1: (a) Let $X = \{1, 2\}$. Find every topology on X.

Solution: The set of all subsets of X, that is the power set of X, is the set $\mathcal{P}(X) = \{\emptyset, \{1\}, \{2\}, X\}$. Each topology on X is a subset of $\mathcal{P}(X)$ containing \emptyset and X. The number of such subsets is $2^2 = 4$ (to form a subset, there are 2 choices as to whether to include $\{1\}$, and there are 2 choices as to whether to include $\{2\}$), and the list of all such subsets is

$$\mathcal{T}_1 = \{\emptyset, X\}, \ \mathcal{T}_2 = \{\emptyset, \{1\}, X\}, \ \mathcal{T}_3 = \{\emptyset, \{2\}, X\}, \ \mathcal{T}_4 = \{\emptyset, \{1\}, \{2\}, X\}.$$

Since each of these sets \mathcal{T}_k is finite, in order to determine whether it is closed under unions and intersections, it suffices (by induction) to consider only the union and intersection of two sets $A, B \in \mathcal{T}_k$. Also, since $A \cup \phi = A$, $A \cup X = X$, $A \cap \phi = \phi$, $A \cap X = A$, $A \cup A = A$ and $A \cap A = A$, it suffices to consider the case that $A, B \in \mathcal{T}_k$ with $A, B \neq \phi$, $A, B \neq X$ and $A \neq B$. For the sets \mathcal{T}_1 , \mathcal{T}_2 and \mathcal{T}_3 there is nothing to check, and they are all closed under unions and intersections. For \mathcal{T}_4 the only case we need to check is the case that A and B are the sets $\{1\}$ and $\{2\}$, and we have $\{1\} \cup \{2\} = X \in \mathcal{T}_4$ and $\{1\} \cap \{2\} = \emptyset \in \mathcal{T}_4$ so that \mathcal{T}_4 is also closed under unions and intersections (and we did not really need to check at all because $\mathcal{T}_4 = \mathcal{P}(X)$ which is clearly closed under unions and intersections). Thus X has 4 topologies, namely the sets \mathcal{T}_k .

(b) Let $X = \{1, 2, 3\}$, let $\mathcal{R} = \{\emptyset, \{1\}, \{1, 2\}, X\}$ and let $\mathcal{S} = \{\emptyset, \{1\}, \{2, 3\}, X\}$. Find the largest topology on X which is contained in $\mathcal{R} \cap \mathcal{S}$ and find the smallest topology on X which contains $\mathcal{R} \cup \mathcal{S}$.

Solution: We have $\mathcal{R} \cap \mathcal{S} = \{\emptyset, \{1\}, X\}$. Note that this is clearly closed under unions and intersections (as explained in Part (a), we only need to consider $A, B \in \mathcal{R} \cap \mathcal{S}$ with $A, B \neq \emptyset$, $A, B \neq X$ and $A \neq B$, so there is nothing to check), and so $\mathcal{R} \cap \mathcal{S}$ is a topology on X. Since $\mathcal{R} \cap \mathcal{S} = \{\emptyset, \{1\}, X\}$ is a topology on X, it is the largest topology on X which is contained in $\mathcal{R} \cap \mathcal{S}$.

We have $\mathcal{R} \cup \mathcal{S} = \{\emptyset, \{1\}, \{1,2\}, \{2,3\}, X\}$. Note that this is not closed under intersections because $\{1,2\} \cap \{2,3\} = \{2\} \notin \mathcal{R} \cup \mathcal{S}$. Let \mathcal{T} be the smallest topology on X which contains $\mathcal{R} \cup \mathcal{S}$, in other words, let \mathcal{T} be the topology on X which is generated by $\mathcal{R} \cup \mathcal{S}$. Since \mathcal{T} is closed under unions and intersections, we must have $\{2\} = \{1,2\} \cap \{2,3\} \in \mathcal{T}$ and hence

$$\mathcal{R} \cup \mathcal{S} \cup \{2\} = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, \{2, 3\}, X\} \subseteq \mathcal{T}.$$

