1: Let $X = \mathbb{R}$ using the lower limit topology \mathcal{T} , generated by the sets of the form [a, b) where $a, b \in \mathbb{R}$ with a < b, and let $Y = \mathbb{R}$ using the topology \mathcal{S} generated by the sets of the form [a, b) where $a, b \in \mathbb{Q}$ with a < b. Let $A = (0, \sqrt{2}) = \{x \in \mathbb{R} \mid 0 < x < \sqrt{2}\}$ and let $B = (\sqrt{2}, 3) = \{x \in \mathbb{R} \mid \sqrt{2} < x < 3\}$. Find the closures $\operatorname{Cl}_X(A)$, $\operatorname{Cl}_X(B)$, $\operatorname{Cl}_Y(A)$ and $\operatorname{Cl}_Y(B)$.

Solution: Let I=(r,s) where $r,s\in\mathbb{R}$ with r< s. We claim that in X, we have $\overline{I}=\operatorname{Cl}_X I=[r,s)$. For x< r (so $x\notin I$) we have $x\notin I'$ because for $U=\left[x,\frac{x+r}{2}\right)$ we have $x\in U$ and $\left(U\setminus\{x\}\right)\cap I=\left(x,\frac{x+r}{2}\right)\cap (r,s)=\emptyset$. For x=r we have $x\in I'$ because when $x=r\in U=[a,b)$ where $a,b\in\mathbb{R}$ with a< b, we have $a\le x=r< b$ so that $\left(U\setminus\{x\}\right)\cap I\supseteq (r,b)\cap (r,s)\neq\emptyset$. For r< x< s we have $x\in I$. Finally, for $x\ge s$ (so $x\ne I$) we have $x\notin I'$ because for U=[x,x+1) we have $x\in U$ and $\left(U\setminus\{x\}\right)\cap I=(x,x+1)\cap (r,s)=\emptyset$. Thus $\overline{I}=I\cup I'=[r,s)$, as claimed.

Again, let I=(r,s) where $r,s\in\mathbb{R}$ with r< s. We claim that in Y, if $s\in\mathbb{Q}$ then $I'=\operatorname{Cl}_Y I=[r,s)$ and if $s\notin\mathbb{Q}$ then $\overline{I}=\operatorname{Cl}_Y I=[r,s]$. For x< r (so $x\notin I$) we have $x\notin I'$ because we can choose $a,b\in\mathbb{Q}$ with $a\leq x< b< r$ and then for U=[a,b) we have $x\in U$ and $(U\setminus\{x\})\cap I\subseteq[a,b)\cap(r,s)=\emptyset$. For x=r we have $x\in I'$ because when $x\in U=[a,b)$ where $a,b\in\mathbb{Q}$ with a< b, we have $a\leq x=r< b$ so that $(U\setminus\{x\})\cap I\supseteq(r,b)\cap(r,s)\neq\emptyset$. For r< x< s we have $x\in I$. For $x=s\in\mathbb{Q}$ (so $x\notin I$) we have $x\notin I'$ because for U=[s,s+1) we have $x\in U$ and $(U\setminus\{x\})\cap I=(s,s+1)\cap(r,s)=\emptyset$. For $x=s\notin\mathbb{Q}$ we have $x\in I'$ because when $x\in U=[a,b)$ where $a,b\in\mathbb{Q}$ with a< b, we have $a\leq x< b$ and $a\neq x$ (since $x=s\notin\mathbb{Q}$ and $a\in\mathbb{Q}$) so that a< x< b, and hence $(U\setminus\{x\})\cap I=([a,s)\cup(s,b))\cap(r,s)\supseteq[a,s)\cap(r,s)\neq\emptyset$. Finally, when x>s (so $x\notin I$) we have $x\notin I'$ because we can choose $a,b\in\mathbb{Q}$ with s< a< x< b and then for U=[a,b) we have $x\in I'$ because we can choose $a,b\in\mathbb{Q}$ with s< a< x< b and then for U=[a,b) we have $x\in I'$ with $(U\setminus\{x\})\cap I\subseteq[a,b)\cap(r,s)=\emptyset$. Thus, if $s\in\mathbb{Q}$ we have $\overline{I}=I\cup I'=[r,s]$, and if $s\notin\mathbb{Q}$ we have $\overline{I}=I\cup I'=[r,s]$, as claimed.

