1: For each of the following sets $A \subseteq \mathbb{R}^n$, determine whether A is closed, whether A is compact, and whether A is connected.

(a)
$$A = \left\{ \left(\frac{2t}{t^2+1}, \frac{t^2-1}{t^2+1} \right) \in \mathbb{R}^2 \mid t \in \mathbb{R} \right\}$$

Solution: Let $p=(0,1)\in\mathbb{S}^1\subseteq\mathbb{R}^2$. Note that the stereographic projection $f:\mathbb{S}^1\setminus\{p\}\to\mathbb{R}^1$ and its inverse $g=f^{-1}:\mathbb{R}\to\mathbb{S}^1\setminus\{p\}$ are given by $f(x,y)=\frac{x}{1-y}$ and $g(t)=\left(\frac{2t}{t^2+1},\frac{t^2-1}{t^2+1}\right)$, so the given set A is the range of g, that is $A=\mathbb{S}^1\setminus\{p\}$. Since A is the image of the connected set \mathbb{R} under the continuous map g, A is connected. We claim that A is not closed, indeed we claim that p (which does not lie in A) lies in \overline{A} . It suffices to show that for every r>0, $B(p,r)\cap A\neq\emptyset$. Let r>0. Since $\frac{2t}{t^2+1}\to 0$ and $\frac{t^2-1}{t^2+1}\to 1$ as $t\to\infty$, we can choose t>0 such that $\left|\frac{2t}{t^2+1}\right|<\frac{r}{2}$ and $\left|\frac{t^2-1}{t^2+1}-1\right|<\frac{r}{2}$, and then we have

$$\left|g(t) - p\right| = \left|\left(\frac{2t}{t^2 + 1}, \frac{t^2 - 1}{t^2 + 1} - 1\right)\right| \le \left|\frac{2t}{t^2 + 1}\right| + \left|\frac{t^2 - 1}{t^2 + 1} - 1\right| < \frac{r}{2} + \frac{r}{2} = r$$

so that $g(t) \in B(p,r)$, and hence $B(p,r) \cap A \neq \emptyset$, as required. Thus A is not closed, hence also not compact.

(b)
$$A = \{(u, v, w, x, y, z) \in \mathbb{R}^6 \mid \operatorname{rank} \begin{pmatrix} u & v & w \\ x & y & z \end{pmatrix} \neq 2 \}$$

Solution: Note that we have $\operatorname{rank} \left(\begin{smallmatrix} u & v & w \\ x & y & z \end{smallmatrix} \right) = 2$ if and only if some pair of columns is linearly independent if and only if one of the three 2×2 submatrices $\left(\begin{smallmatrix} u & v \\ x & y \end{smallmatrix} \right)$, $\left(\begin{smallmatrix} u & w \\ x & z \end{smallmatrix} \right)$ and $\left(\begin{smallmatrix} v & w \\ y & z \end{smallmatrix} \right)$ is invertible if and only if one of the three determinants uy - vx, uz - wx and vz - wy is non-zero. Thus we have

$$\operatorname{rank} \left(\begin{smallmatrix} u & v & w \\ x & y & z \end{smallmatrix} \right) \neq 2 \iff \left(uy - vx = 0 \text{ and } uz - wx = 0 \text{ and } vz - wy = 0 \right)$$

and hence

$$A = f^{-1}\big(\{0\}\big) \cap g^{-1}\big(\{0\}\big) \cap h^{-1}\big(\{0\}\big)$$

where $f, g, h : \mathbb{R}^6 \to \mathbb{R}$ are given by

$$f(u, v, w, x, y, z) = uy - vx,$$

$$g(u, v, w, x, y, z) = uz - wx,$$

$$h(u, v, w, x, y, z) = vz - wy.$$

Since f, g and h are continuous (they are polynomials) and $\{0\}$ is closed in \mathbb{R} , it follows (from Theorem 1.31) that the sets $f^{-1}(\{0\})$, $g^{-1}(\{0\})$ and $h^{-1}(\{0\})$ are all closed, and hence A is closed (by Theorem 1.7). On the other hand, A is not bounded because for $e_1 = (1, 0, 0, 0, 0, 0)$ we have $re_1 \in A$ for all $r \in \mathbb{R}$ and $||re_1|| = |r|$. Since A is not bounded, it is not compact (by the Heine-Borel Theorem). Finally, we note that A is path-connected (hence connected), indeed given $a, b \in A$, the map $\alpha : [0, 1] \subseteq \mathbb{R} \to \mathbb{R}^6$ given by

