap K \subseteq V_b$ is an open cover of $A \cap K \subseteq V_b$ and let $A \cap K \subseteq V_b$ and $A \cap K \subseteq V_b$. Let $A \cap K \subseteq V_b$ and $A \cap K \subseteq V_b$ because $A \cap K \subseteq V_b$ because if $A \cap K \subseteq V_b$ because $A \cap K \subseteq V_b$ because $A \cap K \subseteq V_b$ because if $A \cap K \subseteq V_b$ because if $A \cap K \subseteq V_b$ because if $A \cap K \subseteq V_b$ because $A \cap K \subseteq V_b$ because $A \cap K \subseteq V_b$ because if $A \cap K \subseteq V_b$ because if $A \cap K \subseteq V_b$ because $A \cap K \subseteq V_b$ because $A \cap K \subseteq V_b$ because if $A \cap$

(b) Show that every regular Lindelöff space is normal.

Solution: We immitate the proof of Theorem 4.26. Let X be a regular Lindelöff space. Let A and B be disjoint closed sets in X. For each $a \in A$, since X is regular, and $a \in B^c$ which is open, we can choose an open set C_a in X with $a \in C_a \subseteq \overline{C}_a \subseteq B^c$. Since $\overline{C}_a \subseteq B^c$, we have $\overline{C}_a \cap B = \emptyset$. The set $\{C_a \mid a \in A\} \cup \{A^c\}$ is an open cover of X so, since X is Lindelöff, we can choose a_1, a_2, \cdots in X such that $A \subseteq \bigcup_{k \ge 1} C_{a_k}$. Similarly, for each $b \in B$ we can choose an open set D_b in X with $b \in D_b$ and with $\overline{D}_b \cap A = \emptyset$, and we can choose b_1, b_2, \cdots in B so that $B \subseteq \bigcup_{k \ge 1} D_{b_k}$. As in the proof of Theorem 4.26, we let $U = \bigcup_{n \ge 1} U_n$ where $U_n = C_{a_n} \setminus \bigcup_{k=1}^n \overline{D}_{b_n}$ and let $V = \bigcup V_n$ where $V_n = D_{b_n} \setminus \bigcup_{k=1}^n \overline{C}_{a_k}$. Then U and V are disjoint open sets in X with $A \subseteq U$ and $B \subseteq V$.

(c) Show that the Moore plane Γ is not normal.

Solution: In the Moore plane Γ , the subspace topology on the line $L = \{(a,0) \mid a \in \mathbb{R}\}$ is the discrete topology since for every $a \in \mathbb{R}$ we have $(B((a,r),r) \cup \{(a,0)\}) \cap L = \{(a,0)\}$ so that the 1-point set $\{(a,0)\}$ is open in L using the subspace topology. Also, the line L is closed in Γ since $L^c = \{(a,b) \mid b > 0\}$, which is open in Γ , because it is the union of the basic open sets B((a,b),r) with 0 < r < b. Since the subspace topology on L is the discrete topology, and L is closed in Γ , it follows that every subset $A \subseteq L$ is closed in Γ .

Suppose, for a contradiction, that Γ is normal. For each $A \subseteq L$, note that A and $L \setminus A$ are disjoint closed subsets of Γ , so we can choose disjoint open sets U_A and V_A in Γ with $A \subseteq U_A$ and $L \setminus A \subseteq V_A$. Define $F: \mathcal{P}(L) \to \mathcal{P}(\mathbb{Q}^2)$ (where $\mathcal{P}(X)$ is the set of subsets of X) by $F(A) = U_A \cap \mathbb{Q}^2$. We claim that F is injective. Let $A, B \subseteq L$ with $A \neq B$. One of the sets A and B contains a point which is not contained in the other, say $p \in A \setminus B$ (the case $p \in B \setminus A$ is similar). Since $p \in A$ we have $p \in U_A$ and since $p \in L \setminus B$ we have $p \in V_B$, so that $p \in U_A \cap V_B$. Since \mathbb{Q}^2 is dense in Γ (because every basic open set contains points in \mathbb{Q}^2) and since $U_A \cap V_B$. is a nonempty open set in Γ , we can choose $p \in U_A \cap V_B \cap \mathbb{Q}^2$. Note that since $p \in V_B$ and $p \in V_B$ is a nonempty open set in $p \in V_B$ but $p \in V_B \cap \mathbb{Q}^2$. Note that since $p \in V_B$ and $p \in V_B$ is an injective, as claimed. Since $p \in V_B$ but $p \in V_B$ is injective, it follows that $p \in V_B$. This proves that $p \in V_B$ is not possible since $p \in V_B$ but $p \in V_B$ but $p \in V_B$. This is not possible since $p \in V_B$ but $p \in V_B$.