In particular, $Cl_X(A) = [0, \sqrt{2})$, $Cl_X(B) = [\sqrt{2}, 3)$, $Cl_Y(A) = [0, \sqrt{2}]$ and $Cl_Y(B) = [\sqrt{2}, 3)$.

2: When X is an ordered set, the dictionary order on $X^2 = X \times X$ is the order given by stipulating that

$$(a,b) < (c,d) \iff (a < c \text{ or } (a = c \text{ and } b < d)).$$

(a) Let $I = [0, 1] \subseteq \mathbb{R}$ and let $X = I^2$ using the order topology for the dictionary order. Find $\overline{A} = \operatorname{Cl}_X A$ where $A = \{(x, 0) \mid 0 < x < 1\}$.

Solution: Let $p, q \in I$ so that $(p, q) \in I^2 = X$. When 0 and <math>q = 0 we have $(p, q) \in A \subseteq \overline{A}$.

Recall, from Question 2(b) on Assignment 1, that $(p,q) \in \overline{A}$ if and only if for every basic open set B in X with $(p,q) \in B$, we have $B \cap A \neq \emptyset$.

When (p,q)=(0,0) we have $(p,q)\notin \overline{A}$ because $(0,0)=\min X$ so $B=\left[(0,0),(0,1)\right]_X=\left\{(0,y)\mid 0\leq y<1\right\}$ is a basic open set in X with $(0,0)\in B$ and with $B\cap A=\emptyset$.

When (p,q) = (1,1) we have $(p,q) \notin \overline{A}$ because $(1,1) = \max X$ so $B = ((1,0),(1,1)]_X = \{(1,y) \mid 0 < y \le 1\}$ is a basic open set in X with $(1,1) \in B$ and with $B \cap A = \emptyset$.

When (p,q)=(1,0) we have $(p,q)\in \overline{A}$ because every basic open set B in X with $(1,0)\in B$ contains an interval of the form $J=\left((a,b),(1,0)\right]_X$ with a<1 and then $\left(\frac{a+1}{2},0\right)\in J\cap A\subseteq B\cap A$.

When $0 \le p \le 1$ and 0 < q < 1 we have $(p,q) \notin \overline{A}$ because the interval $B = ((p,0),(p,1))_X$ is a basic open set with $(p,q) \in B$ and $B \cap A = \emptyset$.

Finally, when $0 \le p < 1$ and q = 1 we have $(p,q) \in \overline{A}$ because every basic open set B in X with $(p,1) \in B$ contains an interval of the form $J = \lceil (p,1) \mid (c,d) \rceil$ with p < c and then $\left(\frac{p+c}{2},0\right) \in J \cap A \subseteq B \cap A$.

Thus we have $\overline{A} = \{(p,0) \mid 0$

(b) Let $I = [0,1] \subseteq \mathbb{R}$ and let $X = I^2 \subseteq \mathbb{R}^2$. Let \mathcal{T}_1 be the order topology on X using the dictionary order, let \mathcal{T}_2 be the product topology on X using the order topology on each copy of I, and let \mathcal{T}_3 be the subspace topology that X inherits from $Y = \mathbb{R}^2$ using the order topology for the dictionary order. For each $k, \ell \in \{1, 2, 3\}$ with $k < \ell$, determine whether $\mathcal{T}_k \subseteq \mathcal{T}_\ell$ and whether $\mathcal{T}_\ell \subseteq \mathcal{T}_k$.

Solution: We remark that \mathcal{T}_1 is the topology used in Part (a) and \mathcal{T}_2 is the standard topology on I^2 .

 $\mathcal{T}_1 \not\subseteq \mathcal{T}_2$: for example, for $a, b, c \in I$ with b < d, the interval $B = ((a, b), (a, d))_{I^2} = \{(a, y) \mid b < y < d\}$ is a basic open set in \mathcal{T}_1 , but $B \notin \mathcal{T}_2$.