$$\alpha(t) = \left\{ \begin{array}{l} (1 - 2t)a \text{ for } 0 \le t \le \frac{1}{2} \\ (2t - 1)b \text{ for } \frac{1}{2} \le t \le 1 \end{array} \right\}$$

is continuous (by the Glueing Lemma) with $\alpha(0) = a$, $\alpha(\frac{1}{2}) = 0$ and $\alpha(1) = b$, and we have $\alpha(t) \in A$ for all t (because when X is a matrix and $r \in \mathbb{R}$, we have $\operatorname{rank}(rX) = \operatorname{rank}(X)$ when $r \neq 0$, and we have $\operatorname{rank}(rX) = 0$ when r = 0).

2: (a) Let X be a topological space and let $A \subseteq X$. For this problem, let us say that A is connected in X when there do not exist open sets U and V in X such that $U \cap A \neq \emptyset$, $V \cap A \neq \emptyset$, $U \cap V = \emptyset$ and $A \subseteq U \cup V$. Prove that if X is a metric space then A is connected in X if and only if A is connected (in itself), and find an example of a topological space X and a subspace $A \subseteq X$ such that A is connected in X but A is not connected (in itself).

Solution: Let X be a metric space. Suppose that A is not connected in X. Choose open sets U and V in X such that $U \cap A \neq \emptyset$, $V \cap A \neq \emptyset$, $U \cap V = \emptyset$, and $A \subseteq U \cup V$. Then the sets $U \cap A$ and $V \cap A$ are open sets in A which separate A (in itself).

Suppose, conversely, that A is not connected (in itself). Choose (disjoint) open sets E and F in A which separate A (in itself), so we have $E \neq \emptyset$, $F \neq \emptyset$, $E \cap F = \emptyset$, and $A = E \cup F$. Choose open sets U and V in X such that $E = U \cap A$ and $F = V \cap A$. We remark that U and V might not be disjoint in X. For each $a \in E$ choose $r_a > 0$ such that $B(a, 2r_a) \subseteq U$ and then let $U_0 = \bigcup_{a \in E} B(a, r_a)$. Note that U_0 is open in X (since it is a union of open sets in X) and that we have $E \subseteq U_0 \subseteq U$. Similarly, for each $b \in F$ choose $s_b > 0$ so that $B(b, 2s_b) \subseteq V$, and then let $V_0 = \bigcup_{b \in F} B(b, s_b)$. Note that V_0 is open in X and $F \subseteq V_0 \subseteq V$. We have $\emptyset \neq E \subseteq A \cap U_0$, $\emptyset \neq F \subseteq A \cap V_0$ and $A = E \cup F \subseteq U_0 \cup V_0$. It remains to show that $U_0 \cap V_0 = \emptyset$. Suppose, for a contradiction, that $U_0 \cap V_0 \neq \emptyset$. Choose $x \in U_0 \cap V_0$. Since $x \in U_0 = \bigcup_{a \in E} B(a, r_a)$ we can choose $a \in E$ such that $x \in B(a, r_a)$. Similarly, we can choose $b \in F$ so that $x \in B(b, s_b)$. Suppose that $x \in S_0$ (the case that $x \in S_0$ is similar). By the Triangle Inequality, it follows that $x \in S_0$ is similar. By the Triangle Inequality, it follows that $x \in S_0$ is a required.

As an example of a subspace $A \subseteq X$ with A connected (in itself) but A not connected in X, we can take $X = \{0, 1, 2\}$ with topology $\mathcal{T} = \{\emptyset, \{0\}, \{0, 1\}, \{0, 2\}, X\}$, and let $A = \{1, 2\}$

(b) It is likely that you proved in PMATH 351 that when X is a metric space, X is compact if and only if every infinite subset of X has a limit point. Show that when X is a topological space, if X is compact then every infinite subset of X has a limit point, and find an example of a non-compact topological space X in which every infinite subset has a limit point.

