- 1: For each of the following sets $A \subseteq \mathbb{R}^n$, determine whether A is closed, whether A is compact, and whether A is connected.
 - (a) $A = \left\{ \left(\frac{2t}{t^2+1}, \frac{t^2-1}{t^2+1} \right) \in \mathbb{R}^2 \mid t \in \mathbb{R} \right\}$
 - (b) $A = \left\{ (u, v, w, x, y, z) \in \mathbb{R}^6 \,\middle|\, \operatorname{rank} \left(\begin{smallmatrix} u & v & w \\ x & y & z\end{smallmatrix}\right) \neq 2 \right\}$
- 2: (a) Let X be a topological space and let $A \subseteq X$. For this problem, let us say that A is connected in X when there do not exist open sets U and V in X such that $U \cap A \neq \emptyset$, $V \cap A \neq \emptyset$, $U \cap V = \emptyset$ and $A \subseteq U \cup V$. Prove that if X is a metric space then A is connected in X if and only if A is connected (in itself), and find an example of a topological space X and a subspace $A \subseteq X$ such that A is connected in X but A is not connected (in itself).
 - (b) It is likely that you proved in PMATH 351 that when X is a metric space, X is compact if and only if every infinite subset of X has a limit point. Show that when X is a topological space, if X is compact then every infinite subset of X has a limit point, and find an example of a non-compact topological space X in which every infinite subset has a limit point.
- 3: For $x \in \mathbb{R}^{\omega}$, when $1 \leq p < \infty$ we define the p-norm of x to be $\|x\|_p = \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{1/p}$, and we define the ∞ -norm of x to be $\|x\|_{\infty} = \sup\left\{|x_k| \mid k \in \mathbb{Z}^+\right\}$. For $1 \leq p \leq \infty$ we define $\ell_p = \left\{x \in \mathbb{R}^{\omega} \mid \|x\|_p < \infty\right\}$. You may assume, without proof, that for $1 \leq p \leq \infty$, ℓ_p is a normed linear space using the p-norm. Note that $\ell_p \subseteq \mathbb{R}^{\omega} = \prod_{k=1}^{\infty} \mathbb{R}$. Show that the subspace topology on ℓ_p inherited from the product topology on \mathbb{R}^{ω} is strictly coarser than the p-norm topology on ℓ_p which, in turn, is strictly coarser than the subspace topology on ℓ_p inherited from the box topology on \mathbb{R}^{ω} .
- **4:** (a) Show that for $a, b \in \mathbb{R}^{\omega}$, if $b a \in \mathbb{R}^{\infty}$ then there is a path from a to b in \mathbb{R}^{ω} , using the box topology.
 - (b) Let $b \in \mathbb{R}^{\omega}$ with $b a \notin \mathbb{R}^{\infty}$. For each $k \in \mathbb{Z}^+$, let $d_k = |b_k a_k|$ and note that $d_k > 0$ for infinitely many $k \in \mathbb{Z}^+$. For $k, \ell \in \mathbb{Z}^+$, let $I_{k,\ell} = \left(a_k \frac{d_k}{2^{\ell}}, a_k + \frac{d_k}{2^{\ell}}\right) \subseteq \mathbb{R}$ when d > 0 and let $I_{k,\ell} = \mathbb{R}$ when $d_k = 0$. For $\ell \in \mathbb{Z}^+$, let $V_{\ell} = \left\{x \in \mathbb{R}^{\omega} \mid \{k \in \mathbb{Z}^+ \mid x_k \notin I_{k,\ell}\} \text{ is infinite}\right\}$. Let $V = \bigcup_{\ell=1}^{\infty} V_{\ell}$ and $U = V^c = \mathbb{R}^{\omega} \setminus V$. Note that U and V separate \mathbb{R}^{ω} with $u \in U$ and $u \in V$. Show that $u \in V$ are open in $u \in V$, using the box topology.
 - (c) Show that the connected components and the path components of \mathbb{R}^{ω} , using the box topology, are the elements in the quotient space $\mathbb{R}^{\omega}/\mathbb{R}^{\infty}$ (that is the sets of the form $a + \mathbb{R}^{\infty}$ with $a \in \mathbb{R}^{\omega}$).