 $\mathcal{T}_2 \not\subseteq \mathcal{T}_1$: for example, the rectangle $R = [0,1] \times [0,1) = \{(x,y) \mid 0 \le x \le 1, 0 \le y < 1\}$ is a basic open set in \mathcal{T}_2 , but $R \notin \mathcal{T}_1$ because, for example, $(1,0) \in R$ and every basic open set B in \mathcal{T}_1 with $(1,0) \in B$ contains an interval of the form J = ((a,b),(1,0)] with a < 1, and then $(\frac{a+1}{2},1) \in J$ so that $J \not\subseteq A$ hence $B \not\subseteq A$.

 $\mathcal{T}_1 \subseteq \mathcal{T}_3$: indeed, every basic open set in \mathcal{T}_1 is a union of sets of the forms

$$\{a\} \times [0,d) = \{(a,y) \mid 0 \le y < d\} \text{ where } 0 \le a \le 1, \ 0 < d \le 1$$

$$\{a\} \times (c,1] = \{(a,y) \mid c < y \le 1\} \text{ where } 0 \le a \le 1, \ 0 \le c \le 1$$

$$\{a\} \times (c,d) = \{(a,y) \mid c < y < d\} \text{ where } 0 \le a \le 1, \ 0 \le c < d \le 1$$

and each of these is in \mathcal{T}_3 .

 $\mathcal{T}_3 \not\subseteq \mathcal{T}_1$: for example, for the set $U = \{1\} \times [0,1] = \{(1,y) \mid 0 \le y \le 1\}$, we have $U \in \mathcal{T}_3$ (because $U = V \cap X$ where V is the interval $V = ((1,-2),(1,2))_{\mathbb{R}^2} = \{(1,y) \mid -2 < y < 2\}$, which is a basic open set in \mathbb{R}^2 using the order topology for the dictionary order), but $U \notin \mathcal{T}_1$ because $(1,0) \in U$ and every basic open set B in \mathcal{T}_1 with $(1,0) \in B$ contains an interval of the form J = ((a,b),(1,0)] with a < 1, and then $\left(\frac{a+1}{2},0\right) \in J$ so that $J \not\subseteq U$ hence $B \not\subseteq U$.

 $\mathcal{T}_2 \subseteq \mathcal{T}_3$ for the same reasn that $\mathcal{T}_1 \subseteq \mathcal{T}_3$: every basic open set in \mathcal{T}_2 is a union of sets of the above forms $\{a\} \times [0,d), \{a\} \times (c,1]$ and $\{a\} \times (c,d)$ each of which is open in \mathcal{T}_3 .

 $\mathcal{T}_3 \not\subseteq \mathcal{T}_2$ for the same reason that $\mathcal{T}_1 \not\subseteq \mathcal{T}_2$: when $a,b,c \in I$ with b < d, and $B = \{(a,y) \mid b < y < d\}$ we have $B \in \mathcal{T}_3$, but $B \notin \mathcal{T}_2$.

- 3: Determine (with proof) which of the following statements are true for all topological spaces X, Y and Z.
 - (a) If X is connected and \sim is an equivalence relation on X, then X/\sim is connected.

Solution: This is true. Indeed, suppose that X is connected and let \sim be an equivalence relation on X. Let $q: X \to X/\sim$ be the quotient map. Since X is connected and q is continuous, the image $q(X) = X/\sim$ is connected (by Theorem 3.2).

(b) If $a \in X$ then X is not homeomorphic to $X \setminus \{a\}$.

Solution: This is false. For example, if $X = \{0, 1, 2, \dots\} \subseteq \mathbb{R}$, then $X \setminus \{0\} = \{1, 2, 3, \dots\}$ is homeomorphic to X. Indeed the map f(x) = x + 1 is a homeomorphism from X to $X \setminus \{0\}$ with inverse g(u) = u - 1.