To determine whether $\mathcal{R} \cup \mathcal{S} \cup \{2\}$ is closed under unions and intersections, it suffices to consider $A, B \in \mathcal{R} \cap \mathcal{S}$ with $A, B \neq \emptyset, A, B \neq X$ and $A \neq B$. Since $\{1\} \cup \{2\} = \{1, 2\}, \{1\} \cup \{1, 2\} = \{1, 2\}, \{1\} \cup \{2, 3\} = \{1, 2, 3\}, \{2\} \cup \{1, 2\} = \{1, 2\}, \{2\} \cup \{2, 3\} = \{2, 3\} \text{ and } \{1, 2\} \cup \{2, 3\} = \{1, 2, 3\}, \mathcal{R} \cup \mathcal{S} \cup \{2\} \text{ is closed under unions, and since } \{1\} \cap \{2\} = \emptyset, \{1\} \cap \{1, 2\} = \{1\}, \{1\} \cap \{2, 3\} = \emptyset, \{2\} \cap \{1, 2\} = \{2\}, \{2\} \cap \{2, 3\} = \{2\} \text{ and } \{1, 2\} \cap \{2, 3\} = \{2\}, \text{ it is closed under intersections. Thus } \mathcal{R} \cup \mathcal{S} \cup \{2\} \text{ is a topology which contains } \mathcal{R} \cup \mathcal{S}.$ Since \mathcal{T} is the smallest such topology, $\mathcal{T} \subseteq \mathcal{R} \cup \mathcal{S} \cup \{2\}$ Thus

$$\mathcal{T} = \mathcal{R} \cup \mathcal{S} \cup \{2\} = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, \{2, 3\}, X\}.$$

(c) Let $X = \{1, 2, 3, 4\}$ and let $\mathcal{T} = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, \{3, 4\}, \{1, 3, 4\}, \{2, 3, 4\}, X\}$. Given that \mathcal{T} is a topology on X, find the number of bases for \mathcal{T} .

Solution: Let $\mathcal{B} = \{\{1\}, \{2\}, \{3,4\}\}$. We claim that \mathcal{B} is a basis for \mathcal{T} . By Theorem 1.21, it suffices to show that for every $U \in \mathcal{T}$ and every $a \in U$ there exists $B \in \mathcal{B}$ with $a \in B \subseteq \mathcal{B}$. We consider all possible cases for U and a: When $U = \emptyset$ there is no $a \in U$. When $U = \{1\}$ and a = 1 we can take $B = \{1\}$. When $U = \{2\}$ and a = 2 we can take $B = \{2\}$. When $U = \{1,2\}$, if a = 1 we can take $B = \{1\}$ and if a = 2 we can take $B = \{2\}$. When $U = \{3,4\}$ and $a \in \{3,4\}$ we can take $B = \{3,4\}$. When $U = \{2,3,4\}$, if a = 2 we can take $B = \{2\}$ and if $a \in \{3,4\}$ we can take $B = \{3,4\}$. Finally, when U = X, if a = 1 we can take $B = \{1\}$, if a = 2 we can take $B = \{2\}$, and if $a \in \{3,4\}$ we can take $B = \{3,4\}$. This covers all cases, and so \mathcal{B} is a basis for \mathcal{T} .

We claim that the bases for \mathcal{T} are the sets \mathcal{C} with $\mathcal{B} \subseteq \mathcal{C} \subseteq \mathcal{T}$. Let \mathcal{C} be any basis for \mathcal{T} . Since \mathcal{T} is the topology generated by \mathcal{C} we have $\mathcal{C} \subseteq \mathcal{T}$. By Part 2 of Theorem 1.20, we know that for every $U \in \mathcal{T}$ and every $a \in U$, there exists $C \in \mathcal{C}$ with $a \in C \subseteq U$. Taking $U = \{1\}$ and a = 1 we see that $C = \{1\} \in \mathcal{C}$. Taking $U = \{2\}$ and u = 2 we see that $u = \{2\} \in \mathcal{C}$. Taking $u = \{2\} \in \mathcal{C}$ and u = 2 we see that $u = \{2\} \in \mathcal{C}$. Thus we must have $u \in \mathcal{C} \subseteq \mathcal{C}$. This proves that if $u \in \mathcal{C}$ is a basis for $u \in \mathcal{C}$ then $u \in \mathcal{C}$ and $u \in \mathcal{C}$ is a basis for $u \in \mathcal{C}$ then $u \in \mathcal{C}$ and $u \in \mathcal{C}$ is a basis for $u \in \mathcal{C}$ then $u \in \mathcal{C}$ is a basis for $u \in \mathcal{C}$ then $u \in \mathcal{C}$ is a basis for $u \in \mathcal{C}$ then $u \in \mathcal{C}$ is a basis for $u \in \mathcal{C}$ then $u \in \mathcal{C}$ is a basis for $u \in \mathcal{C}$ then $u \in \mathcal{C}$ is a basis for $u \in \mathcal{C}$ then $u \in \mathcal{C}$ is a basis for $u \in \mathcal{C}$ then $u \in \mathcal{C}$ is a basis for $u \in \mathcal{C}$ then $u \in \mathcal{C}$ is a basis for $u \in \mathcal{C}$ then $u \in \mathcal{C}$ is a basis for $u \in \mathcal{C}$ then $u \in \mathcal{C}$ is a basis for $u \in \mathcal{C}$ then $u \in \mathcal{C}$ is a basis for $u \in \mathcal{C}$ then $u \in \mathcal{C}$ is a basis for $u \in \mathcal{C}$ then $u \in \mathcal{C}$ is a basis for $u \in \mathcal{C}$ then $u \in \mathcal{C}$ is a basis for $u \in \mathcal{C}$ is a basis for $u \in \mathcal{C}$ is a basis for $u \in \mathcal{C}$ is a basis function $u \in \mathcal{C}$ is a basis function $u \in \mathcal{C}$ is a basis function $u \in \mathcal{C}$ in $u \in \mathcal{C}$ is a basis function $u \in \mathcal{C}$ in $u \in \mathcal{C}$ is a basis function $u \in \mathcal{C}$ in $u \in \mathcal{C}$ is a basis function $u \in \mathcal{C}$ in \mathcal{C} in \mathcal{C} is a basis function \mathcal{C} in $\mathcal{$