4: (a) For each $k \in \mathbb{Z}^+$, let X_k be a metric space with metric d_k such that $d_k(x_k, y_k) \leq 1$ for all $x_k, y_k \in X_k$. For $x, y \in \prod_{k=1}^{\infty} X_k$, define $d(x, y) = \sup \left\{ \frac{d_k(x_k, y_k)}{k} \mid k \in \mathbb{Z}^+ \right\}$. Show that d is a metric on $\prod_{k=1}^{\infty} X_k$ which induces the product topology.

Solution: To verify that d is a metric on $\prod_{k=1}^{\infty} X_k$, let $x, y, z \in \prod_{k=1}^{\infty} X_k$. It is clear that d(x, y) = d(y, x) and that $d(x, y) \geq 0$ with $d(x, y) = 0 \iff x = y$. For each $k \in \mathbb{Z}^+$, since $d_k(x_k, z_k) \leq d_k(x_k, y_k) + d_k(y_k, z_k)$, we have $\frac{d(x_k, z_k)}{k} \leq \frac{d_k(x_k, y_k)}{k} + \frac{d_k(y_k, z_k)}{k} \leq d(x, y) + d(y, z)$, and hence $d(x, z) = \sup\left\{\frac{d_k(x_k, z_k)}{k}\right\} \leq d(x, y) + d(y, z)$. Thus d is a metric on $\prod_{k=1}^{\infty} X_k$.

Let $W \subseteq \prod_{k=1}^{\infty} X_k$. Suppose that W is open using the metric topology. Let $a \in W$. Choose r > 0 so that $B(a,r) \subseteq W$. Choose $m \in \mathbb{Z}^+$ with $\frac{1}{m} < r$. Let U be the basic open set $U = \prod_{k=1}^{\infty} U_k$ where $U_k = B_k(a_k, kr) \subseteq X_k$ for $1 \le k \le m$ and $U_k = X_k$ for k > m. Let $x \in U$. For $1 \le k \le m$, since $x_k \in B_k(a_k, kr)$, we have $d_k(x_k, a_k) < kr$ so that $\frac{d_k(x_k, a_k)}{k} < r$. For k > m, since $d_k(x_k, a_k) \le 1$ we have $\frac{d_k(x_k, a_k)}{k} \le \frac{1}{k} < \frac{1}{m}$. It follows that $d(x, a) = \sup\left\{\frac{d_k(x_k, a_k)}{k} \mid k \in \mathbb{Z}^+\right\} < r$ so that $x \in B(a, r)$. Thus we have $a \in U \subseteq B(a, r) \subseteq W$. This shows that if W is open using the metric topology, then W is open using the product topology.

Now suppose that W is open using the product topology. Let $a \in W$. Choose a basic open set U in $\prod_{k=1}^{\infty} X_k$ with $a \in U \subseteq W$. Say $U = \prod_{k=1}^{\infty} U_k$ where each U_k is open in X_k (using the metric d_k) with $a_k \in U_k$, and we have $U_k = X_k$ for all but finitely many \mathbb{Z}^+ . Choose $m \in \mathbb{Z}^+$ so that $U_k = X_k$ for all k > m. For $1 \le k \le m$, choose $r_k > 0$ so that $B_k(a_k, r_k) \subseteq U_k$. Let $r = \min\left\{\frac{r_1}{1}, \frac{r_2}{2}, \cdots, \frac{r_m}{m}\right\}$. Let $x \in B(a, r)$. Note that since $d(x, a) = \sup\left\{\frac{d_k(x_k, a_k)}{k}\right\} < r$ we have $\frac{d_k(x_k, a_k)}{k} < r$ for all $k \in \mathbb{Z}^+$. For $1 \le k \le m$, since $\frac{d_k(x_k, a_k)}{k} < r \le \frac{r_k}{k}$ we have $d_k(x_k, a_k) < r$ so that $x_k \in B_k(x_k, a_k) \subseteq U_k$. For k > m, since $U_k = X_k$ we have $x_k \in U_k$. Since $x_k \in U_k$ for all $k \in \mathbb{Z}^+$, we have $x \in U$. Thus $B(a, r) \subseteq U \subseteq W$. This shows that if W is open using the product topology, then W is open using the metric topology.