(c) If $X \subseteq Z$ is closed in $Z, Y \subseteq Z$ and $X \cong Y$ then Y is closed in Z.

Solution: This is false. For example, the x-axis is a closed subset of \mathbb{R}^2 , and it is homeomorphic to the open interval (0,1) along the x-axis in \mathbb{R}^2 , but this open interval is not closed in \mathbb{R}^2 (its not open in \mathbb{R}^2 either).

(d) If $\{\pm 1\}$ acts on \mathbb{C} by multiplication, then $\mathbb{C}/\{\pm 1\} \cong \mathbb{C}$.

Solution: This is true. Define $f: \mathbb{C}/\sim \to \mathbb{C}$ by $f([z])=z^2$, or in cartesian coordinates by $f(x+iy)=(x^2-y^2)+i(2xy)$. Note that f is continuous by Theorem 2.19 because, letting $q:\mathbb{C}\to\mathbb{C}/\sim$ be the quotient map, the map $(f\circ q):\mathbb{C}\to\mathbb{C}$ is given by $(f\circ q)(x)=f([z])=z^2$ so that $f\circ q$ is continuous. The inverse $g:\mathbb{C}\to\mathbb{C}/\sim$ is given by $g(w)=\sqrt{w}$ where \sqrt{w} denotes the set of square roots of w (so that for $z,w\in\mathbb{C}$ with $z^2=w$ we have $\sqrt{w}=\{\pm z\}$. In polar coordinates, g is given by $g(re^{i\theta})=\{\pm \sqrt{r}\,e^{i\theta/2}\}$.

It is clear that f and g are inverses of one another, but it is not immediately clear from any of our theorems that g is continuous. To prove that g is continuous, let us express g in cartesian coordinates. For z = x + iy and w = u + iv we have

To solve this pair of equations for x, square both sides of (2) to get $4x^2y^2=v^2$, then multiply both sides of (1) by $4x^2$ to get $4x^4-4x^2y^2=4x^2u$, so we have $4x^4-v^2=4xu$, which we can write as $x^4-ux^2-\frac{1}{4}v^2=0$. This is quadratic in x^2 , and the quadratic formula gives $x^2=\frac{u\pm\sqrt{u^2+v^2}}{2}$. Since the left side is positive, we use the + sign to get $x^2=\frac{u+\sqrt{u^2+v^2}}{2}$, and hence $x=\pm\sqrt{\frac{\sqrt{u^2+v^2}+u}}$. A similar calculation gives $y=\pm\sqrt{\frac{\sqrt{u^2+v^2}-u}}$. Also note that in order to have 2xy=v, x and y must be of the same sign when $v\geq 0$ and the opposite sign when v<0. Thus the function g is given, in cartesian coordinates, by

$$g(u+iv) = \left\{ \begin{bmatrix} \sqrt{\frac{\sqrt{u^2+v^2+u}}{2}} + i\sqrt{\frac{\sqrt{u^2+v^2-u}}{2}} \end{bmatrix}, \text{ if } v \ge 0 \\ \sqrt{\frac{\sqrt{u^2+v^2+u}}{2}} - i\sqrt{\frac{\sqrt{u^2+v^2-u}}{2}} \end{bmatrix}, \text{ if } v \le 0 \right\}.$$

Let $A = \{u + iv \mid v \geq 0\}$ and $B = \{u + iv \mid v \leq 0\}$. Let $g_1 : A \to \mathbb{C}$ and $g_2 : B \to \mathbb{C}$ be the continuous maps given by $g_1(u + iv) = \sqrt{\frac{\sqrt{u^2 + v^2 + u}}{2}} + i\sqrt{\frac{\sqrt{u^2 + v^2 - u}}{2}}$ and $g_2(u + iv) = \sqrt{\frac{\sqrt{u^2 + v^2 + u}}{2}} - i\sqrt{\frac{\sqrt{u^2 + v^2 - u}}{2}}$. Since the quotient map q is continuous, the maps $q \circ g_1 : A \to \mathbb{C}/\sim$ and $q \circ g_2 : B \to \mathbb{C}/\sim$ are continuous. Since $\mathbb{C} = A \cup B$, and A and B are closed in \mathbb{C} , and g is given by $g(w) = (q \circ g_1)(w)$ when $w \in A$ and by $g(w) = (q \circ g_2)(w)$ when $w \in B$, it follows that g is continuous by Theorem 1.36 (The Glueing Lemma). We also remark that g is well-defined because when v = 0 so that u + iv = u, for $u \geq 0$ we have $g_1(u) = \sqrt{u} = g_2(u)$ and for $u \leq u$ we have $g_1(u) = -\sqrt{-u} = -g_2(u)$ so, in either case, $[g_1(u)] = [g_2(u)]$.

