- 1: Let $X = \mathbb{R}$ using the lower limit topology \mathcal{T} , generated by the sets of the form [a,b) where $a,b \in \mathbb{R}$ with a < b, and let $Y = \mathbb{R}$ using the topology \mathcal{S} generated by the sets of the form [a,b) where $a,b \in \mathbb{Q}$ with a < b. Let $A = (0,\sqrt{2}) \subseteq \mathbb{R}$ and let $B = (\sqrt{2},3) \subseteq \mathbb{R}$. Find the closures $\mathrm{Cl}_X(A)$, $\mathrm{Cl}_X(B)$, $\mathrm{Cl}_Y(A)$ and $\mathrm{Cl}_Y(B)$.
- 2: When X is an ordered set, the dictionary order on $X^2 = X \times X$ is the order given by stipulating that

$$(a,b) < (c,d) \iff (a < c \text{ or } (a = c \text{ and } b < d)).$$

- (a) Let $I = [0, 1] \subseteq \mathbb{R}$ and let $X = I^2$ using the order topology for the dictionary order. Find $\overline{A} = \operatorname{Cl}_X A$ where $A = \{(x, 0) \mid 0 < x < 1\}$.
- (b) Let $I = [0,1] \subseteq \mathbb{R}$ and let $X = I^2 \subseteq \mathbb{R}^2$. Let \mathcal{T}_1 be the order topology on X using the dictionary order, let \mathcal{T}_2 be the product topology on X using the order topology on each copy of I, and let \mathcal{T}_3 be the subspace topology that X inherits from $Y = \mathbb{R}^2$ using the order topology for the dictionary order. For each $k, \ell \in \{1, 2, 3\}$ with $k < \ell$, determine whether $\mathcal{T}_k \subseteq \mathcal{T}_\ell$ and whether $\mathcal{T}_\ell \subseteq \mathcal{T}_k$.
- 3: Determine (with proof) which of the following statements are true for all topological spaces X, Y and Z.
 - (a) If X is connected and \sim is an equivalence relation on X, then X/\sim is connected.
 - (b) If $a \in X$ then X is not homeomorphic to $X \setminus \{a\}$.
 - (c) If $X \subseteq Z$ is closed in $Z, Y \subseteq Z$ and $X \cong Y$ then Y is closed in Z.
 - (d) If $\{\pm 1\}$ acts on \mathbb{C} by multiplication, then $\mathbb{C}/\{\pm 1\} \cong \mathbb{C}$.
- **4:** (a) The **open Möbius strip** is the quotient space $\mathbb{M}^2 = ([0,1] \times (0,1))/\sim$ where

$$(a,b) \sim (c,d) \iff \Big((a,b) = (c,d) \text{ or } \big(\{a,c\} = \{0,1\} \text{ and } b+d=1\big)\Big).$$

A line in \mathbb{R}^2 is determined by its equation ax + by + c = 0 where $(a, b) \neq (0, 0)$, and two such equations determine the same line if and only if they differ by a non-zero scalar multiple, so we can identify the set of all lines with the quotient space X/\mathbb{R}^* where $X = \{(a, b, c) \in \mathbb{R}^3 | (a, b) \neq (0, 0)\}$ and where the group of non-zero numbers \mathbb{R}^* acts by scalar multiplication. Show that X/\mathbb{R}^* is homeomorphic to \mathbb{M}^2 .

(b) Let $M_n(\mathbb{R})$ be the vector space of $n \times n$ matrices with entries in \mathbb{R} using its standard inner product given by $\langle A, B \rangle = \operatorname{trace}(B^T A)$. The **special linear group** is the group $SL_n(\mathbb{R}) = \{A \in M_n(\mathbb{R}) \mid \det A = 1\}$. Show that $SL_2(\mathbb{R})$ is homeomorphic to $\mathbb{S}^1 \times \mathbb{R}^2$.