Suppose, on the other hand, that \mathcal{C} is any set with $\mathcal{B} \subseteq \mathcal{C} \subseteq \mathcal{T}$. By Theorem 1.21, in order to show that \mathcal{C} is a basis for \mathcal{T} it suffices to show that for every $U \in \mathcal{T}$ and every $a \in U$ there exists $C \in \mathcal{C}$ such that $a \in C \subseteq U$. Let $U \in \mathcal{T}$ and let $a \in U$. Since \mathcal{B} is a basis for \mathcal{T} , we can choose $B \in \mathcal{B}$ such that $a \in B \subseteq U$. Since $\mathcal{B} \subseteq \mathcal{C}$, we also have $B \in \mathcal{C}$ so we can choose $C = B \in \mathcal{C}$ to get $a \in C \subseteq U$.

This completes the proof that the bases for \mathcal{T} are the sets \mathcal{C} with $\mathcal{B} \subseteq \mathcal{C} \subseteq \mathcal{T}$. To form such a set \mathcal{C} , there are 2 choices as to whether to include each of the 5 elements in $\mathcal{T} \setminus \mathcal{B} = \{\emptyset, \{1, 2\}, \{1, 3, 4\}, \{2, 3, 4\}, X\}$, so the number of such sets \mathcal{C} is $2^5 = 32$.

- 2: Let X be a topological space, let \mathcal{B} be a basis for the topology on X, let $A \subseteq X$, and let $a \in X$. Prove each of the following using only definitions and proven results from the lecture notes.
 - (a) $a \in A^o$ if and only if there exists $B \in \mathcal{B}$ with $a \in B$ such that $B \subseteq A$.

Solution: Suppose that $a \in A^o$. By the definition of A^o , this means that we can choose an open set U in X with $a \in U \subseteq A$. Since \mathcal{B} is a basis for the topology on X, by Theorem 1.20 we can choose $B \in \mathcal{B}$ with $a \in B \subseteq U$. Since we have $a \in B$ and $B \subseteq U \subseteq A$, as required.

Suppose, conversely, that there exists $B \in \mathcal{B}$ with $a \in B \subseteq A$. Since B is an open set in X with $a \in B \subseteq A$, and A^0 is the union of all such sets, we have $a \in A^o$.

(b) $a \in \overline{A}$ if and only if for every $B \in \mathcal{B}$ with $a \in B$ we have $B \cap A \neq \emptyset$.

Solution: Suppose that $a \in \overline{A}$. By the definition of \overline{A} , this means that $a \in K$ for every closed set K in X with $A \subseteq K$. Let $B \in \mathcal{B}$ with $a \in B$. We need to show that $B \mathcal{A} \neq \emptyset$. Suppose, for a contradiction, that $B \cap A = \emptyset$. Since $B \cap A = \emptyset$, we have $A \subseteq B^c$ where $B^c = X \setminus B$. Since B^c is a closed set in X with $A \subseteq B^c$, we have $a \in B^c$, that is $\notin B$. This gives the desired contradiction since $a \in B$.

Suppose, conversely, that for every $B \in \mathcal{B}$ with $a \in B$ we have $B \cap A \neq \emptyset$. Suppose, for a contradiction, that $a \notin \overline{A}$. By the definition of \overline{A} , this means that we can choose a closed set K in X with $A \subseteq K$ such that $a \notin K$. Let $U = K^c = X \setminus K$, which is open in X with $a \in U$. Since \mathcal{B} is a basis for the topology on X, by Theorem 1.20 we can choose $B \in \mathcal{B}$ with $a \in B \subseteq U$. Since $B \subseteq U$ we have $B \cap U^c = \emptyset$, that is $B \cap K = \emptyset$. Since $B \cap K = \emptyset$ and $A \subseteq K$, we also have $B \cap A = \emptyset$. This contradicts the assumption made at the start of this paragraph, so we must have $a \in \overline{A}$, as required.

