1: For each of the following subsets $A \subseteq \mathbb{R}^n$, determine whether A is closed, whether A is compact, and whether A is connected.

(a)
$$A = \left\{ (a, b, c, d) \in \mathbb{R}^4 \,\middle|\, \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right)^2 = \left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix}\right) \right\}.$$

Solution: We claim that A is closed. For $a,b,c,d\in\mathbb{R}$ we have $\binom{a}{c}\binom{b}{d}^2=\binom{a^2+bc}{ac+cd}\binom{ab+bd}{bc+d^2}$ so that $(a,b,c,d)\in A$ when $(a^2+bc,ab+bd,ac+cd,bc+d^2)=(1,0,0,1)$, and so $A=f^{-1}(p)$ where $f:\mathbb{R}^4\to\mathbb{R}^4$ is given by $f(a,b,c,d)=\binom{a^2+bc}{ab+bd}$, ac+cd, $bc+d^2$ and $bc=(1,0,0,1)\in\mathbb{R}^4$. The map $bc=(1,0,0,1)\in\mathbb{R}^4$. The map $bc=(1,0,0,1)\in\mathbb{R}^4$ is continuous (it is a polynomial map) and $bc=(1,0,0,1)\in\mathbb{R}^4$.

Note that A is not bounded because for r > 0 we have $(1, r, 0, -1) \in A$ and $|(1, r, 0, -1)| = \sqrt{2 + r^2} \to \infty$ as $r \to \infty$. Since A is not bounded in \mathbb{R}^4 , it is not compact (by the Heine Borel Theorem).

We claim that A is not connected. For $a,b,c,d\in\mathbb{R}$, if $(a,b,c,d)\in A$ then we have $\binom{a}{c}\binom{a}{d}^2=I$ so that $\det\binom{a}{c}\binom{b}{d}=\pm 1$, that is $ad-bc=\pm 1$. It follows that A can be separated by the two open sets $U\cap A$ and $V\cap A$ where $U=\{(a,b,c,d)|ad-bc>0\}$ and $V=\{(a,b,c,d)|ad-bc<0\}$. Note that U is open in \mathbb{R}^4 because $U=g^{-1}\big((0,\infty)\big)$ where $g:\mathbb{R}^4\to\mathbb{R}$ is given by g(a,b,c,d)=ad-bc (and g is continuous and $(0,\infty)$ is open), and similarly V is open in \mathbb{R}^4 because $V=g^{-1}\big((-\infty,0)\big)$. Also, note that we have $U\cap A\neq\emptyset$ because for example $(1,0,0,1)\in U\cap A$, and we have $V\cap A\neq\emptyset$ because for example $(0,1,1,0)\in V\cap A$. Thus the sets $U\cap A$ and $V\cap A$ are open sets in A which separate A.

(b) A is the set of points $(a, b, c) \in \mathbb{R}^3$ such that the polynomial $p(x) = x^3 + ax^2 + bx + c$ has three distinct real roots which all lie in the closed interval [-1, 1].

Solution: We claim that A is not closed in \mathbb{R}^3 . For $n \in \mathbb{Z}^+$, let $u_n = (a_n, b_n, c_n) = \left(0, -\frac{1}{n^2}, 0\right) \in \mathbb{R}^3$. Note that $u_n \in A$ since the polynomial $p_n(x) = x^3 + a_n x^2 + b_n x + c_n = x^3 - \frac{1}{n^2} x = \left(x + \frac{1}{n}\right) \left(x - 0\right) \left(x - \frac{1}{n}\right)$ has 3 distinct real roots, namely $-\frac{1}{n}$, 0, and $\frac{1}{n}$, which all lie in [-1,1]. Note that $u_n \neq 0 = (0,0,0)$ and $u_n \to 0$ so that $0 \in A' \subseteq \overline{A}$. But $0 \notin A$ because the polynomial $p(x) = x^3 + 0x^2 + 0x + 0 = x^3$ does not have three distinct real roots (it has the single triple root, 0). Thus A is not closed in \mathbb{R}^3 , as claimed. Since A is not closed in \mathbb{R}^3 , it is not compact (by the Heine-Borel Theorem).