Solution: Let X be a compact topological space, let $A \subseteq X$, and suppose that $A' = \emptyset$. We need to show that A is finite. For each $a \in A$, since $a \notin A'$ we can choose an open set U_a in X with $a \in U_a$ such that $(U_a \setminus \{a\}) \cap A = \emptyset$. Since $a \in U_a \cap A$ and $(U \setminus \{a\}) \cap A = \emptyset$, we have $U_a \cap A = \{a\}$. Also note that since $A' = \emptyset$, we have $A' \subseteq A$ so that A is closed, hence A^c is open, so the set $S = \{U_a \mid a \in A\} \cup \{A^c\}$ is an open cover of X. Since X is compact, we can choose a finite subcover, so we can choose $a_1, a_2, \dots, a_n \in A$ such that $X = (\bigcup_{k=1}^n U_{a_k}) \cup A^c$. Then we have $A = X \cap A = ((\bigcup_{k=1}^n U_{a_k}) \cup A^c) \cap A = \bigcup_{k=1}^n (U_{a_k} \cap A) = \bigcup_{k=1}^n \{a_k\} = \{a_1, a_2, \dots, a_n\}$ so that A is finite, as required.

As an example as a noncompact space X in which every infinite subset has a limit point, we can give \mathbb{Z}^+ its standard discrete topology, and give $\{0,1\}$ the trivial topology, then take $X=\mathbb{Z}^+\times\{0,1\}$. The sets $U_n=\left\{(n,0),(n,1)\right\}$ with $n\in\mathbb{Z}^+$ are disjoint open sets, and $\mathcal{S}=\left\{U_n\mid n\in\mathbb{Z}^+\right\}$ is an open cover of X with no finite subcover, and every nonempty subset $\emptyset\neq A\subseteq X$ has a limit point: indeed if $(n,0)\in A$ then $(n,1)\in A'$, and if $(n,1)\in A$ then $(n,0)\in A'$.

3: For $x \in \mathbb{R}^{\omega}$, when $1 \leq p < \infty$ we define the p-norm of x to be $\|x\|_p = \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{1/p}$, and we define the ∞ -norm of x to be $\|x\|_{\infty} = \sup\left\{|x_k| \mid k \in \mathbb{Z}^+\right\}$. For $1 \leq p \leq \infty$ we define $\ell_p = \left\{x \in \mathbb{R}^{\omega} \mid \|x\|_p < \infty\right\}$. You may assume, without proof, that for $1 \leq p \leq \infty$, ℓ_p is a normed linear space using the p-norm. Note that $\ell_p \subseteq \mathbb{R}^{\omega} = \prod_{k=1}^{\infty} \mathbb{R}$. Show that the subspace topology on ℓ_p inherited from the product topology on \mathbb{R}^{ω} is strictly coarser than the p-norm topology on ℓ_p which, in turn, is strictly coarser than the subspace topology on ℓ_p inherited from the box topology on \mathbb{R}^{ω} .

Solution: First, consider \mathbb{R}^{ω} using the product topology. Let $U \subseteq \ell_p$ be open in the subspace topology, and let $a \in U$. Choose an open set $V \subseteq \mathbb{R}^{\omega}$ such that $U = V \cap \ell_p$. Choose a basic open set B in \mathbb{R}^{ω} with $a \in B \subseteq V$, say $B = U_1 \times U_2 \times \cdots \times U_n \times \mathbb{R} \times \mathbb{R} \times \cdots$ where each U_k is open in \mathbb{R} with $a_k \in U_k$. For $1 \le k \le n$, choose $r_k > 0$ such that $B(a_k, r_k) \subseteq U_k$ and let $r = \min\{r_1, \cdots, r_n\}$. When $x \in B_p(a, r) = \{x \in \ell_p \mid ||x - a||_p < r\}$, we have $|x_k - a_k| \le ||x - a||_p < r \le r_k$ for $1 \le k \le n$, and hence $B_p(a, r) \subseteq B \subseteq V$. Since $B_p(a, r) \subseteq \ell_p$ and $B_p(a, r) \subseteq V$, we have $a \in B_p(a, r) \subseteq V \cap \ell_p = U$. Thus U is also open in the p-norm topology. This shows that the subspace topology is coarser or equal to the p-norm topology.