4: (a) The **open Möbius strip** is the quotient space $\mathbb{M}^2 = ([0,1] \times (0,1))/\sim$ where

$$(a,b) \sim (c,d) \iff ((a,b) = (c,d) \text{ or } (\{a,c\} = \{0,1\} \text{ and } b+d=1)).$$

A line in \mathbb{R}^2 is determined by its equation ax + by + c = 0 where $(a, b) \neq (0, 0)$, and two such equations determine the same line if and only if they differ by a non-zero scalar multiple, so we can identify the set of all lines with the quotient space X/\mathbb{R}^* where $X = \{(a, b, c) \in \mathbb{R}^3 | (a, b) \neq (0, 0)\}$ and where the group of non-zero numbers \mathbb{R}^* acts by scalar multiplication. Show that X/\mathbb{R}^* is homeomorphic to \mathbb{M}^2 .

Solution: The equivalence classes in X under the action of \mathbb{R}^* are the lines through the origin, excluding the origin (and excluding the z-axis). Each of these lines passes through the unit sphere at two antipodal points. Let H be the closed, punctured hemisphere

$$H = \{(x, y, z) \in \mathbb{S}^2 \mid y \ge 0, z \ne \pm 1\} \subseteq X.$$

We have a homeomorphism $f_1:[0,1]\times(0,1)\to H$ given by

$$(x, y, z) = f_1(u, v) = \left(2\sqrt{v - v^2}\cos(\pi u), 2\sqrt{v - v^2}\sin(\pi u), 2v - 1\right).$$

with inverse $g_1 = {f_1}^{-1}: H \to [0,1] \times (0,1)$ given by

$$(u,v) = g_1(x,y,z) = \left(\frac{1}{\pi}\cos^{-1}\frac{x}{\sqrt{x^2+y^2}}, \frac{z+1}{2}\right).$$

Let us use these maps to obtain a continuous map $f: \mathbb{M}^2 \to X/\mathbb{R}^*$ with continuous inverse $g: X/\mathbb{R}^* \to \mathbb{M}^2$. Let $p: X \to X/\mathbb{R}^*$ and $q: [0,1] \times (0,1) \to \mathbb{M}^2$ be the quotient maps. Let $f_2 = p \circ f_1: [0,1] \times (0,1) \to X/\mathbb{R}^*$, which is continuous. Note that f_2 is constant on equivalence classes in \mathbb{M}^2 because

$$f_1(1,1-v) = \left(-2\sqrt{(1-v)-(1-v)^2}, 0, 2(1-v)-1\right) = \left(-2(v-v^2), 1-2v\right) = -f_1(0,v).$$

Since f_2 is continuous and constant on equivalence classes, it induces the continuous map $f: \mathbb{M}^2 \to X/\mathbb{R}^*$ given by $f([x, y, z]) = f_2(x, y, z)$, that is by