(c) $a \in \partial A$ if and only if for every $B \in \mathcal{B}$ with $a \in B$ we have $B \cap A \neq \emptyset$ and $B \cap (X \setminus A) \neq \emptyset$.

Solution: By Part (a) we have $a \notin A^o$ if and only if for every $B \in \mathcal{B}$ with $a \in B$ we have $B \not\subseteq A$. Also note that $B \subseteq A \iff B \cap A^c = \emptyset$ where $A^c = X \setminus A$, and hence $B \not\subseteq A \iff B \cap A^c \neq \emptyset$. Thus

 $a \in \partial A \iff a \in \overline{A} \text{ and } a \notin A^o$ $\iff (\forall B \in \mathcal{B} \text{ with } a \in B \ B \cap A \neq \emptyset) \text{ and } (\forall B \in \mathcal{B} \text{ with } a \in B \ B \subseteq A)$ $\iff (\forall B \in \mathcal{B} \text{ with } a \in B \ B \cap A \neq \emptyset) \text{ and } (\forall B \in \mathcal{B} \text{ with } a \in B \ B \cap A^c \neq \emptyset)$ $\iff \forall B \in \mathcal{B} \text{ with } a \in B (B \cap A \neq \emptyset) \text{ and } B \cap A^c \neq \emptyset).$

(a) Show that if $A, B \subseteq X$ then $\overline{A} \cup \overline{B} = \overline{A \cup B}$.

Solution: We remark that, from the definition of the closure, that for $C, D \subseteq X$, if $C \subseteq D$ then $\overline{C} \subseteq \overline{D}$: indeed when $C \subseteq D$, \overline{D} is a closed set in X which contains D, hence also C. Let $A, B \subseteq X$.

Since $A \subseteq A \cup B$ we have $\overline{A} \subseteq \overline{A \cup B}$. Since $B \subseteq A \cup B$ we have $\overline{B} \subseteq \overline{A \cup B}$. Since $\overline{A} \subseteq \overline{A \cup B}$ and $\overline{B} \subseteq \overline{A \cup B}$, it follows that $\overline{A} \cup \overline{B} \subseteq \overline{A \cup B}$.

Since $A \subseteq \overline{A} \subseteq \overline{A} \cup \overline{B}$ and $B \subseteq \overline{B} \subseteq \overline{A} \cup \overline{B}$, we have $A \cup B \subseteq \overline{A \cup B}$. Since $\overline{A} \cup \overline{B}$ is a closed set in A which contains $A \cup B$, we have $\overline{A \cup B} \subseteq \overline{A} \cup \overline{B}$.

(b) Show that if $A_k \subseteq X$ for all $k \in K$ then $\bigcup_{k \in K} \overline{A_k} \subseteq \overline{\bigcup_{k \in K} A_k}$ and give an example of a topological space X and subsets $A_k \subseteq X$ for which the reverse inclusion does not hold.

Solution: We remark, as we did at the start of Part (a), that for $C, D \in X$, if $C \subseteq D$ then we have $\overline{C} \subseteq \overline{D}$. Let $A_k \subseteq X$ for all $k \in K$.

For each $k \in K$ we have $A_k \subseteq \bigcup_{j \in K} A_j$ and hence $\overline{A_k} \subseteq \overline{\bigcup_{j \in K} A_j}$. Since $\overline{A_k} \subseteq \overline{\bigcup_{j \in K} A_j}$ for every $k \in K$ it follows that $\bigcup_{k \in K} \overline{A_k} \subseteq \overline{\bigcup_{j \in K} A_j}$.

 $k \in K$ it follows that $\bigcup_{k \in K} \overline{A_k} \subseteq \overline{\bigcup_{j \in K} A_j}$. To see that the reverse inclusion does not always hold, Let $X = \mathbb{R}$, let $K = \mathbb{Q}$, and for each $k \in K = \mathbb{Q}$, let $A_k = \{k\}$. Then $\bigcup_{k \in K} \overline{A_k} = \bigcup_{k \in \mathbb{Q}} \{k\} = \bigcup_{k \in \mathbb{Q}} \{k\} = \mathbb{Q}$, but $\overline{\bigcup_{k \in K} A_k} = \overline{\bigcup_{k \in \mathbb{Q}} \{k\}} = \overline{\mathbb{Q}} = \mathbb{R}$.