(b) Recall that the limit of a sequence in a topological space was defined in Question 4 of Assignment 1. Recall, also, that when X is a metric space, and $A \subseteq X$, and $a \in X$, we have $a \in \overline{A}$ if and only if there is a sequence $(x_n)_{n\geq 1}$ in A with $\lim_{n\to\infty} x_n = a$.

Let $A = \{x \in \mathbb{R}^{\omega} \mid \forall k \in \mathbb{Z}^+ \ x_k > 0\}$. Show that when \mathbb{R}^{ω} uses the box topology, we have $0 \in \overline{A}$, but there is no sequence $(x_n)_{n \geq 1}$ in A with $\lim_{n \to \infty} x_n = 0$ (and hence \mathbb{R}^{ω} is not metrizable, using the box topology).

Solution: To show that $0 \in \overline{A}$, let U be a basic open set in \mathbb{R}^{ω} (using the box topology) with $0 \in U$, say $U = \prod_{k=1}^{\infty} U_k$ where each U_k is open in \mathbb{R} with $0 \in U_k$. For each k we can choose $r_k > 0$ such that $(-2r_k, 2r_k) \subseteq U_k$, then for $r = (r_1, r_2, \cdots)$ we have $r \in U \cap A$ so that $U \cap A \neq \emptyset$. This proves that $0 \in \overline{A}$.

Let $(x_n)_{n\geq 1}$ be any sequence in A. For each $k\in\mathbb{Z}^+$, note that $x_{k,k}>0$ (since $x_k\in A$) and let $U_k=(-x_{k,k},x_{k,k})\subseteq\mathbb{R}$. Then $U=\prod_{k=1}^{\infty}U_k$ is a basic open set in \mathbb{R}^{∞} and $x_n\notin U$ for any $n\in\mathbb{Z}^+$ (since $x_{n,n}\notin U_n$). Since U is open in \mathbb{R}^{ω} with $0\in U$ and $x_n\notin U$ for any $n\in\mathbb{Z}^+$, it follows (from the definition of a limit) that $x_n\not\to 0$ in \mathbb{R}^{ω} .

(c) Let K be an uncountable set. Let $A = \{x \in \mathbb{R}^K \mid x_k = 1 \text{ for all but finitely many } k \in K\}$. Show that when \mathbb{R}^K uses the product topology, we have $0 \in \overline{A}$ but there is no sequence $(x_n)_{n \geq 1}$ in A with $\lim_{n \to \infty} x_n = 0$ (and hence \mathbb{R}^K is not metrizable using the product topology).

Solution: To show that $0 \in \overline{A}$, let U be a basic open set in \mathbb{R}^K (using the product topology) with $0 \in U$, say $U = \prod_{k \in K} U_k$ where each U_k is open in \mathbb{R} with $0 \in U_k$ and $U_k = \mathbb{R}$ for all $k \notin J$ where $J \subseteq K$ is finite. Let $a \in \mathbb{R}^K$ be the element with $a_k = 0$ for all $k \in J$ and $a_k = 1$ for all $k \notin J$. Then we have $a \in U \cap A$ so that $U \cap A \neq \emptyset$. Since $U \cap A \neq \emptyset$ for every basic open set U in \mathbb{R}^K with $0 \in U$, it follows that $0 \in \overline{A}$.

Let $(x_n)_{n\geq 1}$ be any sequence in A. For each $n\in\mathbb{Z}^+$, let $J_n=\left\{k\in K\ \middle|\ x_{n,k}\neq 1\right\}$ and note that J_n is finite since $x_n\in A$. Let $J=\bigcup_{n=1}^\infty J_n$ and note that J is (at most) countable. Since K is uncountable, we can choose $\ell\in K$ with $\ell\notin J$. For every $n\in\mathbb{Z}^+$, since $\ell\notin J$, we have $\ell\notin J_n$, and hence $x_{n,\ell}=1$. Let U be the basic open set $U=\prod_{k\in K}U_k$ where $U_\ell=(-1,1)\subseteq\mathbb{R}$ and $U_k=\mathbb{R}$ for $k\neq \ell$. For every $n\in\mathbb{Z}^+$, since $x_{n,\ell}=1\notin U_\ell$, we have $x_n\notin U$. Since U is open in \mathbb{R}^K with $0\in U$ and $x_n\notin U$ for any $n\in\mathbb{Z}^+$, it follows (from the definition of a limit) that $x_n\not\to 0$ in \mathbb{R}^K .