To show that it is strictly coarser, we shall show that $B_p(0,1)$, which is open in the p-norm topology, is not open in the subspace topology. Suppose, for a contradiction, that $B_p(0,1)$ is open in the subspace topology. Choose an open set $V \subseteq \mathbb{R}^{\omega}$ such that $B_p(0,1) = V \cap \ell_p$. Choose a basic open set $B \subseteq \mathbb{R}^{\omega}$ such that $0 \in B \subseteq V$, say $B = U_1 \times U_2 \times \cdots \times U_n \times \mathbb{R} \times \mathbb{R} \times \cdots$ where each U_k is open in \mathbb{R} with $0 \in U_k$. Then we have $e_{n+1} \in B \subseteq V$ and $e_{n+1} \in \ell_p$ so that $e_{n+1} \in V \cap \ell_p = B_p(0,1)$, giving the desired contradiction.

Now consider \mathbb{R}^{ω} using the box topology. Let $U\subseteq \ell_p$ be open in the p-norm topology, and let $a\in U$. Choose r>0 such that $B_p(a,r)\subseteq U$. Let $s=(s_k)_{k\geq 1}$ be given by $s_k=\frac{1}{2^k}$ and note that $s\in \ell_p$ for all $1\leq p\leq \infty$ with $\|s\|_p\leq 1$: indeed when $1\leq p<\infty$ we have $\|s\|_p=\left(\sum\limits_{k=1}^{\infty}\frac{1}{2^{pk}}\right)^{1/p}\leq \left(\sum\limits_{k=1}^{\infty}\frac{1}{2^k}\right)^{1/p}=1^{1/p}=1$, and we have $\|s\|_{\infty}=\frac{1}{2}\leq 1$. Let $B\subseteq \mathbb{R}^{\omega}$ be the basic open set $B=B(a_1,\frac{r}{2^1})\times B(a_2,\frac{r}{2^2})\times B(a_3,\frac{r}{2^3})\times \cdots$. For all $x\in B$ we have $|x_k-a_k|<\frac{r}{2^k}$ for all $k\in \mathbb{Z}^+$ so that $\|x-a\|_p< r\|s\|_p=r$, and so $a\in B\subseteq B_p(a,r)$ (we remark that when $x\in \mathbb{R}^{\omega}$ with $\|x-a\|_p< r$ we have $\|x\|_p\leq \|x-a\|_p+\|a\|_p< r+\|a\|_p<\infty$ so that $x\in \ell_p$, and so $B_p(a,r)=\left\{x\in \ell_p\,\big|\,\|x-a\|_p< r\right\}=\left\{x\in \mathbb{R}^{\omega}\,\big|\,\|x-a\|_p< r\right\}$). Thus U is also open in the subspace topology. This shows that the p-norm topology is coarser or equal to the subspace topology.

To show that it is strictly coarser, note that the basic open set $B = B\left(0, \frac{1}{2^1}\right) \times B\left(0, \frac{1}{2^2}\right) \times B\left(0, \frac{1}{2^3}\right) \times \cdots$ is open in \mathbb{R}^{ω} , using the box topology, and, as remarked above, we have $B \subseteq \ell_p$. But B is not open in the p-norm topology because $0 \in B$ but there is no r > 0 such that $B_p(0,r) \subseteq B$: indeed given r > 0 we can choose $n \in \mathbb{Z}^+$ so that $\frac{1}{2^n} < \frac{r}{2}$ and then we have $\frac{r}{2} e_n \in B_p(0,r)$ but $\frac{r}{2} e_n \notin B$.

4: (a) Show that for $a, b \in \mathbb{R}^{\omega}$, if $b - a \in \mathbb{R}^{\infty}$ then there is a path from a to b in \mathbb{R}^{ω} , using the box topology.

