- 1: (a) Let \mathbb{R}_{cf} be the set \mathbb{R} using the co-finite topology. Determine whether \mathbb{R}_{cf} is first countable, whether it is second countable, whether it is Lindelöff, and whether it is separable.
 - (b) Let \mathbb{R}_{ℓ} be the set \mathbb{R} using the lower limit topology. Prove that \mathbb{R} is Lindelöff.
 - Hint: let S be an open cover of \mathbb{R}_{ℓ} . For each $a \in \mathbb{R}$ choose $U_a \in S$ with $a \in U_a$ then choose $b_a > a$ so that $[a, b_a) \subseteq U_a$. Let $V = \bigcup_{a \in \mathbb{R}} (a, b_a)$ and show that $V^c = \mathbb{R} \setminus V$ is (at most) countable.
 - (c) Show that the Moore plane Γ is not Lindelöff.
- 2: (a) Show that the image of a separable space under a continuous map is separable and that the image of a Lindelöff space under a continuous map is Lindelöff.
 - (b) Show that the image under a continuous map of a first or second countable space need not be first or second countable.
 - (c) A map $f: X \to Y$ between topological spaces is called **open** when f(U) is open in Y for every open set U in X. Show that the image of a first countable space under an open continuous map is first countable, and the image of a second countable space under an open continuous map is second countable.
- **3:** (a) A topological space X is **locally compact** when for every $a \in X$ there is a compact subspace K of X and an open set U in X with $a \in U \subseteq K$. Show that every locally compact Hausdorff space is regular.
 - (b) Show that every regular Lindelöff space is normal.
 - (c) Show that the Moore plane Γ is not normal.
- **4:** (a) For each $k \in \mathbb{Z}^+$, let X_k be a metric space with metric d_k such that $d_k(x_k, y_k) \leq 1$ for all $x_k, y_k \in X_k$. For $x, y \in \prod_{k=1}^{\infty} X_k$, define $d(x, y) = \sup \left\{ \frac{d_k(x_k, y_k)}{k} \mid k \in \mathbb{Z}^+ \right\}$. Show that d is a metric on $\prod_{k=1}^{\infty} X_k$ which induces the product topology.
 - (b) Recall that the limit of a sequence in a topological space was defined in Question 4 of Assignment 1. Recall, also, that when X is a metric space, and $A \subseteq X$, and $a \in X$, we have $a \in \overline{A}$ if and only if there is a sequence $(x_n)_{n\geq 1}$ in A with $\lim_{n\to\infty} x_n = a$.
 - Let $A = \{x \in \mathbb{R}^{\omega} \mid \forall k \in \mathbb{Z}^+ \ x_k > 0\}$. Show that when \mathbb{R}^{ω} uses the box topology, we have $0 \in \overline{A}$, but there is no sequence $(x_n)_{n\geq 1}$ in A with $\lim_{n\to\infty} x_n = 0$ (and hence \mathbb{R}^{ω} is not metrizable, using the box topology).
 - (c) Let K be an uncountable set. Let $A = \{x \in \mathbb{R}^K \mid x_k = 1 \text{ for all but finitely many } k \in K\}$. Show that when \mathbb{R}^K uses the product topology, we have $0 \in \overline{A}$ but there is no sequence $(x_n)_{n \geq 1}$ in A with $\lim_{n \to \infty} x_n = 0$ (and hence \mathbb{R}^K is not metrizable using the product topology).