(c) Show that if every 1-point subset of X is closed in X then for all $A \subseteq X$ we have $\overline{A}' = A'$.

Solution: First we remark that, from the definition of a limit point, for $C, D \subseteq X$, if $C \subseteq D$ then $C' \subseteq D'$: indeed, when $C \subseteq D$ and $a \in C'$, given an open set U in X with $a \in U$ we have $(U \setminus \{a\}) \cap C \neq \emptyset$, hence also $(U \setminus \{a\}) \cap D \neq \emptyset$.

- **4:** Let X be a topological space. When $(x_n)_{n\geq 1}$ is a sequence in X, for $a\in X$ we say that $(x_n)_{n\geq 1}$ converges to a in X, or that a is a **limit** of $(x_n)_{n\geq 1}$ in X, and we write $x_n\to a$ in X, when for every open set U in X with $a\in U$ there exists $m\in \mathbb{Z}^+$ such that $x_n\in U$ for all $n\geq m$, and we say that $(x_n)_{n\geq 1}$ is **convergent** in X when $x_n\to a$ for some $a\in X$.
 - (a) Show that if X is Hausdorff then every convergent sequence in X has a unique limit in X.

Solution: Suppose that X is Hausdorff. Let $(x_n)_{n\geq 1}$ be a convergent sequence in X. Let $a,b\in X$ and suppose that $x_n\to a$ in X and $x_n\to b$ in X. We need to show that a=b. Suppose, for a contradiction, that $a\neq b$. Since X is Hausdorff, we can choose disjoint open sets u and V in X with $a\in U$ and $b\in V$, Since $x_n\to a$ in X we can choose $m_1\in \mathbb{Z}^+$ so that $n\geq m_1\Longrightarrow x_n\in U$. Since $x_n\to b$ in X we can choose $m_2\in \mathbb{Z}^+$ so that $n\geq m_2\Longrightarrow x_n\in V$. But then for $n\geq \max\{m_1,m_2\}$ we have $x_n\in U$ and $x_n\in V$, which contradicts the fact that U and V are disjoint.

(b) Show that if every convergent sequence in X has a unique limit in X then every 1-point subset of X is closed in X.

Solution: Suppose that every convergent sequence in X has a unique limit in X. Let $a \in X$. Let $(x_n)_{n \geq 1}$ be the constant sequence given by $x_n = a$ for all $n \in \mathbb{Z}^+$. Note that $x_n \to a$ in X since given any open set U in X with $a \in U$, we can choose m = 1 and then for all $n \in \mathbb{Z}^+$ with $n \geq m$ we have $x_n = a \in U$. Let $b \in \{a\}^c = X \setminus \{a\}$. Since $x_n \to a$ in X and $a \neq b$, the fact that convergent sequences have unique limits implies that $x_n \not\to b$ in X. This means that we can choose an open set U_b in X with $b \in U_b$ such that for all $m \in \mathbb{Z}^+$ there exists $n \in \mathbb{Z}^+$ with $n \geq m$ such that $x_n \notin U_b$. Take m = 1 and choose any $n \in \mathbb{Z}^+$ with $n \geq 1$, and we have $a = x_n \notin U_b$. Thus for each $b \in X$ with $b \neq a$ we have an open set U_b in X with $b \in U_b$ and $a \notin U_b$. Note that $\bigcup_{b \in \{a\}^c} U_b = \{a\}^c$, and so $\{a\}^c$ is a union of open sets in X. Thus $\{a\}^c$ is open in X, and hence $\{a\}$ is closed in X.

(c) In the case that $X = \mathbb{Z}$ with the co-finite topology $\mathcal{T} = \{A \subseteq \mathbb{Z} \mid A = \emptyset \text{ or } \mathbb{Z} \setminus A \text{ is finite}\}$, and $x_n = n^2$ for all $n \in \mathbb{Z}^+$, find all points $a \in X$ for which $x_n \to a$ in X.

Solution: Let $X=\mathbb{Z}$ with the co-finite topology, and let $x_n=n^2$ for all $n\in\mathbb{Z}^+$. We claim that $x_n\to a$ for every $a\in X$. Let $a\in X$. Let $a\in X$ be any open set in $a\in X$ with $a\in A$. Since $a\in X$ is open in $a\in A$ so that $a\in A$ be complement $a\in A$ be any open set in $a\in A$ be for which $a\in A$. Since $a\in A$ be the complement $a\in A$ be any open set in $a\in A$ be the complement $a\in A$ be any open set in $a\in A$. Since $a\in A$ be the complement $a\in A$ be the co