Solution: Let $a, b \in \mathbb{R}^{\omega}$ with $a - b \in \mathbb{R}^{\infty}$. Choose $m \in \mathbb{Z}^+$ such that for all $k \in \mathbb{Z}^+$ with $k \geq m$ we have $a_k - b_k = 0$ so that $a_k = b_k$. For each $k \in \mathbb{Z}^+$, define $\alpha_k : [0,1] \subseteq \mathbb{R} \to \mathbb{R}$ by $\alpha_k(t) = a_k + t(b_k - a_k)$, then define $\alpha : [0,1] \subseteq \mathbb{R} \to \mathbb{R}^{\omega}$ by $\alpha(t)_k = \alpha_k(t) = a_k + t(b_k - a_k)$. Note that when $k \geq m$ we have $\alpha(t)_k = a_k = b_k$ for all $t \in [0,1]$. We claim that α is a (continuous) path from a to b in \mathbb{R}^{ω} . It is clear that $\alpha(0) = a$ and $\alpha(1) = b$, so it suffices to show that α is continuous. Let U be any basic open set in \mathbb{R}^{ω} (using the box topology), say $U = \prod_{k=1}^{\infty} U_k$ where each U_k is open in \mathbb{R} . Then

$$\alpha^{-1}(U) = \left\{ t \in [0,1] \mid \alpha(t)_k \in U_k \text{ for all } k \in \mathbb{Z}^+ \right\} = \bigcap_{k=1}^{\infty} \alpha_k^{-1}(U_k).$$

If there exists $k \in \mathbb{Z}^+$ with $k \geq m$ such that $a_k \notin U_k$, then we have $\alpha_k^{-1}(U_k) = \emptyset$ and hence $\alpha^{-1}(U) = \emptyset$, which is open. If $a_k \in U_k$ for all $k \geq m$ then we have $\alpha_k^{-1}(U_k) = [0,1]$ for all $k \geq m$ so that $\alpha^{-1}(U) = \bigcap_{k=1}^{m-1} \alpha_k^{-1}(U_k)$, which is open (since it is the intersection of finitely many open sets). Since $\alpha^{-1}(U)$ is open in [0,1] for every basic open set U in \mathbb{R}^ω , it follows that α is continuous, as required.

(b) Let $b \in \mathbb{R}^{\omega}$ with $b-a \notin \mathbb{R}^{\infty}$. For each $k \in \mathbb{Z}^+$, let $d_k = |b_k - a_k|$ and note that $d_k > 0$ for infinitely many $k \in \mathbb{Z}^+$. For $k, \ell \in \mathbb{Z}^+$, let $I_{k,\ell} = \left(a_k - \frac{d_k}{2^{\ell}}, \ a_k + \frac{d_k}{2^{\ell}}\right) \subseteq \mathbb{R}$ when d > 0 and let $I_{k,\ell} = \mathbb{R}$ when $d_k = 0$. For $\ell \in \mathbb{Z}^+$, let $V_{\ell} = \left\{x \in \mathbb{R}^{\omega} \mid \{k \in \mathbb{Z}^+ \mid x_k \notin I_{k,\ell}\} \text{ is infinite}\right\}$. Let $V = \bigcup_{\ell=1}^{\infty} V_{\ell}$ and $U = V^c = \mathbb{R}^{\omega} \setminus V$. Note that U and V separate \mathbb{R}^{ω} with $u \in U$ and $u \in V$. Show that $u \in V$ are open in $u \in V$, using the box topology.

Solution: We claim that V is open. Let $c \in V = \bigcup_{\ell=1}^{\infty} V_{\ell}$. Choose $\ell \in \mathbb{Z}^+$ such that $c \in V_{\ell}$. Let $K = \left\{k \in \mathbb{Z}^+ \middle| c_k \notin I_{k,\ell}\right\}$ and note that K is infinite (since $c \in V_{\ell}$). Let B be the basic open set $B = \prod_{k=1}^{\infty} J_{k,\ell}$ where $J_{k,\ell} = \left(c_k - \frac{d_k}{2^{\ell+1}}, c_k + \frac{d_k}{2^{\ell+1}}\right)$. Let $x \in B$. For all $k \in \mathbb{Z}^+$ we have $x_k \in J_{k,\ell}$ so that $|x_k - c_k| < \frac{d_k}{2^{\ell+1}}$, and for all $k \in K$ we have $c_k \notin I_{k,\ell}$ so that $|c_k - a_k| \ge \frac{d_k}{2^{\ell}}$. Thus for all $k \in K$ we have $|a_k - c_k| > |a_k - c_k| > |c_k - x_k| > \frac{d_k}{2^{\ell}} - \frac{d_k}{2^{\ell+1}} = \frac{d_k}{2^{\ell+1}}$ so that $x \notin I_{k,\ell}$. Since $x \notin I_{k,\ell}$ for all $k \in K$, and K is infinite, we have $x \in V_{\ell}$. Since $x \in B$ was arbitrary, we have $B \subseteq V_{\ell} \subseteq V$. Thus, for each $c \in V$ we have a basic open set B with $c \in B \subseteq V$, and hence V is open.