We claim that A is connected. Let $C = \{(r, s, t) \in \mathbb{R}^3 | -1 \le r < s < t \le 1\}$ and define $f: C \to A$ by f(r, s, t) = (-(r+s+t), st+tr+rs, -rst). Note that f is continuous (all polynomial functions are continuous), and f takes values in A and is surjective because $x^3 - (r+s+t)x^2 + (st+tr+rs)x - rst = (x-r)(x-s)(x-t)$. Note that $C = C_1 \cap C_2 \cap C_3 \cap C_4$ where $C_1 = \{(r, s, t) | -1 \le r\}$, $C_2 = \{(r, s, t) | r < s\}$, $C_3 = \{(r, s, t) | s < t\}$ and $C_4 = \{(r, s, t) | t \le 1\}$. Each of these sets C_k is easily seen to be convex: for example, C_2 is convex because if $u_1 = (r_1, s_1, t_1) \in C_2$ (so $r_1 < s_2$) and $u_2 = (r_2, s_2, t_2) \in C_2$ (so $r_2 < s_2$) then for all $\lambda \in [0, 1]$ we have $(1 - \lambda)r_1 + \lambda r_2 < (1 - \lambda)s_1 + \lambda s_2$ so that

$$(1-\lambda)u_1 + \lambda u_2 = ((1-\lambda)r_1 + \lambda r_2, (1-\lambda)s_1 + \lambda s_2, (1-\lambda)t_1 + \lambda t_2) \in C_2.$$

Since C is the intersection of four convex sets, it follows that C is convex: indeed given $a, b \in C$, we have $a, b \in C_k$ so that $[a, b] \subseteq C_k$ for every index k, and hence $[a, b] \subseteq C = \bigcap_{k=1}^4 C_k$. Since C is convex, it is path connected, and hence connected. Since f is continuous and C is connected and A = f(C), it follows that A is connected.

2: (a) Let $A \subseteq \mathbb{R}^2$. Show that if A is countable then $A^c = \mathbb{R}^2 \setminus A$ is path-connected.

Solution: Suppose that A is countable. Let $b, c \in \mathbb{R}^2 \setminus A$. There are uncountably many lines through b, and only countably many of these lines pass through the points in A, so we can choose a line L through b which does not intersect with any of the points in A. If $c \in L$ then the linear path given by $\alpha(t) = b + t(c - b)$ is a path from b to c in $\mathbb{R}^2 \setminus A$. Suppose that $c \notin L$. There exist uncountably many lines through c, and only one of these is parallel to c and only countably many pass through the points in c, so we can choose a line c through c such that c is not parallel to c and c does not pass through any of the points in c. Let c be the point of intersection of c and c and c where c and c where c in c and c and c and c and c and c and c where c in c and c

(b) Let $I = [0,1] \subseteq \mathbb{R}$. Find the path-components of $X = I^2$ using the dictionary order. topology

Solution: We claim that the path components of X are the vertical line segments $\{a\} \times [0,1]$ with $a \in [0,1]$. Note first that the basic open sets in X intersected with the vertical line segment $\{a\} \times [0,1]$ are the sets of one of the forms $\{a\} \times [0,b)$, $\{a\} \times (b,1]$ or $\{a\} \times (b,c)$ (or the empty set). These are precisely the basic open sets for $\{a\} \times [0,1]$ using its standard topology (as a subspace of \mathbb{R}^2). Thus $\{a\} \times [0,1]$ is homeomorphic to [0,1], which is path-connected.

To complete the proof of our claim, it suffices to show that when $0 \le a < b \le 1$, there is no path in X from $\left(a,\frac{1}{2}\right)$ to $\left(b,\frac{1}{2}\right)$. Suppose, for a contradiction, that there is such a path $\alpha:[0,1]\to X$. Note that for every $c\in(a,b)$ there exists $s\in(0,1)$ such that $\alpha(s)=\left(c,\frac{1}{2}\right)$, since otherwise, for $U=\left\{(x,y)\big|(x,y)<\left(c,\frac{1}{2}\right)\right\}$ and $V=\left\{(x,y)\big|(x,y)>\left(c,\frac{1}{2}\right)\right\}$, the two nonempty disjoint open sets $\alpha^{-1}(U)$ and $\alpha^{-1}(V)$ would separate the connected set [0,1]. But this implies that we have uncountably many disjoint open sets $\alpha^{-1}\left(\{c\}\times(0,1)\right)$ in (0,1), which is not possible (because we can choose a rational number in each of the disjoint sets, but there are only countably many rational numbers).