$$f([u,v]) = [2\sqrt{v-v^2}\cos(\pi u), 2\sqrt{v-v^2}\sin(\pi u), 2v-1].$$

For the inverse map, let $A = \{(a,b,c) \in X \mid b \geq 0\}$ and $B = \{(a,b,c) \in X \mid b \leq 0\}$, and note that A and B are closed in X with $X = A \cup B$. Define continuous maps $h: A \to H$ by $h(w) = \frac{w}{\|w\|}$ and $k: B \to H$ by $k(w) = -\frac{w}{\|w\|}$. These give continuous maps $(q \circ g_1 \circ h): A \to \mathbb{M}^2$ and $(q \circ g_1 \circ k): B \to \mathbb{M}^2$. These maps agree on $A \cap B$, so they combine to give a continuous map $g_2: X \to \mathbb{M}^2$ given by $g_2(w) = q(g_1(h(w))) = \left[g_1\left(\frac{w}{\|w\|}\right)\right]$ when $w \in A$, and by $g_2(w) = q(g_1(k(w))) = \left[g_1\left(-\frac{w}{\|w\|}\right)\right]$ when $w \in B$. This map is constant on equivalence classes in X/\mathbb{R}^* , so it induces the continuous map $g: X/\mathbb{R}^* \to \mathbb{M}^2$ given by $g(w) = g_2([w])$, that is by

$$g([a,b,c]) = \left\{ \begin{bmatrix} \frac{1}{\pi} \cos^{-1} \frac{b}{\sqrt{a^2 + b^2 + c^2}}, \frac{1}{2} \left(1 + \frac{c}{\sqrt{a^2 + b^2 + c^2}}\right) \end{bmatrix} \text{ if } b \ge 0 \\ \left[\frac{1}{\pi} \cos^{-1} \frac{-b}{\sqrt{a^2 + b^2 + c^2}}, \frac{1}{2} \left(1 - \frac{c}{\sqrt{a^2 + b^2 + c^2}}\right) \right] \text{ if } b \le 0 \right\}$$

(b) Let $M_n(\mathbb{R})$ be the vector space of $n \times n$ matrices with entries in \mathbb{R} using its standard inner product given by $\langle A, B \rangle = \operatorname{trace}(B^T A)$. The **special linear group** is the group $SL_n(\mathbb{R}) = \{A \in M_n(\mathbb{R}) \mid \det A = 1\}$. Show that $SL_2(\mathbb{R})$ is homeomorphic to $\mathbb{S}^1 \times \mathbb{R}^2$.

Solution: The first row of a matrix in $SL(2,\mathbb{R})$ lies in $\mathbb{R}^2\setminus\{(0,0)\}$, and we have $\mathbb{R}^2\setminus\{(0,0)\}\cong\mathbb{S}^1\times\mathbb{R}^1$ with a homeomorphism $f:\mathbb{R}^2\setminus\{(0,0)\}\to\mathbb{S}^1\times\mathbb{R}^1$ given by $f(a,b)=\left(\left(\frac{a}{\sqrt{a^2+b^2}},\frac{b}{\sqrt{a^2+b^2}}\right),\ln\sqrt{a^2+b^2}\right)$. Given the first row (a,b) for a matrix in $SL(2,\mathbb{R})$, the second row (c,d) satisfies ad-bc=1, so it lies on the line ay-bx=1 which is given parametrically by $(x,y)=\left(\frac{-b}{a^2+b^2},\frac{a}{a^2+b^2}\right)+t(a,b)$. Note that when $(c,d)=\left(\frac{-b}{a^2+b^2},\frac{a}{a^2+b^2}\right)+t(a,b)$, we have $(c,d)\bullet(a,b)=(a^2+b^2)t$ and so $t=\frac{ac+bd}{a^2+b^2}$. We use this to obtain a homeomorphism $g:SL(2,\mathbb{R})\to\mathbb{S}^1\times\mathbb{R}^2$ given by

$$g\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) = \left(\left(\frac{a}{\sqrt{a^2+b^2}}, \frac{b}{\sqrt{a^2+b^2}}\right), \ln \sqrt{a^2+b^2}, \frac{ac+bd}{a^2+b^2}\right).$$

You can verify that the inverse $h = g^{-1} : \mathbb{S}^1 \times \mathbb{R}^2 \to SL(2,\mathbb{R})$ is given by

$$h\left((x,y),r,t\right) = \begin{pmatrix} xe^r & ye^r \\ txe^r - ye^{-r} & tye^r + xe^{-r} \end{pmatrix}.$$