We claim that U is open. Let $c \in U = V^c$, so $c \notin V_\ell$ for every $\ell \in \mathbb{Z}^+$. Then for every $\ell \in \mathbb{Z}^+$ there exist finitely many $k \in \mathbb{Z}^+$ such that $c_k \notin I_{k,\ell}$. Choose $1 \le m_1 < m_2 < \cdots$ such that for all $k, \ell \in \mathbb{Z}^+$, $k \ge m_\ell \Longrightarrow c_k \in I_{k,\ell}$. Let B be the basic open set $B = \prod_{k \in \mathbb{Z}^+} J_k$ where J_k is as follows: when $k < m_1$ we take $J_k = \mathbb{R}$ and when $m_\ell \le k < m_{\ell+1}$ we take $J_k = I_{k,\ell}$ and note that $c \in B$. When $x \in B$, for every $\ell \in \mathbb{Z}^+$ we have $x_k \in I_{k,\ell}$ for all $k \ge m_\ell$ (indeed when $n \ge \ell$ and $m_n \le k < m_{n+1}$ we have $x_k \in I_{k,n} \subseteq I_{k,\ell} = J_k$) so that $x_k \notin I_{k,\ell}$ for finitely many k, and hence $x \notin V_\ell$ for every ℓ , and hence $x \in U$. Thus $x \in U$ is open set with $x \in U$ and hence $x \in U$ is open.

(c) Show that the connected components and the path components of \mathbb{R}^{ω} , using the box topology, are the elements in the quotient space $\mathbb{R}^{\omega}/\mathbb{R}^{\infty}$ (that is the sets of the form $a + \mathbb{R}^{\infty}$ with $a \in \mathbb{R}^{\omega}$).

Solution: Let $a \in \mathbb{R}^{\omega}$, let C be the connected component of a and let P be the path component of a. By Part (a), the set $a + \mathbb{R}^{\infty}$ is path-connected, hence connected, so we have $a + \mathbb{R}^{\infty} \subseteq P \subseteq C$. For each $b \in (a + \mathbb{R}^{\infty})^c = \mathbb{R}^{\omega} \setminus (a + \mathbb{R}^{\infty})$, by Part (b) we can choose disjoint open sets U_b and V_b which separate $\prod_{k \in K} X_k$ with $a \in U_b$ and $b \in V_b$. By Lemma 3.4, since C is connected, either $C \subseteq U_b$ or $C \subseteq V_b$. Since $a \in C \cap U_b$ and $a \notin V_b$, we must have $C \subseteq U_b$. Since $C \subseteq U_b$ and $U_b \cap V_b = \emptyset$, we have $C \cap V_b = \emptyset$. Since $C \cap V_b = \emptyset$ for every $C \cap V_b = \emptyset$ for every $C \cap V_b = \emptyset$ where $C \cap V_b = \emptyset$ and $C \cap V_b = \emptyset$ so that $C \subseteq C \cap V_b = \emptyset$. Since $C \cap V_b = \emptyset$ and $C \cap V_b = \emptyset$ and $C \cap V_b = \emptyset$ so that $C \subseteq C \cap V_b = \emptyset$. Since $C \cap V_b = \emptyset$ and $C \cap V_b = \emptyset$ so that $C \subseteq C \cap V_b = \emptyset$. Since $C \cap V_b = \emptyset$ it follows that $C \cap C \cap V_b = \emptyset$.